
Windows Media Player 9 Series SDK
This documentation describes the Microsoft® Windows Media® Player 9 Series Software Development Kit
(SDK). The Windows Media Player SDK is one of the main components of the Microsoft Windows Media
SDK. Other components include the Microsoft Windows Media Format SDK, the Microsoft Windows Media
Services SDK, the Microsoft Windows Media Encoder SDK, and the Microsoft Windows Media Rights
Manager SDK.

The Windows Media Player SDK documents programming technologies that can be used to extend the
capabilities of Windows Media Player. These technologies are documented in the following sections:

Notes Installing this SDK does not install Windows Media Player. You must have Windows Media Player
installed to use the material in this SDK.

© 2000-2003 Microsoft Corporation. All rights reserved.

Next

Section Description

About the Windows Media Player
SDK

This section provides details about how to find specific information in
the SDK. It includes a section about new features and information about
how to use the samples included with the SDK.

Windows Media Player Object
Model

The Microsoft Windows Media Player control is a Microsoft ActiveX®
control used for adding multimedia playback capabilities to Web pages.
It provides a programming interface for rendering a variety of network
streaming and non-streaming multimedia formats.

Windows Media Player Skins Skins are an XML-based technology used to customize the user interface
of the stand-alone Windows Media Player.

Windows Media Player Plug-ins Plug-ins are objects that extend Windows Media Player functionality in
a variety of ways. Plug-in types include custom visualizations, user
interface plug-ins, DSP plug-ins, and rendering plug-ins.

Windows Media Metafiles Metafiles are XML documents that provide information about a media
stream and its presentation. Metafiles can be used to organize media files
into playlists that can include functionality for seamless stream
switching, ad insertion, and other features.

Windows Media Player Some features of the SDK apply to the Windows Media Player
application and the ActiveX control in general. This section provides
information about these general features.

Glossary This section contains definitions of terms used throughout the SDK.

Next

About the Windows Media Player SDK
The Microsoft Windows Media Player 9 Series Software Development Kit (SDK) provides information and
tools to customize Windows Media Player and to use the Windows Media Player ActiveX control. This
documentation also provides information about using Windows Media metafiles.

Support for customizing Windows Media Player is provided by:

Windows Media Player skins. Skins allow you both to customize the Player user interface and to
enhance its functionality by using XML.
Windows Media Player plug-ins. Windows Media Player includes support for plug-ins that create
visualization effects, that perform digital signal processing (DSP) tasks, that add custom user interface
elements to the full mode Player, and that render custom data streams in digital media files created using
the ASF file format.

Embedding the Windows Media Player control is supported for a variety of technologies, including:

HTML in Web browsers. Microsoft Internet Explorer and Netscape Navigator version 4.7, 6.2, and 7.0
browsers are supported.
Programs created with the Microsoft Visual C++® development system.
Programs based on Microsoft Foundation Classes (MFC).
Programs created with Microsoft Visual Basic® 6.0.
Programs created using the .NET Framework, including programs written in the C# programming
language.
Microsoft Office.

This overview contains the following sections:

See Also

Windows Media Player 9 Series SDK

Previous Next

Section Description

Organization of the Documentation Explains where to find information about specific
technologies in the SDK documentation.

What's New Details the features that have been added to the SDK
since the previous version.

Samples Describes the code samples installed with the SDK
and where to find them.

For More Information Describes where to find the latest white papers and
articles on the Microsoft Web site.

© 2000-2003 Microsoft Corporation. All rights reserved.

Organization of the Documentation
The Windows Media Player SDK documents a wide variety of technologies related to Windows Media Player.
To make it easier to locate the information you need, the documentation is divided into sections that help you
quickly locate topics about a particular feature or technology.

Where appropriate, major sections each include three subsections: About, Programming Guide, and Reference.
The About section describes the particular feature or technology to help you understand how you can use it. The
Programming Guide section adds tutorials that take you deeper into the technology with step-by-step
instructions. The Reference section details the interfaces, objects, methods, properties, events, elements, and
attributes that are available for your use.

The following table will help you to understand where to look for the help you need.

Previous Next

Previous Next

Section Description

About the Windows Media Player SDK Provides overviews of the SDK's organization and of
the new features and technologies available. Provides
information about where to find the SDK samples and
where to locate more help on the Web.

Windows Media Player Object Model Provides detailed information about using the
Windows Media Player ActiveX control object
model. The About the Player Object Model section
describes each object and provides general
information about the control. The Player Control
Guide includes topics about how to write code for the
embedded Player, as well as an Object Model
Migration Guide that details the differences between
this version of the control and the Windows Media
Player 6.4 ActiveX control. The Object Model
Reference section is written in a style designed to be
easily understood by script programmers and Visual
Basic 6.0 programmers. A C++ Translation Guide is
included to help C++ programmers use the reference
documentation as well. C++-only interfaces are
documented in the Object Model Reference for C++.

Windows Media Player Skins Provides detailed information about creating
Windows Media Player skins. The About Skins

section provides an overview of skin technology and
describes in detail what you need to know about
creating a skin. The Skin Creation Guide section
teaches you to make your first skin and shows you
how to add particular features. The Skin
Programming Reference details the elements and
attributes available to skins. Skins can also use the
Microsoft JScript® programming language to add
functionality, so the Object Model Reference section
is useful to skin programmers as well.

Windows Media Player Plug-ins There are four basic types of Windows Media Player
plug-ins. Each type is detailed in a subsection of this
section.

Windows Media Player Custom Visualizations Visualizations are a plug-in technology that you can
use to create interesting visual effects for the Player.
About Custom Visualizations describes the
technology and tells you what you need to know to
create a visualization using the plug-in wizard. The
Custom Visualization Programming Guide section
steps you through the process of changing the code
generated by the plug-in wizard to create a different
visualization. The Custom Visualization
Programming Reference section provides detailed
information about the interfaces, structures, and
enumerations you need to write visualization code.

Windows Media Player User Interface Plug-ins User interface (UI) plug-ins allow you to add new
user interface elements to the full mode Player. The
About User Interface Plug-ins section provides an
overview of UI plug-ins and describes how to use the
plug-in wizard to create a plug-in. The User Interface
Plug-ins Programming Guide teaches you to modify
the code generated by the plug-in wizard to create a
new UI plug-in. The User Interface Plug-ins
Programming Reference section provides detailed
information about the interfaces you need to write UI
plug-in code.

Windows Media Player DSP Plug-ins Digital Signal Processing (DSP) plug-ins allow you
to write code that changes the audio or video data.
The About DSP Plug-ins section provides the
information you need to understand the technology
and use the plug-in wizard to create a sample plug-in.
The DSP Plug-ins Programming Guide teaches you to
modify the code generated by the plug-in wizard to
create a new audio DSP effect plug-in. The DSP
Plug-ins Programming Reference section provides
detailed information about the interfaces and
enumerations you need to write DSP plug-in code.

Windows Media Player Rendering Plug-ins Rendering plug-ins allow you to write code that
renders custom binary data delivered from a

See Also

About the Windows Media Player SDK

© 2000-2003 Microsoft Corporation. All rights reserved.

What's New
The Windows Media Player 9 Series SDK introduces a range of new features and functionality for customizing
Windows Media Player and using the Player control. Some of the features represent entirely new Player
technologies; others extend and update existing technologies to enable new scenarios. The following sections
provide an overview changes made to the SDK since the previous version.

Windows Media stream. The About Rendering Plug-
ins section describes the rendering plug-in
architecture. The Rendering Plug-ins Programming
Guide section describes how to modify the sample
rendering plug-in. The Rendering Plug-ins
Programming Reference section provides detailed
information about the interfaces and enumerations
you need to write rendering plug-in code.

Windows Media Metafiles Windows Media metafiles are text files that use XML
technology to describe how digital media files should
be played. The About Windows Media Metafiles
section describes metafile playlists. The Windows
Media Metafile Guide section tells you how to create
metafiles that perform specific tasks. The Windows
Media Metafile Reference section provides detailed
information about elements and file name extensions.

Windows Media Player Some SDK features apply to the Player (and the
Player control) in a general sense. This section
provides information about these features.

Glossary The glossary provides definitions for terminology
related to the Windows Media Player SDK.

Previous Next

Previous Next

Section Description

What's New for the Windows Media Player Control Describes new features related to the Windows Media
Player ActiveX control.

See Also

About the Windows Media Player SDK

© 2000-2003 Microsoft Corporation. All rights reserved.

What's New for the Windows Media Player Control
The Windows Media Player ActiveX control adds new functionality in Windows Media Player 9 Series. It also
updates and extends existing functionality from the previous version. New and updated features include:

Enhanced and updated Media Library support. See Working with Media Library.
Branding and advertising support for Internet content providers (ICPs). See Displaying Web Pages in
Windows Media Player and Logging Stream Data.
Rich media streaming. See Creating Web-Based Presentations.
Language selection. There are new properties and methods that enable you to take advantage of multiple
language tracks. See Controls Object.
DVD support. To complement the existing functionality available in the Cdrom object, the Player object
model adds the new DVD object. The DVD object includes properties and methods that provide DVD-
specific functions, like DVD.titleMenu and DVD.domain. See DVD Object.
Time compression. There is new behavior for the Windows Media Player control when playing in fast
forward or fast reverse. Content now scans at the specified speed with audio playback, allowing the user
to review material such as newscasts or informational videos more quickly, or to slow down playback to
understand details more clearly.
Invisible user interface (UI) mode. There is a new value for the Player.uiMode property called
"invisible". See Player.uiMode.
Support for SMPTE time code. Time code is the industry standard way of identifying individual video
frames. See Controls.currentPositionTimecode.
Enhancements to closed captioning support. The ClosedCaption object exposes new methods and
properties for working with languages and styles in Synchronized Accessible Media Interchange (SAMI)

What's New for Windows Media Player Skins Describes new elements available to skin authors.

What's New for Windows Media Metafiles Describes new elements and functionality for
authoring Windows Media Metafiles.

What's New for Windows Media Player Plug-ins Describes three new types of plug-ins. These plug-ins
are an entirely new feature for Windows Media
Player 9 Series.

What's New for Windows Media Player 9 Series Describes new features of Windows Media Player
related to this SDK.

Previous Next

Previous Next

files. See ClosedCaption Object.
Support for Remoting. Remoting is a new feature available to developers working in C++ that enables the
creation of applications that coordinate playback between an embedded Windows Media Player control
and the full mode of the Player. When remoting, the embedded control and the full mode Player share the
same playback engine. To the user, this means that video viewed in an embedded Player can seamlessly
transition to the full mode Player. See PlayerApplication Object and Remoting the Windows Media
Player Control.
Support for embedding in containers other than Web browsers. See Player Control Guide.
Using skins with the ActiveX control. See Using Skins with the Windows Media Player Control.

See Also

What's New

© 2000-2003 Microsoft Corporation. All rights reserved.

What's New for Windows Media Player Skins
Windows Media Player skins offer additional functionality in Windows Media Player 9 Series. This new
functionality comes in the form of new elements, attributes, and methods. These include:

New ambient attributes for accessibility, like accKeyboardShortcut. See Ambient Attributes.
A new ambient method and a new ambient attribute for alpha blending. See
AmbientAttributes.alphaBlendTo and AmbientAttributes.alphaBlend.
New ambient event attributes for screen height and width. See event.screenHeight and
event.screenWidth.
New elements for displaying Media Library information, such as ITEM. See Skin Programming
Reference.
New elements for displaying data, like EDITBOX, and POPUP. See Skin Programming Reference.
A new element that displays the Quick Access Panel menu from the full mode of the Player. See
AUTOMENU Element.
New predefined elements based upon BUTTON, EFFECTS, PLAYLIST, SLIDER, TEXT, and
VIDEO. See Skin Programming Reference.
New attributes and methods for buttons, button groups, effects, equalizer settings, playlists, and views.
For instance, BUTTONVIEW, PLAYLIST, VIEW, and SUBVIEW each contain attributes that enable
you to change skin colors dynamically. EQUALIZERSETTINGS includes new attributes that allow you
to take advantage of advanced audio processing functionality, like enabling normalization and cross-
fading. See Skin Programming Reference.

See Also

What's New

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

What's New for Windows Media Metafiles
The Windows Media Player 9 Series SDK includes three main changes for Windows Media metafiles. These
are:

Predefined PARAM names such as HTMLView, which lets you specify Web pages to display in the full
mode of the Player. See PARAM Element.
Additional advertising support. Still images and Shockwave Flash files are now supported by Windows
Media Player, and can be used in playlist entries to provide interstitial advertisements. You can also use
the log predefined PARAM name to add custom field/value pairs to the logging information already sent
by the Player. See Logging Stream Data.
The LOGO element is no longer supported.

See Also

What's New

© 2000-2003 Microsoft Corporation. All rights reserved.

What's New for Windows Media Player Plug-ins
Windows Media Player 9 Series adds a new plug-in architecture. Plug-ins are add-ins for the Player that provide
added or customized functionality for the end user. Types of Windows Media Player plug-ins include:

User interface (UI) plug-ins. This architecture allows you to add new user interface elements to the full
mode Player using Microsoft Windows®-based programming techniques. See Windows Media Player
User Interface Plug-ins.
Digital signal processing (DSP) plug-ins. Based on Microsoft DirectX® Media Object (DMO)
architecture, DSP plug-ins allow you to insert audio or video processing code into the Player signal chain

Previous Next

Previous Next

Previous Next

Previous Next

before rendering. See Windows Media Player DSP Plug-ins.
Rendering plug-ins. Also based on DMO architecture, rendering plug-ins allow you to render data from a
Windows Media arbitrary data stream. This allows you to use Windows Media Player to play back
content in any format you can create. See Windows Media Player Rendering Plug-ins.

Although they have existed in previous versions, Windows Media Player visualizations are now considered a
type of plug-in. See Windows Media Player Custom Visualizations.

See Also

What's New

© 2000-2003 Microsoft Corporation. All rights reserved.

What's New for Windows Media Player 9 Series
There are many new features for Windows Media Player 9 Series. For more information, see Windows Media
Player Help. The following new Player features are of interest to developers that use the Windows Media Player
SDK:

Subscription services. See the Windows Media Player Web page.
Registry keys to allow you to register custom file types. See Registry Settings.
Command line parameters. See Command Line Parameters.

See Also

What's New

© 2000-2003 Microsoft Corporation. All rights reserved.

Samples

Previous Next

Previous Next

Previous Next

Previous Next

The Windows Media Player 9 Series SDK includes a variety of samples that demonstrate many of the
programming techniques described in this document.

Scripting samples demonstrate how to embed the Player ActiveX control in a Web page. A complete Web page
sample demonstrates how to detect the current version of the Player ActiveX control.

A complete skins sample demonstrates how to change the visual appearance and the behavior of Windows
Media Player. A sample Windows Media Player border is provided.

A Visual Basic 6.0 sample project demonstrates how to create a program that can access and play back video
from a DVD.

A wizard for Microsoft Visual C++ can create a working sample of each type of plug-in: a visualization plug-in,
a user interface plug-in, a digital signal processing plug-in, and a rendering plug-in.

Samples for Microsoft Visual C++ demonstrate embedding the Player ActiveX control, remoting the Player
ActiveX control, and using Media Library.

A C# sample demonstrates using the Player ActiveX control with the .NET Framework.

You must first install the Windows Media Player SDK to use the samples. If you have not already installed it,
click the following link:

Install Windows Media Player SDK

After installing the SDK, to see descriptions of the samples and links to the sample code, click the Start button,
then point to Programs, then Windows Media, then Windows Media SDK, and then click Player SDK
samples.

See Also

About the Windows Media Player SDK

© 2000-2003 Microsoft Corporation. All rights reserved.

For More Information
For more information about Windows Media, see the Windows Media Technologies Web site.
For more information about programming with Microsoft technologies, including Windows Media
technologies and software development kits, see the MSDN Library Web site.
For more information about Windows Media Player, see the Windows Media Player page on the
Windows Media Technologies Web site.

Previous Next

Previous Next

See Also

About the Windows Media Player SDK

© 2000-2003 Microsoft Corporation. All rights reserved.

Windows Media Player Object Model
The Microsoft Windows Media Player ActiveX control object model provides scripting interfaces to give Web
developers the opportunity to add Windows Media Player functionality to Web pages. By embedding the
control in an HTML page, the developer can use Internet Explorer to craft visually complex graphical
environments that take advantage of a rich and dynamic event model. The developer can completely sculpt the
Web site user's audio and video experience.

The Windows Media Player ActiveX control object model documentation is presented in the following sections.

See Also

Windows Media Player 9 Series SDK

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Section Description

About the Player Object Model Discusses the architecture of the object model in abstract terms.

Player Control Guide Explains how to use the control object model.

Object Model Reference Describes the methods, properties, and events that the object model makes
available to scripting languages, Visual Basic 6.0, and .NET Framework
languages.

Object Model Reference for
C++

Explains how to translate the control object model reference into C++
terms. Also documents the interfaces and enumeration types that are
available only through C++. Read this section if you are programming
with C++.

Previous Next

About the Player Object Model
The Microsoft Windows Media Player control is a standard ActiveX control that uses Microsoft Component
Object Model (COM) technology. The Windows Media Player functionality is distilled into a set of
programming interfaces that follows standard COM guidelines. You can program these interfaces on a standard
HTML Web page using the player control object model with Microsoft JScript or Microsoft Visual Basic
Scripting Edition (VBScript). You can also program them in skins using Microsoft JScript. If you want to create
a custom program that embeds the control, you can use one of several languages, including Visual Basic, C++,
and C#.

Except where noted, example code in this documentation uses JScript syntax.

The following sections provide overview information about the Windows Media Player object model.

See Also

Windows Media Player Object Model

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Section Description

Player Object Model This section describes the objects available in the
object model.

About the Object Model Versions This section details which object model items have
been added in each version since the introduction of
Windows Media Player 7.0.

Properties, Methods, and Events This section explains properties, methods, and events.

Supported Protocols and File Types This section lists the protocols and file types
supported by Windows Media Player and the Player
control object model.

About Media Library This section describes the information in Media
Library.

Using HTML with Windows Media Player This section describes the various ways to make
Windows Media Player and HTML work together.

Embedding the Player Control This section describes the various ways to embed the
Player control in Microsoft Office documents and in
custom programs.

Previous Next

Player Object Model
ActiveX uses the concept of objects to contain programming functionality. Windows Media Player uses several
objects to divide up the work that the control does. The root object is the Player object, and the other objects
are attached to the Player object through specific properties.

The following diagram shows how the Windows Media Player 9 Series ActiveX control object model works:

The following sections provide conceptual overviews for each object:

About the Cdrom and CdromCollection Objects
About the ClosedCaption Object
About the Controls Object
About the DVD Object
About the Error and ErrorItem Objects
About the External Object
About the MediaCollection and Media Objects
About the MetadataPicture Object
About the MetadataText Object
About the Network Object
About the Player Object
About the PlayerApplication Object

Previous Next

About the Playlist, PlaylistCollection, and PlaylistArray Objects
About the Settings Object
About the StringCollection Object

See Also

About the Player Object Model

© 2000-2003 Microsoft Corporation. All rights reserved.

About the Cdrom and CdromCollection Objects
The Cdrom and CdromCollection objects govern the interface to the CD-ROM drives in your computer for
purposes of reading and playing compact discs.

The CdromCollection object is accessed only through the cdromCollection property of the Player object. The
cdromCollection property returns the CdromCollection object. You can only access the properties of the
CdromCollection object after you have created it. For example, to use the count property, you must use the
following code:

mycount = player.cdromcollection.count;

You can only access the Cdrom object through the CdromCollection object. For example, to eject the CD by
using the Eject method, you must first create the collection object and then an item in the object. To eject the
CD, use the following code:

player.cdromcollection.item(0).eject();

In both cases, you are first creating the collection object (CdromCollection) and then getting a specific object
of that collection. The object is the first item in the collection, Item(0), which corresponds to the first CD drive.
You then call a method, Eject, on that item.

See Also

Cdrom Object
CdromCollection Object
Player Object Model

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

About the ClosedCaption Object
The ClosedCaption object governs the captioning interface for Windows Media Player. The ClosedCaption
object is obtained through the closedCaption property of the Player object. For example, to get the
SAMIFileName property value, type the following:

myfile = player.closedcaption.SAMIFileName;

See Also

ClosedCaption Object
Player Object Model

© 2000-2003 Microsoft Corporation. All rights reserved.

About the Controls Object
The Controls object governs the transport of the media content through the control by using methods such as
Play and Stop. It is accessed only through the Controls property of the Player object. The Controls property
returns the Controls object. You can only access the properties of the Controls object after you have created it.
For example, to use the Play method, you must use the following code:

player.controls.play();

See Also

Controls Object
Player Object Model

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

About the DVD Object
The DVD object adds functionality specific to DVD media. In a general sense, DVD media is treated just like
other digital media in Windows Media Player. For instance, DVD-ROM drives are enumerated using the
CdromCollection object and DVD titles and chapters are manipulated using Playlist objects and Media
objects. Some functionality is DVD-specific, however, and the DVD object provides this. For example, DVD
has a concept called domain. To retrieve the current domain for DVD media, type the following:

mydomain = player.dvd.domain;

See Also

DVD Object
Player Object Model

© 2000-2003 Microsoft Corporation. All rights reserved.

About the Error and ErrorItem Objects
The Error and ErrorItem objects govern the error-handling capabilities of Windows Media Player. The Error
object is obtained from the Player object through the error property. You can get a specific code from the
Error object by using the item property of the Error object to create the ErrorItem object. For example, to get
the error code of the first error item, type:

myerrorcode = player.error.item(0).errorCode;

You can also invoke Web Help with the Error object by using the following code:

player.error.webHelp();

See Also

Error Object
ErrorItem Object

Previous Next

Previous Next

Previous Next

Player Object Model

© 2000-2003 Microsoft Corporation. All rights reserved.

About the External Object
The External object can provide functionality to Web pages displayed in Windows Media Player.

See Also

External Object
Player Object Model

© 2000-2003 Microsoft Corporation. All rights reserved.

About the MediaCollection and Media Objects
The MediaCollection and Media objects govern the media collection, which defines the locations of media
files that Windows Media Player can access. You get the MediaCollection object from the mediaCollection
property of the Player object. The mediaCollection property returns the MediaCollection object. You can only
access the properties of the MediaCollection object after you have created it. For example, to add a Media
object (a song), type the following:

player.mediacollection.add('laure.wma');

You have added the file laure.wma to the media collection.

You can get the current Media object by using the currentMedia property of the Player. For example, to get
the duration property of the current Media object, type:

myduration = player.currentmedia.duration;

Previous Next

Previous Next

Previous Next

Previous Next

There are many ways to get a Media object so that you can access its properties. For example, if you want to
access the duration property of the current media, each of the following lines could be used:

To get the duration of the currently playing media, type:

player.currentMedia.duration;

To get the duration of the current media in a playlist, type:

player.controls.currentItem.duration;

To get the duration of the third media item in a playlist, type:

player.currentPlaylist.item(2).duration;

To get the duration of the third media item in a "Jazz" genre, type:

player.mediaCollection.getByGenre("jazz").item(2).duration;

To get the duration of the third media item in the second playlist, type:

player.playlistCollection.getAll.item(1).item(2).duration;

See Also

Media Object
MediaCollection Object
Player Object Model

© 2000-2003 Microsoft Corporation. All rights reserved.

About the MetadataPicture Object
The WM/Picture metadata attribute provides detailed information about metadata images, such as album art.
The MetadataPicture object provides a way to retrieve the individual data related to the image. You might
think of the WM/Picture metadata attribute as a compound attribute. When you use
Media.getItemInfoByType to retrieve information about a metadata image, you retrieve a MetadataPicture
object that has properties which contain the individual data.

See Also

MetadataPicture Object

Previous Next

Previous Next

Player Object Model

© 2000-2003 Microsoft Corporation. All rights reserved.

About the MetadataText Object
Some metadata attributes, such as WM/Lyrics_Synchronised, provide text accompanied by a description of
the text. The MetadataText object provides a way to retrieve the text and the description separately. When you
use Media.getItemInfoByType to retrieve information about complex textual attributes, you retrieve a
MetadataText object that has properties, which contain the individual data.

See Also

MetadataText Object
Player Object Model

© 2000-2003 Microsoft Corporation. All rights reserved.

About the Network Object
The Network object governs the properties that allow you to determine how well the content is streaming
through the network. For example, you can find out whether packets are being lost and take appropriate action.
The Network object is accessed only through the network property of the Player object. The network property
returns the Network object. You can only access the properties of the Network object after you have created it.
For example, to use the Bandwidth property, you must use the following code:

mybandwidth = player.network.bandwidth;

See Also

Network Object

Previous Next

Previous Next

Previous Next

Previous Next

Player Object Model

© 2000-2003 Microsoft Corporation. All rights reserved.

About the Player Object
The Player object is the core object for the Windows Media Player control. All other related objects are
connected to this object through specific properties that return the object. For example, the Settings object is
accessed through the settings property. The Player object provides methods, properties, and events that relate
to the core functionality of Windows Media Player.

Because this reference is also to be used for skins programming, the ID of the Player object will be "player" for
syntactical examples.

Using the player global attribute within a skin definition file gives access to the Player object for use in
scripting. Through the Player object, all other objects in the Windows Media Player control become accessible
to scripts as well. The events of the Player object and the URL property can also be specified at design time
using the PLAYER skin element. For more information, see Windows Media Player Skins.

See Also

Player Object
Player Object Model

© 2000-2003 Microsoft Corporation. All rights reserved.

About the PlayerApplication Object
The PlayerApplication object is used for remoting the Player. It provides the functionality required to switch
between a remoted Player control and the full mode of the Player.

Previous Next

Previous Next

Previous Next

Previous Next

Remoting enables a Player control embedded in a C++ application to use the same playback engine as Windows
Media Player. This means that usually you will use the PlayerApplication object in C++ code using the COM
interfaces. There is a special case, however, where you can embed the Player control that displays a Windows
Media Player skin as its user interface. In this case, PlayerApplication can be programmed using JScript in the
skin code.

See Also

Player Object Model
PlayerApplication Object

© 2000-2003 Microsoft Corporation. All rights reserved.

About the Playlist, PlaylistCollection, and
PlaylistArray Objects
The Playlist, PlaylistCollection, and PlaylistArray objects govern the playlists that Windows Media Player
can use to specify the order in which content will be played. You get the PlaylistCollection object from the
playlistCollection property of the Player object. The playlistCollection property returns the
PlaylistCollection object. You can only access the properties of the PlaylistCollection object after you have
created it. For example, to create a new playlist, you must first get the PlaylistCollection object and then use a
method on that object.

player.playlistcollection.newplaylist('myplaylist');

You can get the current playlist by using the currentPlaylist property. For example, to get the name of the
current playlist, use the following code:

myname = player.currentplaylist.name;

The PlaylistArray object is returned by the getAll and getByName methods of the PlaylistCollection object.
To get the number of playlists, for example, use the following code:

howmany = player.playlistcollection.getAll().count;

To retrieve a known playlist by name, use the following code:

if (player.playlistcollection.getbyname('myplaylist').count == 1) {
 pl = player.playlistcollection.getbyname('myplaylist').item(0);
}

See Also

Previous Next

Previous Next

Player Object Model
Playlist Object
PlaylistArray Object
PlaylistCollection Object

© 2000-2003 Microsoft Corporation. All rights reserved.

About the Settings Object
The Settings object governs the settings of the control such as volume, play count, mute, and so on. It is
accessed only through the Settings property of the Player object. The Settings property returns the Settings
object. You can only access the properties of the Settings object after you have created it. For example, to get
the value of the Volume property, you must use the following code:

myvolume = player.settings.volume;

See Also

Player Object Model
Settings Object

© 2000-2003 Microsoft Corporation. All rights reserved.

About the StringCollection Object
The StringCollection object governs string collections, which are used to provide string handling capabilities
for the MediaCollection object. The StringCollection object can be retrieved through the
getAttributeStringCollection method of the MediaCollection object. You can use this to work with string
collections representing the values of various media item attributes.

See Also

Previous Next

Previous Next

Previous Next

Previous Next

Player Object Model
StringCollection Object

© 2000-2003 Microsoft Corporation. All rights reserved.

About the Object Model Versions
Windows Media Player 7.0 introduced a new object model. This object model has been extended with Windows
Media Player 7.1, Windows Media Player for Windows XP, and Windows Media Player 9 Series. Each topic in
the Object Model Reference includes a Requirements section that details the minimum requirement for the
individual property, method, or event. The following lists detail the new objects, methods, properties, and
events that have been added for each version since version 7.0.

Added for Windows Media Player 7.1

Player.stretchToFit Property

Added for Windows Media Player for Windows XP

Controls.step Method
DVD Object
Media.error Property
Player.DomainChange Event
Player.MediaError Event
Player.OpenPlaylistSwitch Event
Player.windowlessVideo Property

Added for Windows Media Player 9 Series

ClosedCaption.getSAMILangID Method
ClosedCaption.getSAMILangName Method
ClosedCaption.getSAMIStyleName Method
ClosedCaption.SAMILangCount Property
ClosedCaption.SAMIStyleCount Property
Controls.audioLanguageCount Property
Controls.currentAudioLanguage Property
Controls.currentAudioLanguageIndex Property
Controls.currentPositionTimecode Property
Controls.getAudioLanguageDescription Method
Controls.getAudioLanguageID Method
Controls.getLanguageName Method
ErrorItem.condition Property

Previous Next

Previous Next

External.appColorLight Property
External.OnColorChange Event
External.version Property
IWMPPlayerServices Interface
IWMPRemoteMediaServices Interface
IWMPSkinManager Interface
Media.getAttributeCountByType Method
Media.getItemInfoByType Method
MetadataPicture Object
MetadataText Object
Player.AudioLanguageChange Event
Player.isRemote Property
Player.MediaCollectionAttributeStringChanged Event
Player.newMedia Method
Player.newPlaylist Method
Player.openPlayer Method
Player.playerApplication Property
Player.PlayerDockedStateChange Event
Player.PlayerReconnect Event
Player.StatusChange Event
Player.SwitchedToControl Event
Player.SwitchedToPlayerApplication Event
PlayerApplication Object
Settings.defaultAudioLanguage Property
Settings.mediaAccessRights Property
Settings.requestMediaAccessRights Method

See Also

About the Player Object Model
Object Model Reference
What's New for the Windows Media Player Control

© 2000-2003 Microsoft Corporation. All rights reserved.

Properties, Methods, and Events
Each object has methods and properties through which you can program the Windows Media Player control. A
method is an action that the object can take. A property is a data value that you can read or change. For
example, the Play method starts the content playing, and the frameRate property indicates the current frame
rate of the content that is playing.

Previous Next

Previous Next

In addition, the Player object raises events that give you the opportunity to carry out actions at specific times.
You write code in an event handler that will execute when Windows Media Player raises the corresponding
event. For example, you can write code in a PlayStateChange event handler that determines whether the
change in state is that the media ended and if so display a dialog box asking users if they want to play the media
again.

Note All of the methods in the Player object model are asynchronous. If you call two methods in the same
procedure, the second method cannot rely on the first method having completed its action.

See Also

About the Player Object Model

© 2000-2003 Microsoft Corporation. All rights reserved.

Supported Protocols and File Types
Windows Media Player supports several protocols and many file types, all of which can be used when
specifying URL values in the Player object model for properties such as Player.URL or in Windows Media
metafile playlists. Additionally, the supported protocols can be used when specifying protocol values with the
proxy-related methods of the Network object.

The following digital media file formats are currently supported by Windows Media Player:

Advanced Systems Format (ASF)
AIF
AIFC
AIFF
AU
AVI
MID
MPE
MPEG
MPG
MPv2
MP2
MP3
M1V
SND
WAV
Windows Media files with a .wm file name extension
Windows Media Audio (WMA)

Previous Next

Previous Next

Windows Media Video (WMV)

The following protocols are currently supported by Windows Media Player.

See Also

About the Player Object Model
WMPCD Protocol
WMPDVD Protocol

© 2000-2003 Microsoft Corporation. All rights reserved.

WMPCD Protocol
The WMPCD protocol enables you to specify tracks on a compact disc using URL syntax. This is the general
syntax of the protocol:

wmpcd://drive/track

Protocol Description

HTTP Hypertext Transfer Protocol. Includes HTTP with fast cache and
multicast.

RTSP Real Time Streaming Protocol. Includes RTSP with fast cache.

RTSPU RTSP used with User Datagram Protocol (UDP). Includes RTSPU with
fast cache

RTSPT RTSP used with Transmission Control Protocol (TCP). Includes RTSPT
with fast cache

MMS Microsoft Media Server protocol.

MMSU MMS used with UDP.

MMST MMS used with TCP.

WMPCD A protocol used by Windows Media Player to provide access to compact
discs.

WMPDVD A protocol used by Windows Media Player to provide access to DVD-
ROM discs.

Previous Next

Previous Next

The drive segment is the index of the CD drive. The track segment is the number of the track. The following
example demonstrates using the WMPCD protocol.

player.url = "wmpcd://0/4";

The example plays the fourth track on the disc in the first CD drive (the drive whose index is 0).

See Also

Supported Protocols and File Types

© 2000-2003 Microsoft Corporation. All rights reserved.

WMPDVD Protocol
The WMPDVD protocol enables you to specify media from a DVD using URL syntax. This is the general form
of the protocol:

wmpdvd://drive/title/chapter?contentdir=path

The drive segment is the letter of the DVD drive; it does not include the colon typically used with drive
specifiers. This segment is always required.

The title segment is the number of the title to play. It is not required unless you want to start playback at a
specific title or at a specific chapter of a specific title.

The chapter segment is the number of the chapter to play. It is not required unless you want to start playback at
a specific chapter of a specific title.

The contentdir argument is the path to a VIDEO_TS.IFO file, which may be in local storage or on a network
share. If you include this segment, then the drive segment is ignored although it is still required. If you also
include the title segment or both the title and chapter segments then they are relative to the DVD content
specified in the contentdir segment, not the drive segment.

The following example uses the WMPDVD protocol to play the DVD from the beginning, as if it were starting
automatically.

player.url = "wmpdvd://F";

The following example uses the WMPDVD protocol to play the DVD from the beginning of the specified title.

player.url = "wmpdvd://F/2";

Previous Next

Previous Next

The following example uses the WMPDVD protocol to play the DVD from the specified chapter.

player.url = "wmpdvd://F/2/4";

The following example uses the WMPDVD protocol to play DVD content from local storage. The path string
ends with the folder that contains the VIDEO_TS.IFO file; it does not include the file name. In this example,
the value of the drive segment has no effect although it is required, and playback begins in chapter 4 of title 2.

player.url = "wmpdvd://Z/2/4?contentdir="d:\sample1\video_ts";

Assigning a WMPDVD string to the url property requires Windows Media Player 9 Series or later.

See Also

Supported Protocols and File Types

© 2000-2003 Microsoft Corporation. All rights reserved.

About Media Library
Media Library is a database of information about the media content that is available to Windows Media Player
on the user's computer. Some of the information is displayed in the Media Library pane in the player; all of it
is available through code.

See Also

About the Player Object Model
Working with Media Library

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

Using HTML with Windows Media Player
Overview

Using HTML with Windows Media Player is an excellent way to combine audio and video with text and
graphics. You can embed the Player control in a Web page when you want to supplement your static content or
create Web applications with digital media. When you want to supplement your digital media with HTML, on
the other hand, you can display Web pages in the full mode of the Player by referencing them in Windows
Media metafile playlists.

If you write custom programs that embed the Player control in remote mode, you can also control the Web
pages displayed in the various panes of the full mode of the Player when your users undock the control. This
lets you preserve continuity between the docked and undocked states.

Web Embedding

When you embed the Player control in a Web page, you can take a basic approach or a more elaborate
approach. In the basic approach, you use the control simply to play background music or to add a video display
to your page. In the more elaborate approach, you make your page interactive by adding script code to
manipulate the control through the Player object model. This lets you provide a user interface of your own
design or respond dynamically to script commands or events such as media transitions.

For more information, see Embedding the Player Control in a Web Page.

Script Commands and URL Flipping

Script commands are text/value pairs you can embed in your digital media files or streams. You might use
custom script commands solely to trigger script code, while letting Windows Media Player handle other script
commands automatically.

When you have several Web pages that accompany a digital media presentation, URL script commands can
automatically change the page in one frame while the Player control continues playing media in another frame.
This is called URL flipping, and is an excellent way to create a multimedia slideshow. Other automatically
handled script commands let you switch playback to a different media file or stream, display captioning text, or
trigger events such as ad insertions defined in a Windows Media metafile playlist.

For more information about URL flipping, see Creating Web-Based Presentations.

Rich Media Streaming

URL flipping works best with simple pages that load rapidly. With more complex pages, multiple components
are transferred individually, making it difficult to synchronize page display with digital media. To allow
complex rich media presentations, Web pages can be added to a media stream and delivered to the Player in the
same way as audio and video. This lets you synchronize the components of your presentation much more easily,
especially over low-speed connections.

For more information about rich media streaming, see Creating Web-Based Presentations.

Browser Support

You can embed the Windows Media Player control in both Microsoft Internet Explorer and in Netscape
Navigator, although the process is slightly different for each. You can also create Web pages designed to work

with both browsers.

With Internet Explorer, you embed the control using the HTML OBJECT element. Navigator requires a
different approach, however, because it doesn't directly support ActiveX controls. With Navigator, you use the
APPLET element to embed a special Java applet into the page. This applet handles communication with the
Player ActiveX control.

For more information about Netscape Navigator support, see Using Windows Media Player with Netscape
Navigator.

Displaying Web Pages in the Full Mode of the Player

You can extend the functionality of the Player or provide a custom view of information that accompanies your
digital media by displaying Web pages in the full mode of the Player. This is a feature of Windows Media
metafiles. Metafiles give you great control over playlist content, allowing you to seamlessly transition between
clips, insert advertisements, and display still images in the Player. To display Web pages in the full mode of the
Player, you use the PARAM element to add URL references to your playlist entries or to entire playlists.

For more information about using Web pages in metafiles, see Displaying Web Pages in Windows Media
Player.

Displaying Web Pages in the Remoting Undocked State

When you embed the Player control in a custom program using remoting, you can let your users undock the
control, switching to the full mode of the Player while media playback continues uninterrupted. This gives your
users access to the features of the full mode of the Player, after which they can dock the Player again and return
to your custom program.

While the Player is undocked, your program can specify the Web pages that display in the various panes of the
Player such as the Now Playing and Media Guide panes. This lets you retain control of the user experience,
including branding and advertising, while the Player is undocked.

For more information, see Remoting the Windows Media Player Control.

See Also

About the Player Object Model

© 2000-2003 Microsoft Corporation. All rights reserved.

Embedding the Player Control

Previous Next

Previous Next

In addition to embedding the Windows Media Player control in a Web page as described in the previous
section, you can embed it in Microsoft Office documents and in custom programs that you create using one of
several programming languages, including Microsoft Visual Basic, C++, and C#.

The following sections provide information about using the control in various programming environments.

See Also

About the Player Object Model

© 2000-2003 Microsoft Corporation. All rights reserved.

Embedding the Player Control in an Office
Document
Embedding the Player control in an Office document is an easy way to add dynamic, interactive digital media
content to an otherwise static document. For example, you can create a spreadsheet in Microsoft Excel and
insert a "talking head" video summarizing a report, or you can create a Microsoft Word document and insert a
short animation illustrating a point made in the text. If you don't like the user interface provided by the control,
you can use Microsoft Visual Basic for Applications (VBA) to provide a custom user interface.

Embedding the Player control in a Microsoft PowerPoint® slideshow lets you supplement the dynamic effects
already provided by that program. When you save the presentation as a Web page, the Player control is
embedded in the HTML as described in Embedding the Player Control in a Web Page. This lets you add
additional script code that you may have developed for other Web pages.

Another way to easily generate Web pages that embed the Player control is with Microsoft FrontPage®.
FrontPage lets you rapidly create a page, add the Player control from a menu, and configure it in a properties
dialog box. Again, the resulting HTML embeds the Player control just as described previously.

See Also

Embedding the Player Control

Section Description

Embedding the Player Control in an Office Document This section describes using the control in a
Microsoft Office document.

Embedding the Player Control in a Custom Program This section describes using the control in a Windows
application written in Visual Basic or C++.

Previous Next

Previous Next

Using Windows Media Player with Microsoft Office

© 2000-2003 Microsoft Corporation. All rights reserved.

Embedding the Player Control in a Custom
Program
Because the Windows Media Player ActiveX control is based on Microsoft Component Object Model (COM)
technology, you can embed it in programs written with many different programming languages. The Player
control represents an easy way to add sophisticated digital media functionality to any program.

In Microsoft Visual Basic, you can add the control to the control toolbox, place it on a form, and adjust the
control properties in the properties window. If you want a custom user interface, you can place command
buttons on the form and add code that manages the Player control. Embedding the control in a Visual Basic-
based program is very similar to embedding it in an Office document and programming it with VBA.

The Microsoft Foundation Class (MFC) Library lets you embed the Player control with similar ease in C++
programs. Alternately, you can embed the control manually using COM methods to instantiate the control and
access the COM interfaces documented in Object Model Reference for C++.

When you embed the Player control in a C++ program, you have the option of implementing COM interfaces
that allow the control to run in remote mode. This means that the embedded control shares the same playback
engine as the full mode of the Player, and users can switch back and forth between the full mode and the docked
state without interrupting digital media playback. You can also control what is displayed in the various panes of
the full mode Player when your users switch to the undocked state.

With C++ embedding, you also have the option of applying a skin definition file to the embedded Player
control. This is an easy way to create lightweight user interface code that you can maintain separately from your
main program code.

See Also

Embedding the Player Control
Embedding the Player Control in a C++ Program

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Player Control Guide
The Microsoft Windows Media Player ActiveX control object model exposes objects, methods, properties, and
events that you can use in skins and when you embed the control in Web pages or custom programs.

The following topics describe several ways to use the embedded Windows Media Player control.

See Also

Windows Media Player Object Model

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Section Description

Embedding the Player Control in a Web Page This topic describes how to use the Player control
with Microsoft Internet Explorer and with Netscape
Navigator.

Creating Web-Based Presentations This topic describes how to use the Player control for
URL flipping.

Adding Closed Captions to Digital Media This topic describes how to use Synchronized
Accessible Media Interchange (SAMI) format to
supplement your digital media with captions.

Working with Media Library This topic describes how to work with media items
and playlists and their associated attributes.

Using Windows Media Player with Microsoft Office This topic describes how to embed the Player control
in Microsoft Office documents.

Using Windows Media Player with Visual Basic This topic describes how to embed the Player control
in applications created with Visual Basic 6.0.

Embedding the Player Control in a C++ Program This topic describes several ways to embed the Player
control in a custom C++ program.

Embedding the Player Control in a .NET Framework
Solution

This topic describes how to embed the Player control
in a .NET Framework solution.

Object Model Migration Guide This topic describes how to upgrade pages designed
for Windows Media Player 6.4 to make them work
with the 9 Series object model.

Previous Next

Embedding the Player Control in a Web Page
Embedding the Windows Media Player control in a Web page lets you completely customize the way the user
interacts with the control. You can use the interface provided by the control, or you can hide it and display your
own user interface. You can specify multiple Player control properties at the point where you embed the
control, or you can set Player properties and call Player methods in script code.

The following sections describe the basics of embedding the control in a Web page.

See Also

Player Control Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Hiding the Player Control

Previous Next

Section Description

Hiding the Player Control Describes the options for hiding the Player control
when you want to provide your own user interface.

PARAM Tags Describes how to initialize the Player control when
you embed it.

Simple Example of Scripting in a Web Page Describes a simple, but complete, example of an
embedded Player control with a custom user
interface.

Using Windows Media Player with Netscape
Navigator

Describes how to use the Player control with
Netscape Navigator. It also describes how to make
your pages compatible with both Netscape Navigator
and Microsoft Internet Explorer.

Previous Next

Previous Next

The Windows Media Player ActiveX object is embedded in a Web page using the OBJECT element. Unlike
earlier versions, the OBJECT element that defines Windows Media Player must be placed in the BODY section
of a Web page; that is, between the <BODY> and </BODY> tags. Placing the Windows Media Player ActiveX
object in the HEAD section of a Web page in order to hide the user interface can produce unexpected results.

If you put the Windows Media Player ActiveX control in the BODY section of a Web page, the control user
interface will be displayed. If you do not want it to be displayed, and wish to create your own user interface, set
the height and width attributes of the OBJECT element to zero.

The control can also be made invisible by setting the Player.uiMode property to "invisible". This can be done
using a PARAM tag as discussed in the next section. In this case, space is reserved for the control using height
and width, but nothing is displayed in the reserved space until uiMode is changed to something other than
"invisible".

See Also

Embedding the Player Control in a Web Page

© 2000-2003 Microsoft Corporation. All rights reserved.

PARAM Tags
Windows Media Player uses the PARAM element to define specific startup conditions for the control. The
PARAM element is embedded inside the OBJECT element.

For example, if you want to define whether the autoStart property is True, you would embed the PARAM
element inside the OBJECT element.

<OBJECT ID="Player"
 CLASSID="CLSID:6BF52A52-394A-11d3-B153-00C04F79FAA6">
 <PARAM name="autoStart" value="True">
</OBJECT>

You can have as many PARAM tags in an OBJECT element as you want. PARAM has two attributes, name
and value. Both attributes must be set.

The following values are supported for use with the name attribute of the PARAM element.

autoStart
balance
baseURL
captioningID

Previous Next

Previous Next

currentPosition
currentMarker
defaultFrame
enableContextMenu
enabled
fullScreen
invokeURLs
mute
playCount
rate
SAMIFileName
SAMILang
SAMIStyle
stretchToFit
uiMode
URL
volume
windowlessVideo

See the Object Model Reference for more details about the values for each name attribute.

See Also

Embedding the Player Control in a Web Page

© 2000-2003 Microsoft Corporation. All rights reserved.

Simple Example of Scripting in a Web Page
You can easily embed the Windows Media Player control in an HTML file using any scripting language your
browser recognizes. The following simple example uses Microsoft JScript to create a page that will play a file
when you click on a button, and stop playing the file when you click on another button.

You can embed the Windows Media Player ActiveX control in a Web page using the following four steps:

1. Create the Web page.
2. Add the OBJECT tag.
3. Add a user interface. In this case, two buttons.
4. Add a few lines of code to respond when the user clicks on one of the buttons you have created.

Creating the Web Page

Previous Next

Previous Next

The first step is to create a valid HTML Web page. The following code is the minimum needed to create a blank
but valid HTML page:

<HTML>
 <HEAD>
 </HEAD>
 <BODY>
 </BODY>
</HTML>

Adding the OBJECT Tag

Once you have created a Web page, you need to add an OBJECT tag. This identifies the ActiveX control to the
browser and sets up any initial definitions. You must place the OBJECT tag in the BODY of the code. If you
place it in the BODY, the default user interface of Windows Media Player will be visible. If you want to create
your own user interface, set the height and width attributes to 0 (zero). You can also set the Player.uiMode
property to "invisible" when you want to hide the control, but still reserve space for it on the page. The
following code is recommended when you provide a custom user interface:

<OBJECT ID="Player" height="0" width="0"
 CLASSID="CLSID:6BF52A52-394A-11d3-B153-00C04F79FAA6">
</OBJECT>

The following OBJECT tag attributes are required:

ID

The name that will be used by other parts of the code to identify and use the ActiveX control. You can choose
any name you want, as long as it is a name that is not already used by HTML, HTML extensions, or the
scripting language you are using. In this example, the name Player is used, but you could also call it MyPlayer
or something else. Just pick a name that is unique to that Web page.

CLASSID

A very large hexadecimal number that is unique to the control. Only one control has this number and it is the
Windows Media Player ActiveX control. To prevent typographical errors, you can copy and paste this number
from the documentation. Versions of the Windows Media Player control prior to version 7.0 had a different
CLASSID.

Adding a User Interface

HTML allows a vast wealth of user interface elements, allowing the user to interact with your Web page by
clicking, pressing keys, and other user actions. Adding a few INPUT buttons is the easiest way to provide a
quick user interface. The following code creates two buttons that can respond to the user. Clicking one button
starts the media stream playing and the other button stops it:

<INPUT TYPE="BUTTON" NAME="BtnPlay" VALUE="Play" OnClick="StartMeUp()">
<INPUT TYPE="BUTTON" NAME="BtnStop" VALUE="Stop" OnClick="ShutMeDown()">

The name of the button is used to identify the button to your code; the value is the label that will appear on the
button, and the OnClick attribute identifies which part of your scripting code will be called when the button is
clicked.

Adding Scripting Code

Scripting code adds interactivity to your page. Scripting code can respond to events, call methods, and change
run-time properties. Extended scripts are enclosed in a SCRIPT tag set. The SCRIPT tag tells the browser where
your scripting code is and identifies the scripting language. If you do not identify a language, the default
language will be Microsoft JScript.

It is good authoring practice to enclose your script in HTML comment tags so browsers that do not support
scripting do not render your code as text. Put the SCRIPT tag anywhere within the BODY of your HTML file
and embed the comment-surrounded code within the opening and closing SCRIPT tags.

The following Microsoft JScript code example calls the Windows Media Player control and performs an
appropriate action in response to the corresponding button click.

<SCRIPT>
<!--

function StartMeUp ()
{
 Player.URL = "laure.wma";
}

function ShutMeDown ()
{
 Player.controls.stop();
}

-->
</SCRIPT>

The example function, StartMeUp, is called when the button marked Play is clicked, and the ShutMeDown
function is called when the Stop button is clicked.

The code inside StartMeUp uses the URL property to define a path to the media. The media will start playing
immediately.

The ShutMeDown code calls the stop method of the Controls object. Note that the Controls object is called
through the controls property of the Player object, which has the ID value of "Player".

The following code shows a complete example.

<HTML>
<HEAD>
</HEAD>
<BODY>
<OBJECT ID="Player" height="0" width="0"
 CLASSID="CLSID:6BF52A52-394A-11d3-B153-00C04F79FAA6">
</OBJECT>
<INPUT TYPE="BUTTON" NAME="BtnPlay" VALUE="Play" OnClick="StartMeUp()">
<INPUT TYPE="BUTTON" NAME="BtnStop" VALUE="Stop" OnClick="ShutMeDown()">
<SCRIPT>
<!--

function StartMeUp ()
{
 Player.URL = "laure.wma";
}

function ShutMeDown ()
{

 Player.controls.stop();
}

-->
</SCRIPT>
</BODY>
</HTML>

Note that you must provide a valid URL to a valid file name in the URL property. In this case the assumption is
that the file laure.wma is in the same directory as the HTML file.

See Also

Embedding the Player Control in a Web Page

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Windows Media Player with Netscape
Navigator
Netscape Navigator does not directly support the embedding of ActiveX controls. To provide this support for
the Windows Media Player control, the Player install program includes a special Java applet that acts as an
intermediary and host window for the Player ActiveX control.

The Player control is supported with Navigator versions 4.7, 6.2, and 7.0. Navigator versions 6.2 and 7.0 also
require the Java 2 Runtime Engine (J2RE) version 1.3.x.

For pages viewed with Navigator, you use this applet in your page instead of embedding the Player ActiveX
control using the HTML OBJECT element. If your audience includes both Internet Explorer and Netscape
Navigator users, you must provide script code in your page that determines the current browser and uses the
appropriate embedding technique accordingly.

Note All the Player control functionality available in Internet Explorer is also available in Navigator except for
the Settings.defaultFrame property. In Navigator, each URL-type script command received displays the URL
in a new browser window, regardless of the value of Settings.defaultFrame.

Note The Java applet does not have any automatic access to Media Library. However, you can still request
the access rights that you need for your application. For general information about access rights, see Media
Library Access.

Users of both browsers must install Windows Media Player before viewing pages that embed the control. If
Windows Media Player is installed after Netscape Navigator, the Player applet and an accompanying dynamic

Previous Next

Previous Next

link library (DLL) are added to the appropriate Netscape directories automatically. In this case, no further setup
is required by your users in order to view your pages in Navigator. You should instruct users who have installed
Windows Media Player before Navigator to run the Player installation program again after Navigator has been
installed.

The following topics provide additional information about using the Player control in Netscape Navigator:

Adding the Player Applet to a Web Page
Adding Script Code
Handling Events in Netscape Navigator

See Also

Embedding the Player Control in a Web Page

© 2000-2003 Microsoft Corporation. All rights reserved.

Adding the Player Applet to a Web Page

To embed the Player control in a Web page viewed with Netscape Navigator, you use the APPLET element
instead of the OBJECT element used in Internet Explorer. For comparison, both techniques are shown below.

Web pages viewed with Internet Explorer use the following code to embed the Player control:

<OBJECT ID="Player" CLASSID="CLSID:6BF52A52-394A-11d3-B153-00C04F79FAA6">
</OBJECT>

Web pages viewed with Netscape Navigator use this code:

<APPLET NAME="Player" CODE="WMPNS.WMP">
</APPLET>

In both cases, you provide initial display settings using attributes such as height and width and initial Player
property settings using the PARAM element. The mayscript attribute, which enables event handling, is
described later. The following code shows an embedded applet with the URL property set:

<APPLET NAME="Player" CODE="WMPNS.WMP" HEIGHT="200" WIDTH="200" MAYSCRIPT>
 <PARAM NAME="URL" VALUE="video.wmv"/>
</APPLET>

Web pages intended for both browsers use code that chooses the appropriate embedding technique depending
on which browser the page is viewed with. In this case, put code such as the following SCRIPT element in the
BODY element of your page at the location the Player window is to appear.

Previous Next

Previous Next

<SCRIPT>
if (navigator.appName == "Netscape") {
 document.writeln('<APPLET NAME="Player" HEIGHT="200" WIDTH="200" CODE="WMPNS.WMP">');
 document.writeln(' <PARAM NAME="URL" VALUE="video.wmv"/>');
 document.writeln('</APPLET>');
} else {
 document.writeln('<OBJECT ID="Player" height="200" width="200" CLASSID="CLSID:6BF52A52-3
 document.writeln(' <PARAM name="URL" value="video.wmv"/>');
 document.writeln('</OBJECT>');
}
</SCRIPT>

See Also

Using Windows Media Player with Netscape Navigator

© 2000-2003 Microsoft Corporation. All rights reserved.

Adding Script Code

Once you have embedded the Player control, you can manipulate it in script code through the Player object.
Your script code accesses this object through the name you provide when you embed the Player control. The
OBJECT element uses the ID attribute to name the control while the APPLET element uses the NAME
attribute.

With Netscape Navigator, you must access this root object name through the global document object. With
Internet Explorer, you can use the document object or you can use the specified object name directly. The
example code in this documentation uses Player for the control name and accesses it using document.Player in
both cases.

You can use the Player object to call various methods and to specify or retrieve various properties. Some of
these properties are child objects with additional methods and properties. For more information about the
objects available and their methods and properties, see the Object Model Reference.

With Netscape Navigator, the object model properties are specified and retrieved using special methods called
accessor methods. Accessor method names start with "set" or "get" and end with the name of a property. Read-
only properties have a get accessor method while read/write properties have both set and get accessor methods.
For example, the Player.uiMode property is specified for Netscape Navigator by using the setUiMode method
and is retrieved by using the getUiMode method.

The set accessor methods take the value being specified as their only parameter, and do not return a value. The
get accessor methods take no parameters, and return the value being retrieved.

The following example illustrates accessor methods using a Play button. This button, when clicked, calls the

Previous Next

Previous Next

StartMeUp function, which specifies the value of the Player.URL property, retrieves the Controls object
through the Player.controls property, and calls the Controls.play method.

The following FORM element works in both Internet Explorer and Netscape Navigator:

<FORM>
 <INPUT TYPE="BUTTON" VALUE="Play" ONCLICK="StartMeUp()"/>
</FORM>

Note that Navigator expects INPUT elements to be inside FORM elements, while in Internet Explorer, the
FORM element is optional in cases where you handle the click event yourself. Including it in this example
allows it to work with both browsers.

The StartMeUp function allows you to keep the browser-dependent code separate from the user interface. In
Netscape, accessor methods are used to specify and retrieve the properties, while in Internet Explorer, the
properties are manipulated directly:

function StartMeUp() {
 if (navigator.appName == "Netscape") {
 document.Player.setURL("video.wmv");
 document.Player.getControls().play();
 } else {
 document.Player.URL = "video.wmv";
 document.Player.controls.play();
 }
}

See Also

Using Windows Media Player with Netscape Navigator

© 2000-2003 Microsoft Corporation. All rights reserved.

Handling Events in Netscape Navigator

When you want your Navigator script code to handle events originating from the Player control, you must add
the mayscript attribute to the APPLET element. This attribute does not require a value, but you can specify the
value as "true".

The mayscript attribute tells the Player control to handle its events using functions that you provide. Each event
handling function starts with "On" followed by an event signature as shown in the object model reference. For
example, to handle the PlayStateChange event, write an OnPlayStateChange function such as the following:

function OnPlayStateChange(NewState) {
 alert("Play state: " + NewState);

Previous Next

Previous Next

}

If you embed multiple Player controls in a single page, you can handle events from them individually by
specifying a different EventPrefix applet parameter for each control. The value you specify is added to the name
of the event handler function as shown in the following code:

<HTML>
<HEAD>
<SCRIPT>
function OnPlayer1PlayStateChange(NewState) {
 alert("Player1 play state: " + NewState);
}
function OnPlayer2PlayStateChange(NewState) {
 alert("Player2 play state: " + NewState);
}
</SCRIPT>
</HEAD>
<BODY>
<APPLET NAME="Player1" height="200" width="200"
 CODE="WMPNS.WMP" MAYSCRIPT>
 <PARAM NAME="EventPrefix" VALUE="Player1"/>
 <PARAM NAME="URL" VALUE="video1.wmv"/>
</APPLET>
<APPLET NAME="Player2" height="200" width="200"
 CODE="WMPNS.WMP" MAYSCRIPT>
 <PARAM NAME="EventPrefix" VALUE="Player2"/>
 <PARAM NAME="URL" VALUE="video2.wmv"/>
</APPLET>
</BODY>
</HTML>

Note that the example sets the EventPrefix and the applet NAME attribute to the same value. The EventPrefix is
used solely with functions that handle Player control events, while the NAME value is used solely in script code
that manipulates the control. Using the same value for both makes it easier to keep track of which functions
relate to which instance of the control.

For pages viewed with both Navigator and Internet Explorer, you must provide event handlers for each. Event
handlers for Internet Explorer are SCRIPT elements that specify both the event being handled and the control
name that the event must originate from. This name corresponds to the ID attribute specified in the OBJECT
element. The following code demonstrates event handlers for two embedded controls:

<SCRIPT language="JScript" for="Player1" event="PlayStateChange(NewState)">
 alert("Player1 play state: " + NewState);
</SCRIPT>
<SCRIPT language="JScript" for="Player2" event="PlayStateChange(NewState)">
 alert("Player2 play state: " + NewState);
</SCRIPT>

Because Internet Explorer and Netscape Navigator each use one event handling technique and ignore the other,
you can use both techniques in a single page without wrapping them in browser detection code.

See Also

Using Windows Media Player with Netscape Navigator

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Creating Web-Based Presentations
The Windows Media Player control lets you easily create Web-based slideshow presentations that combine
audio and video with HTML. By adding URL-type script commands to your media files, you can cause
specified Web pages to display in a specified Web browser frame at specific times during digital media
playback.

Windows Media Player also features rich media streaming to enable efficient delivery of HTML data over a
network inside a single Windows Media stream or file. The Player and server handle the smooth, timely
delivery of audio, video, and HTML to the browser. Just as in Web presentations that do not use rich media
streaming, embedded script commands render the presentation in a specified Browser frame at specified times.

A typical layout for Web-based presentations uses two frames. One of the frames contains a Web page that
embeds the Player control and displays the video part of a presentation. The other frame displays Web pages
that change at various times as the video plays.

If the digital media accompanying your Web pages is audio only, you can hide the frame that contains the
Player control page by setting its width to zero. This way, the audio can play uninterrupted in the background
while your Web pages display in the full browser window.

The following sections describe common techniques for enabling Web-based presentations:

URL Flipping
Rich Media Streaming

See Also

Player Control Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

URL Flipping
Using Web pages for slideshows is called URL flipping, and is handled automatically by Windows Media
Player when it encounters URL-type script commands embedded in the digital media stream it is playing. You
can specify a target frame for your pages in each script command, or you can specify it by setting the
Settings.defaultFrame property. You can set this property in script code or by using a PARAM element within
the OBJECT element that embeds the Player control.

You are free to handle the URL-type script commands in your JScript code just as you would handle custom
script commands. If you want the Player control to ignore URL-type script commands so that you can handle
them entirely by yourself, set the Settings.invokeURLs property to false either in script code or using a
PARAM element as previously described.

The following example illustrates a typical frameset for URL flipping. First, create a page that describes the
frameset:

<HTML>
<FRAMESET cols="300,*">
 <FRAME name="player" src="player.html">
 <FRAME name="content">
</FRAMESET>
</HTML>

Next, create the player.html file referenced in the frameset using the following code (the video.wmv file is
assumed to exist in the same directory as the HTML files):

<HTML>
<BODY>
<OBJECT ID="Player" CLASSID="CLSID:6BF52A52-394A-11d3-B153-00C04F79FAA6">
 <PARAM name="URL" value="http://www.proseware.com/Media/video.wmv"/>
 <PARAM name="defaultFrame" value="content"/>
</OBJECT>
</BODY>
</HTML>

As you can see, the basic setup is quite simple. If your Web pages are small enough to load rapidly, this setup
may be sufficient for your needs. If, on the other hand, your Web pages are complex, rich media streaming may
be more effective depending on the connection speed of your audience.

Note URL flipping does not work correctly with pages viewed in Netscape Navigator. Instead of appearing in
the frame specified by defaultFrame, each URL-type script command received in Navigator displays the URL
in a new browser window.

See Also

Creating Web-Based Presentations
Using Script to Control URL Flipping

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Rich Media Streaming
Complex Web pages contain many different components that are normally transferred separately. On a slow
connection, such pages display one piece at a time and may take several minutes to display completely. This
may prevent you from effectively synchronizing your pages with your digital media. The solution to this
problem is rich media streaming, which means adding your Web pages to your digital media stream so that they
are delivered at the same time as the audio or video data.

Rich media streaming uses the same frameset layout described above and behaves exactly like normal URL
flipping. Just as in URL flipping, URL-type script commands embedded in rich media streams are used to
display the content in the target frame. Instead of pointing to pages on the Web, however, rich media stream
URLs are used by Windows Media Player to access files in the Internet Explorer cache where the streamed
HTML content is placed as it is received. Just as with normal URL flipping, you are also free to write event
handlers that respond to these URL-type script commands, or you can let the Windows Media Player control
handle everything automatically.

Note Any HTML content delivered through rich media streaming is played back in the Internet security zone,
and is subject to the end user's browser security settings.

For more information on creating rich media presentations, see the Windows Media Format Software
Development Kit (SDK) and the Windows Media Encoder SDK.

See Also

Creating Web-Based Presentations
Using Script to Control URL Flipping

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Script to Control URL Flipping

When a user connects to a rich media stream while the stream is already in progress, it is possible for the
streamed Web page to display before all the elements have arrived and been cached if Windows Media Player
automatically invokes the URL. When this happens, the user sees a blank or incomplete Web page until the next
set of data arrives in the cache. While this is normal behavior under these circumstances, you can avoid
displaying a blank or incomplete Web page by invoking the URL using script instead of letting the Player do it

Previous Next

Previous Next

Previous Next

automatically. That way, you can ignore the first URL flip and then invoke subsequent URLs using script code.

Note This section assumes that you are streaming HTML using the Windows Media Encoder 9 Series SDK
and that you have set the HTML stream to repeat.

First, you must create a frameset Web page to contain the frame with the embedded Player and the frame that
displays the streaming HTML. Each of these two frames will display a separate Web page initially, so you will
create a total of three Web pages. The following example code demonstrates the frameset Web page:

<HTML>
<HEAD>
</HEAD>

<FRAMESET cols = "350, *">
 <FRAME name = "player" src = "embed_player.htm">
 <FRAME name = "content" src = "blank.htm">

 <NOFRAMES>
 <BODY>

 <P>This page uses frames, but your browser doesn't support them.</P>

 </BODY>
 </NOFRAMES>

</FRAMESET>
</HTML>

The preceding Web page example incorporates two frames. The first frame displays in the left half of the
browser window and displays the Web page named embed_player.htm. The following example code creates this
Web page:

<HTML>
<HEAD>
</HEAD>
<BODY>

<!-- Embed Windows Media Player and disable the invokeURLs parameter -->
<OBJECT CLASSID = "CLSID:6BF52A52-394A-11D3-B153-00C04F79FAA6" ID = "Player">
 <PARAM name = "URL" value = "http://www.proseware.com/Media/video.wmv">
 <PARAM name = "invokeURLs" value = "false">
</OBJECT>

<SCRIPT LANGUAGE = "JScript">
 var bFirstURL = true; // Global flag for first URL flip.
</SCRIPT>

<!-- Create an event handler for script commands. -->
<SCRIPT LANGUAGE = "JScript" FOR = "Player" EVENT = "ScriptCommand(scType, scParam)">

 if("URL" == scType)
 {
 if (bFirstURL == false)
 {
 // Show the next URL flip.
 parent.content.location = scParam;
 }
 else
 {
 bFirstURL = false; // Set the flag.

 }
 }

</SCRIPT>

</BODY>
</HTML>

The second frame in the frameset displays in the right half of the browser window and displays a Web page
named "blank.htm". The following example code creates this Web page:

<HTML>
<HEAD>
</HEAD>
<BODY>

Loading...
</BODY>
</HTML>

When the frameset page loads in the browser, the left frame shows the embedded Player and the right frame
shows the text "Loading..." to inform the user that more data is forthcoming. When the first URL script
command arrives from the HTML stream, the event handler simply changes the value of the Boolean flag.
When each subsequent URL script command arrives from the HTML stream, the script in the event handler
loads the new URL into the frame named "content", and the complete Web page displays in the frame located in
the right half of the browser window.

For more information about streaming HTML using Windows Media, see the Windows Media Encoder 9 Series
SDK.

See Also

Rich Media Streaming
URL Flipping

© 2000-2003 Microsoft Corporation. All rights reserved.

Adding Closed Captions to Digital Media
Synchronized Accessible Media Interchange (SAMI) is a file format designed to deliver synchronized text such
as captions, subtitles, or audio descriptions with digital media content. Integrated in a Web browser using the
Windows Media Player object model, SAMI promotes accessibility. By using SAMI, you can create rich media
content that reaches a larger, more diverse audience.

Previous Next

Previous Next

In addition to standard fonts, SAMI can support other text styles, such as different colors, sizes, or languages to
aid a variety of users. SAMI can be particularly useful for individuals who have low vision or those who are
deaf or hard-of-hearing. The SAMI format can also assist in educational purposes, such as teaching students a
second language.

This topic focuses on the incorporation of SAMI with the Windows Media Player ActiveX control object
model. SAMI files exist independently from digital media files and do not rely on a specific video or audio
format to function. Since the files are separate, the Player control will locate, parse, synchronize, and render
each file on the client's computer. This provides for added flexibility and functionality because it allows for the
editing of individual SAMI files, the incorporation of the SAMI file with different digital media formats, and
the storage of SAMI files on different server locations.

This topic contains the following sections.

See Also

Player Control Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

About SAMI Files
SAMI files are text files that have an .smi or .sami file name extension. They contain the text strings used for
synchronized closed captions, subtitles, and audio descriptions. They also specify the timing parameters used by
the Windows Media Player control to synchronize closed caption text with audio or video content. When a
digital media file reaches a time designated in the SAMI file, the text changes accordingly in the closed caption
display area of the Web page.

Other than a simple text editor (such as Microsoft Notepad, Microsoft Word, or Apple SimpleText), special
software is not required to create a SAMI file. Moreover, an extensive programming background is not needed

Section Description

About SAMI Files Describes the basic structure of SAMI files.

SAMI File Example Describes the structure of an example SAMI file.

Using SAMI with the Windows Media Player Control
in a Browser

Describes how to use SAMI in a Web page with the
Windows Media Player control.

About SAMI URLs Describes how digital media files can be associated
with SAMI files by using a single URL.

Previous Next

Previous Next

to create SAMI files. In fact, if you are already familiar with Hypertext Markup Language (HTML), you will
notice many similarities in flexibility, layout, and syntax. SAMI and HTML share common elements, such as
the <HEAD> and <BODY> tags. Tags must always be used in pairs; for example, a BODY element begins with
a <BODY> tag and must always end with a </BODY> tag.

A basic SAMI file requires three fundamental tags: <SAMI>, <HEAD>, and <BODY>. The <SAMI> tag
identifies the document as a SAMI document so other applications can recognize its file format. Between the
<HEAD> and </HEAD> tags, you define basic guidelines and other format information for the SAMI
document, such as the document title, general information, and style properties for closed captions. Like
HTML, content declared within the HEAD element does not display as output. Elements and attributes defined
between the <BODY> and </BODY> tags display content seen by the user. In SAMI, the BODY element
contains the parameters for synchronization and the text strings used for closed captions.

Defined within the HEAD element, the STYLE element provides for added functionality in SAMI. Between the
<STYLE> and </STYLE> tags, you can define several Cascading Style Sheet (CSS) selectors for style and
layout. Style properties such as fonts, sizes, and alignments can be customized to provide a rich user experience
while also promoting accessibility. For example, defining a large text font style class can improve the
readability for users who have difficulty reading small text. In addition, by defining several different language
classes, you can help international users better understand the digital media content.

See Also

Adding Closed Captions to Digital Media

© 2000-2003 Microsoft Corporation. All rights reserved.

SAMI File Example
The following example code is a complete SAMI file with one set of closed caption text and several class
declarations for text style and caption language.

<SAMI>
<HEAD>
 <STYLE TYPE = "text/css">
 <!--
 /* P defines the basic style selector for closed caption paragraph text */
 P {font-family:sans-serif; color:white;}
 /* Source, Small, and Big define additional ID selectors for closed caption text */
 #Source {color: orange; font-family: arial; font-size: 12pt;}
 #Small {Name: SmallTxt; font-size: 8pt; color: yellow;}
 #Big {Name: BigTxt; font-size: 12pt; color: magenta;}
 /* ENUSCC and FRFRCC define language class selectors for closed caption text */
 .ENUSCC {Name: 'English Captions'; lang: en-US; SAMIType: CC;}
 .FRFRCC {Name: 'French Captions'; lang: fr-FR; SAMIType: CC;}

Previous Next

Previous Next

 -->
 </STYLE>
</HEAD>
<BODY>
 <!—- The closed caption text displays at 1000 milliseconds. -->
 <SYNC Start = 1000>
 <!-- English closed captions -->
 <P Class = ENUSCC ID = Source>Narrator
 <P Class = ENUSCC>Great reason to visit Seattle, brought to you by two out-of-stater
 <!-- French closed captions -->
 <P Class = FRFRCC ID = Source>Narrateur
 <P Class = FRFRCC>Deux personnes ne venant la région vous donnent de bonnes r
</BODY>
</SAMI>

Styles defined within a SAMI file conform to standard CSS selector syntax for elements, classes, and IDs. In
the BODY element, all P elements have the style defined for the P element selector in the STYLE element. The
class attribute of an element specifies the language of that element as defined by the class selectors in the
STYLE element (the selectors beginning with periods). The language names specified by the class selectors can
be any string. Elements with the id attribute specified have additional styling applied as indicated by the ID
selectors in the STYLE element (the selectors prefixed with # characters).

When used in conjunction with the Windows Media Player object model, the class selectors correspond to the
ClosedCaption.SAMILang property, which can be used to specify the language of the captions. The ID
selectors correspond to the ClosedCaption.SAMIStyle property, which can be used to specify the style the
captions will appear in.

For more information about creating SAMI files, see Understanding SAMI 1.0 at the Microsoft Web site.

See Also

Adding Closed Captions to Digital Media

© 2000-2003 Microsoft Corporation. All rights reserved.

Using SAMI with the Windows Media Player
Control in a Browser
By embedding the Windows Media Player control in a Web page, you can customize the user experience to a
significant degree. Incorporating closed captions by this method provides the user with convenience, flexibility,
and ease of management. Instead of creating a SAMI file for each font style or language, you can declare
different style classes in one file by using basic scripting and the Player control object model. With the methods
and properties available in the object model, you can create custom controls that enable the user to choose

Previous Next

Previous Next

between the different style and language options. Furthermore, you have complete control over the design of the
Player interface and the customization of each function.

For detailed information about embedding the Windows Media Player control in a Web page, see Simple
Example of Scripting in a Web Page.

The following example code demonstrates how to use closed captions with the Windows Media Player control
embedded in a Web page. It includes controls to allow the user to select font style and language.

<HTML>
<HEAD>

<SCRIPT>
 // The following variable is used to prevent multiple initialization.
 var initialized = false;
 // The following function populates the select boxes.
 // It is called the first time the media file is opened.
 // Before then, the SAMI settings cannot be retrieved.
 function initialize() {
 var newOption;
 for (var i = 0; i < Player.closedCaption.SAMILangCount; i++) {
 newOption = document.createElement("OPTION");
 newOption.text = Player.closedCaption.getSAMILangName(i);
 newOption.value = newOption.text;
 CCLang.options.add(newOption);
 }
 for (var i = 0; i < Player.closedCaption.SAMIStyleCount; i++) {
 newOption = document.createElement("OPTION");
 newOption.text = Player.closedCaption.getSAMIStyleName(i);
 newOption.value = newOption.text;
 CCStyle.options.add(newOption);
 }
 initialized = true;
 }
</SCRIPT>

<!-- The following script code runs when the page is fully loaded. -->
<SCRIPT for="window" event="onload()">
 Player.closedCaption.captioningID = "captions";
 Player.closedCaption.SAMIFileName = "http://www.proseware.com/Media/seattle.smi";
 // The digital media file will open automatically, after which
 // the OpenStateChange event (handled below) will fire.
 Player.URL = "http://www.proseware.com/Media/seattle.wmv";
</SCRIPT>

<!-- The following script code runs when a media file is opened. -->
<SCRIPT for="Player" event="OpenStateChange(NewState)">
 // The first time this event fires, the Player stops and the
 // initialize function is called. This allows the user to
 // select a language and style before viewing the file.
 if (13 == NewState && !initialized) {
 Player.controls.stop();
 initialize();
 }
</SCRIPT>

</HEAD>
<BODY>

<OBJECT
 ID="Player"

 classID="clsid:6BF52A52-394A-11d3-B153-00C04F79FAA6"
 height="200"
 width="250"
>
</OBJECT>

<TABLE height="100" width="250" border="3" bordercolor="blue">
 <TR align="center">
 <TD bgcolor="white">
 <SELECT ID="CCLang" onClick="Player.closedCaption.SAMILang = value"></SELECT>
 <SELECT ID="CCStyle" onClick="Player.closedCaption.SAMIStyle = value"></SELECT>
 </TD>
 </TR>
 <TR height="75">
 <TD bgcolor="blue">
 <DIV id="captions"></DIV>
 </TD>
 </TR>
</TABLE>

</BODY>
</HTML>

See Also

Adding Closed Captions to Digital Media

© 2000-2003 Microsoft Corporation. All rights reserved.

About SAMI URLs
SAMI files can be associated with digital media files using a single URL. This is accomplished by using the
sami URL parameter. The URL parameter is preceded by the base URL and a ? character. A URL with a sami
parameter follows this syntax: URL?sami=captionsURL. The value of the URL parameter follows the
parameter name and an equals sign, as in the following example:

http://proseware.com/samitest.wma?sami=http://acc.proseware.com/test.smi

This URL syntax is commonly used in a hyperlink or a Windows Media metafile to link directly to the locations
of both the digital media file and the SAMI file. When the user clicks on the hyperlink, the Player launches in
full mode and plays the digital media content.

If the sami URL parameter is not specified, Windows Media Player will look for a SAMI file in the same
location as the digital media file and with the same file name except for the file name extension, which must
be .smi. If such a file is present, it will be opened automatically if caption display has been enabled in the

Previous Next

Previous Next

Player.

Closed captions are enabled in the Player by clicking the Play menu, then clicking Captions and Subtitles, and
then clicking On. If closed captions are enabled, the captions contained in the SAMI file will display while the
digital media plays.

See Also

Adding Closed Captions to Digital Media

© 2000-2003 Microsoft Corporation. All rights reserved.

Working with Media Library
Media Library is a database of information about the media content that is stored on the user's computer or has
been played there. Some of the information is displayed in the Media Library feature in Windows Media
Player; a larger set of information can be accessed programmatically.

Media items can be organized in playlists. Playlists can be created by users, and you can create them through
code. The Windows Media Player object model provides objects and methods you can use to manipulate both
individual media items and playlists.

The following sections cover the techniques for working with Media Library:

Media Library Access
Managing Media Items
Media Item Attributes
Managing Playlists

See Also

Player Control Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Media Library Access
Properties and methods of the Windows Media Player object model that access Media Library require either
read-only or read/write access to the database. Media Library contains information that some users want to
keep private and that should only be accessed or altered with their consent.

To determine the current level of access granted to your code, retrieve the Settings.mediaAccessRights
property. That property returns "none", "read", or "full" (read/write). To request specific access rights, call the
Settings.requestMediaAccessRights method, passing a parameter that specifies the level you are requesting.
The method displays a message to the user explaining the requested level of access, and returns a Boolean value
indicating whether the access was granted.

Certain access rights are granted automatically depending on where your code is running relative to the user's
computer.

If your Web page or program is located on the user's computer, full access rights are granted by default.
Web pages have read access to Player.currentMedia, Player.currentPlaylist, and Media.sourceURL
when the Web page is located in an Internet Explorer security zone that is the same as or less restricted
than the security zone of the media item or playlist.

Ranging from least restricted to most restricted, the security zones are the Trusted zone (including the
user's local computer), the Local intranet zone, the Internet zone, and the Restricted zone.

For example, a Web page in the Local intranet zone has full access rights to Player.currentMedia when
the corresponding media item is on the local intranet or the Internet, but access rights must be requested
for media items located on a user's local computer or on a Web site in the Trusted zone.

For Netscape Navigator, the Java applet does not have any automatic access to Media Library. However,
you can request the access rights you need for your application. For general information, see Using
Windows Media Player with Netscape Navigator.

You should test your Web-based or Windows-based application in all of the security zones it may encounter.
The application should be designed to handle denial of an access request correctly.

Windows Media Player object model versions prior to Windows Media Player 9 Series do not include
mediaAccessRights or requestMediaAccessRights.

See Also

Settings Object
Working with Media Library

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Managing Media Items
A Media object represents one media item. It has properties and methods you can use to retrieve information
and display it to the user, or to take different actions based on the value you retrieve.

Much of your work with Media objects involves metadata about the content of the media item, called the
attributes. The topic Media Item Attributes describes how to read and change attribute values.

The Media object has properties and methods that retrieve some attributes directly, such as the name or
duration of the item. For video items, you can retrieve the height and width of the image, and you can retrieve
marker information based on the name or index of a marker. You can also determine whether a particular media
item is included in a particular playlist.

Retrieving a Media Object

You can quickly access the current media item using the Player.currentMedia property. You can also access
that same item using the Controls.currentItem property.

The following JScript examples each retrieve the same value, a Media object representing the current item.
(Throughout this topic, the player object was created with ID="player".)

var oMedia1 = player.currentMedia;
var oMedia2 = player.controls.currentItem;

You can create a new media item from a media file using the Player.newMedia method. You pass the method
the URL path to a media file, and it returns a reference to the new Media object. The method does not add the
new object to Media Library directly; however, you can pass the object to the Playlist.appendItem method or
the Playlist.insertItem method.

The following JScript example creates a Media object based on one of the SDK media samples.

var oMedia3 =
 player.newMedia("C:\\WMSDK\\WMPSDK9\\samples\\media\\laure.wma");

Note You must include two backslash (\) characters in a string to represent one actual backslash character.
This is because JScript uses a single backslash character to define an escape sequence.

You can create a new media item from a media file and add it to Media Library in one step by using the
MediaCollection.add method. Like the Player.newMedia method, the add method takes a path to a digital
media file.

The following JScript example creates a Media object based on one of the SDK media sample files and adds
that object to Media Library.

var oMedia4 = player.mediaCollection.add(

Previous Next

 "C:\\WMSDK\\WMPSDK9\\samples\\media\\laure.wma");

You can retrieve a Media object representing a media item in a playlist using the Playlist.item method. The
following JScript example retrieves the sixth media item from the current playlist.

var oMedia5 = player.currentPlaylist.item(5);

See Also

Controls.currentItem
Managing Playlists
Media Object
MediaCollection.add
Player.currentMedia
Player.newMedia
Playlist.item
Working with Media Library

© 2000-2003 Microsoft Corporation. All rights reserved.

Media Item Attributes
When you look at Media Library in Windows Media Player, you typically see a great deal of information
about a media item. In addition to the name of an audio track, for example, you will likely see the name of the
album the track is on, the names of the artist and composer, the genre of the music, and so on.

In the Windows Media Player object model, these metadata items are called attributes. The object model
includes properties and methods you can use to query media items and playlists for attributes. You can then
display attribute values in your user interface, or your code can take actions based on the value of an attribute.

The following topics describe working with media item attributes.

Previous Next

Previous Next

Topic Description

Understanding Attribute Sources Describes how the source of a media item affects the
attributes that may be associated with it.

Reading Attribute Values Shows the methods for retrieving the value of an
attribute.

Attributes with Multiple Values Shows the methods for retrieving the value of a
multi-valued attribute.

The following topics list the attributes that may be associated with a media item and therefore may be available
to your application.

See Also

Playlist Attributes
Working with Media Library

© 2000-2003 Microsoft Corporation. All rights reserved.

Understanding Attribute Sources

The attributes, or metadata, that you can use come from a variety of sources. This topic describes those sources,
moving from scenarios with fewer potential attributes to those with more potential attributes.

While the user plays a CD or DVD, you have access to very little metadata about the disc itself or the media
content of the disc. Commercial discs do not typically include attribute metadata.

If the user has played a CD or DVD while they were connected to the Internet, you may have access to more
attributes when that disc is in the disk drive. While Windows Media Player is connected to the Internet and
playing a CD or DVD, the Player retrieves metadata for that disc from an online database. The Player displays
this information in Now Playing and in the Now Playing category in Media Library. The attributes are not
stored in the Media Library database, but they are cached. If the cache has not yet been flushed, your

Reading Attribute Values Sample Provides a sample application that reads all of the
attributes of a media item.

Changing Attribute Values Shows the method for changing the value of an
attribute.

Topic Description

Available Attributes Lists the attributes that you can access with
getItemInfo and other methods.

Multi-Valued Attributes Lists the attributes that can have multiple values.

Attribute Aliases Lists the attribute names that you can use that are
actually stored with a different name.

Media File Attributes Lists the attributes that are stored in the media item
file, and the constants you would use with Windows
Media Format SDK to work with them.

Previous Next

Previous Next

application will have access to the attributes while the disc is in the drive.

Note Users may choose to disallow retrieving media information from an online database. In that case, the
only attributes available to you will be those from a media file, those that the user has manually entered in
Media Library, and those generated by the Player itself (such as the attributes related to how frequently an
item has been played).

If the user plays a digital media file that is not added to Media Library, you have access to the attributes that
are in the file.

If the user plays a digital media file that has been added to Media Library, you have access to the attributes
that are stored only in Media Library, the attributes that are stored only in the file, and the attributes that are
stored in both Media Library and the file.

The attributes that are available for media items added to Media Library vary according to how the source
digital media file was created and what actions the user has taken since adding it.

The content creator may insert attribute information in the file when it is first created. For example, if you
create and distribute a digital media file with your application, then you have control over which
attributes are originally inserted in the file.
If the user modifies attribute data for a media item that has been added to Media Library, using
Advanced Tag Editor or the Media Library user interface, Windows Media Player adds that data to the
Media Library database. It adds some attributes directly to the file because they are stored only in the
file; those attributes are identified in Media File Attributes. At some indeterminate time, the Media
Library database synchronizes with the file, so that attributes that are stored in both Media Library and
the file have the same value.
If the user copies a track from a CD by using Windows Media Player while connected to the Internet, the
effect is nearly the same as if the user had modified attributes by using Windows Media Player. Attributes
are added to the Media Library database, drawn from the file itself and from an online database. Some
attributes are stored only in the file. At some indeterminate time the Media Library database
synchronizes with the file.
If you write code using the Player control to change the value of an existing attribute in a media item that
has been added to Media Library, the effect is nearly the same as if the user had modified the attribute
using Windows Media Player. The value is written to the Media Library database and at some
indeterminate time the database synchronizes with the file.

Note If you embed the control in your application, file attributes that you change will not be written to
the media file itself until the user runs Windows Media Player. If you use the control in a remoted
application written in C++, file attributes that you change will be written to the media file itself shortly
after you make the changes. In either case, the changes are immediately available to you through Media
Library.

If you write code using the Player control to insert a custom attribute into a media item, the attribute and
its value will persist only as long as your application has a reference to the Media object. Neither the
attribute nor its value will be stored in the Media Library database or the media file, if there is one.

The simplest situation is when you are working with digital media files that you have supplied. In that scenario,
you know that specific attributes are in the file; when you add the media item to Media Library, you know that
you can work with those attributes.

See Also

Available Attributes

Media File Attributes
Media Item Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

Reading Attribute Values

The attributes you can find in Media Library and in Windows Media files have pre-defined names. You can
write code that retrieves the value of one attribute by passing the name of that attribute to Media.getItemInfo or
Media.getItemInfoByType. You can also write code that retrieves the values of all of the attributes in a file or
item.

The following JScript example retrieves the value of a particular attribute, in this case the Title attribute. In this
example, the player instance was created with ID="player".

var oMedia = player.currentMedia;
var attribValue = "";

// Retrieve the value of the attribute.
attribValue = oMedia.getItemInfoByType("Title", "", 0);

In the call to getItemInfoByType, the second parameter is a string that specifies the language. If you pass an
empty string, as this example does, the method retrieves the value in the default language. For information
about the third parameter, see Attributes with Multiple Values.

The following JScript example retrieves the values of all of the attributes in the current media item. In this
example, the player instance was created with ID="player".

var numAttribs = 0;
var attribName = "";
var attribValue = "";
var oMedia = player.currentMedia;

// Retrieve how many attributes are in the file.
numAttribs = oMedia.attributeCount;

// For each attribute, retrieve its name
// and its value.
for (var i = 0; i < numAttribs; i++){
 attribName = oMedia.getAttributeName(i);
 attribValue = oMedia.getItemInfoByType(attribName, "", 0);
}

The Media.attributeCount property returns the number of attributes that are actually present in the file. This is
typically a small subset of the potential attributes. In addition, the number of attributes in the file may change
over time; for example, the user may insert an attribute using the Advanced Tag Editor or the Media Library

Previous Next

Previous Next

user interface.

See Also

Changing Attribute Values
Reading Attribute Values Sample
Media Item Attributes
Media Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Attributes with Multiple Values

Some media item attributes can have multiple values. For example, the Author, WM/Composer, and
WM/Genre attributes can each have more than one value. The data type of such attributes is multi-valued
string.

In Windows Media Player, Media Library displays multiple values in a single field, separating the values with
semicolons. However, each value is actually a separate attribute in the Windows Media item.

You can write code that will determine whether a given attribute has multiple values and then retrieve all of
those values. You must use Media.getItemInfoByType. If you use the Media.getItemInfo method to retrieve a
multi-valued attribute, you will only retrieve the first value.

The following JScript example uses getItemInfoByType to retrieve a multi-valued attribute. In this example,
the player instance was created with ID="player" and the current media item is an audio track that has multiple
genre values.

var oMedia = player.currentMedia;
var numInstances = 0;
var thisGenre = "";
var multiGenre = "";

// Determine how many values there are for the attribute.
numInstances = oMedia.getAttributeCountByType("WM/Genre", "");

// Retrieve all of the values for the attribute.
for (var i = 0; i < numInstances; i++) {
 thisGenre = oMedia.getItemInfoByType("WM/Genre", "", i);
 multiGenre += thisGenre + "; ";
}

In the call to getAttributeCountByType, the second parameter is a string that specifies the language. If you
pass an empty string, as this example does, the method retrieves the value in the default language.

Previous Next

Previous Next

The third argument passed to the getItemInfoByType method is the index of a particular attribute in a set of
attributes with the same name.

You can use similar code to retrieve attributes that have unique names. In those cases,
getAttributeCountByType returns 1; in the example shown earlier, the call to getItemInfoByType would
execute only once.

See Also

Reading Attribute Values Sample
Media Item Attributes
Media Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Reading Attribute Values Sample

The following JScript sample retrieves the values of all attributes in the current media item, including all values
of multi-valued attributes. It combines the techniques described in the previous two sections.

You can copy this sample to a text file and save the file with the .htm file name extension. To work correctly,
the media file Laure_multi.wma must be in the same folder as the HTML file. By default, the media file is
installed at C:\WMSDK\WMPSDK9\samples\media. This WMA file has multiple values for the WM/Genre
attribute.

<HTML>
<HEAD>
<TITLE>Retrieve Attributes Sample</TITLE>
</HEAD>

<BODY>
<TABLE>
 <TR>
 <TD WIDTH="50%"><CENTER>
 <OBJECT ID="player"
 CLASSID="CLSID:6BF52A52-394A-11d3-B153-00C04F79FAA6">
 <PARAM NAME="autoStart" VALUE="True">
 <PARAM NAME="URL" VALUE="Laure_multi.wma">
 </OBJECT>

 <INPUT TYPE="button" ID="btnShowAttribs" NAME="btnShowAttribs"
 VALUE="Show Attributes" onClick="showAttribs()"></CENTER>
 </TD>
 <TD WIDTH="50%"><CENTER>
 <TEXTAREA ID="txtAttribs" NAME="txtAttribs" COLS="50" ROWS="20">
 </TEXTAREA></CENTER>
 </TD>

Previous Next

Previous Next

</TABLE>
<SCRIPT LANGUAGE="JScript">
<!--
function showAttribs()
{
 var numAttribs = 0;
 var attribName = "";
 var numInstances = 0;
 var attribValue = "";
 var oMedia = player.currentMedia;

 // Clear the TEXTAREA element first.
 txtAttribs.value = "";

 // Retrieve the number of attributes for the item.
 numAttribs = oMedia.attributeCount;

 for (var i = 0; i < numAttribs; i++){
 // Retrieve the name of this attribute.
 attribName = oMedia.getAttributeName(i);

 // Retrieve the number of values for this attribute.
 numInstances = oMedia.getAttributeCountByType(attribName, "");

 try {
 // Retrieve each value for this attribute.
 for (var j = 0; j < numInstances; ++j) {
 attribValue = oMedia.getItemInfoByType(attribName, "", j);
 txtAttribs.value += attribName + " -- " + attribValue + "\n";
 }
 }
 catch(err) {
 alert(err.description);
 }
 }
}
-->
</SCRIPT>
</BODY>
</HTML>

See Also

Media Item Attributes
Media Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Changing Attribute Values

Previous Next

Previous Next

You can change the value of an attribute if your Web page or application has read/write access to Media
Library and the attribute can be both read and written.

You can only change an attribute of the current media item. To change attributes of multiple media items, you
must assign each one in turn to the Player.currentMedia property.

To change an attribute, call the Player.currentMedia.setItemInfo method. The following JScript example does
this. In this example, the player instance was created with ID="player".

var oMedia = player.currentMedia;
var newValue = "New genre";
var gotFullAccess = false;

gotFullAccess = player.settings.requestMediaAccessRights("full");
if(gotFullAccess){
 try {
 oMedia.setItemInfo("WM/Genre", newValue);
 }
 catch(err) {
 alert(err.description);
 }
} else {
 alert("Not allowed to change the attribute value.");
}

You should always explicitly request full access, so that your application or Web page will work correctly when
it runs from different security zones. This will also give the user the opportunity to determine whether to grant
full access.

You can call the Media.isReadOnlyItem method to determine whether you can change a particular attribute, if
you do not already know this.

Note If you embed the control in your application, file attributes that you change will not be written to the
media file itself until the user runs Windows Media Player. If you use the control in a remoted application
written in C++, file attributes that you change will be written to the media file itself shortly after you make the
changes. In either case, the changes are immediately available to you through Media Library.

See Also

Media Library Access
Reading Attribute Values
Media Item Attributes
Media Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Available Attributes

The following table lists attributes that may be available for a given item. There may be additional attributes
available as well, such as custom attributes defined by the author of the media item. The attributes available for
a given item and the values of those attributes depend on how the item was authored and on actions the user
may have taken in Media Library. See Understanding Attribute Sources for more information.

In the table, the first column shows the name that you use with methods such as Media.getItemInfo and
Media.getItemInfoByType.

The second column shows whether the attribute is read-only (RO) or can be both read and written (RW).

The third column shows the types of Media Library items that may have the attribute. If this field is empty, the
attribute is stored only in the file. The file-only attributes are also identified in the Media File Attributes topic.
The values used in this column are the possible values of the MediaType attribute; for more information, see
the MediaCollection.getByAttribute topic.

The fourth column shows whether you can read the attribute from the top level of a physical CD (CD) or from a
track of a physical CD (TR) and from the top level of a physical DVD (DVD) or a title or chapter of a physical
DVD (CH).

The fifth column provides a description of the attribute.

Note In addition to the attribute names in this table, you can also use the attribute names listed in Attribute
Aliases. In many cases, using an alias name allows you to avoid an attribute name that contains a slash character
("/").

Attribute Name RW Media Library CD/ DVD Description

Abstract RW radio Short description of the radio station.

AcquisitionTime RO audio; video;
playlist; radio;
other

 Date and time the item was added to Medi
Library.

AlbumArtistSortOrder RO audio Value for sorting the Album Artist column
Media Library.

AlbumID RO audio Unique identifier for the album (sorted by
title when queried by
MediaCollection.getAttributeStringColl

AlbumIDAlbumArtist RO audio Unique identifier for the album (sorted by
artist when queried by
MediaCollection.getAttributeStringColl

AlbumTitleSortOrder RO audio Value for sorting the Album Title column
Media Library.

Author RW audio; video;
playlist; radio

CD; TR;
DVD; CH

Name of a media artist or actor associated
the content.

AuthorSortOrder RO audio; video Value for sorting the Author column in M
Library.

AverageLevel RW audio A 16-bit amplitude value indicating the av
volume level.

Bitrate RO audio; video;
radio; other

 Bit rate of the item, in bits per second.

BuyNow RO audio CD; TR;
DVD; CH

PARAM value for commercial interaction

BuyTickets RO audio DVD; CH PARAM value for commercial interaction

CallLetters RO radio Call letters of the radio station.

CDTrackEnabled RW TR Whether the track has been enabled (True,
default value) or disabled (False) for playb

Copyright RO audio; video CD; TR;
DVD; CH

Copyright message for the item.

CurrentBitrate RO audio; video Bit rate of the item, in bits per second.

Description RW Description of the media content.

Duration RO audio; video;
other

 Playing duration of the item, in seconds.

DVDID RO video Digital video disc identifier.

FileSize RO audio; video;
other

 Size of the file in bytes.

FileType RO audio; video;
playlist; radio;
other

 Three-letter file name extension, such as w
mp3.

Frequency RO radio Frequency of the radio station or Net only.

Is_Protected RO audio; video Whether the content was protected using d
rights management (DRM).

IsVBR RO Whether the content was encoded using va
bit rate (VBR) encoding.

LeadPerformer RW DVD; CH Name of the lead performer for the feature

Location RO radio Geographic location of the radio station or
only.

MediaType RO audio; video;
playlist; radio;
other

 Type of content in the item.

ModifiedBy RO TR Deprecated; do not use. Value is always em
user.

MoreInfo RO audio CD; TR;
DVD; CH

PARAM value for commercial interaction

PeakValue RW audio A 16-bit amplitude value indicating the pe
volume level.

ProviderLogoURL RO audio DVD; CH Address of the logo of the provider of the
attribute values.

ProviderURL RO audio DVD; CH Address of the home page of the provider
attribute values.

RadioBand RO radio FM or AM or Net.

RadioFormat RO radio Description of the type of content provided
radio station.

RatingOrg RO DVD; CH Name of the provider of the rating value.

RecordingTime RW audio; video Date of the original recording, for items w
this date is different from the release date.

ReleaseDate RW audio; video CD; TR;
DVD; CH

Date of the original release of the item.

RequestState RW audio Media information request state.

SortAttribute RW playlist Specifies the attribute to use for sorting th
playlist; see Playlist.setItemInfo.

SourceURL RO audio; video;
playlist; radio;
other

 Address of the item.

Title RW audio; video;
playlist; radio;
other

CD; TR;
DVD; CH

Title of the content.

titleNum RO CH Title number of the item; this number is 1-

TitleSortOrder RO audio; video;
other

 Value for sorting the Title column in Med
Library.

TotalDuration RO CD; TR Playing duration of the item.

UserCustom1 RW audio; video;
playlist; other

 Arbitrary text.

UserCustom2 RW audio; video;
playlist; other

 Arbitrary text.

UserEffectiveRating RO audio; video;
playlist; other

 Rating computed by the Player based on h
often the item has been played.

UserLastPlayedTime RO audio; video;
playlist; other

 Date and time the item was most recently p

UserPlayCount RW audio; video;
playlist; other

 Number of times the item has been played

UserPlaycountAfternoon RW audio; video;
playlist; other

 Number of times the item has been played
between noon and 17:00 local time.

UserPlaycountEvening RW audio; video;
playlist; other

 Number of times the item has been played
between 17:00 and 22:00 local time.

UserPlaycountMorning RW audio; video;
playlist; other

 Number of times the item has been played
between 06:00 and noon local time.

UserPlaycountNight RW audio; video;
playlist; other

 Number of times the item has been played
between 22:00 and 06:00 local time.

UserPlaycountWeekday RW audio; video;
playlist; other

 Number of times the item has been played
Monday, Tuesday, Wednesday, Thursday,
Friday.

UserPlaycountWeekend RW audio; video;
playlist; other

 Number of times the item has been played
Saturday or Sunday.

UserRating RW audio; video;
playlist; other

 Rating specified by the user in the Media
Library user interface.

UserServiceRating RW audio; playlist;
video

 Reserved for future use.

WM/AlbumArtist RW audio CD; TR Name of the primary artist for the album.

WM/AlbumCoverURL RW Address of a Web page that contains an im
the album cover and information about the

WM/AlbumTitle RW audio CD; TR Title of the album on which the content wa
originally released.

WM/AudioFileURL RO Address of an official Web page with info
about the file.

WM/AudioSourceURL RO Address of an official Web page for the so
media.

WM/AuthorURL RO Address of the author's Web site.

WM/BeatsPerMinute RW Beats per minute of the content.

WM/Category RW audio; video;
playlist; other

 Category of the content, such as "Pop" or
"Opera".

WM/Codec RO Name of the codec used to encode the con

WM/Composer RW audio CD; TR Name of the composer.

WM/Conductor RW audio TR Name of the conductor.

WM/ContentDistributor RO audio; video Name of the distributor of the item. When
containing a value for this attribute is adde
Media Library, Windows Media Player l
a new subfolder of the Premium Services
The name of the new subfolder is derived
the attribute value. For example, an audio
having a value of "Proseware" for
WM/ContentDistributor will appear in Me
Library in the folder named Premium
Services/Music/Proseware.

WM/ContentGroupDescription RW audio Description of the content group, a collect
media items such as a CD boxed set.

WM/Director RW video DVD; CH Name of the director.

WM/DRM RO Whether the content was protected using d
rights management (DRM).

WM/EncodedBy RO Name of the person or group who encoded
content.

WM/EncodingSettings RO Settings used to encode the content.

WM/EncodingTime RO audio; video;
playlist

 Time at which the content was encoded.

WM/Genre RW audio; video;
playlist; other

CD; TR;
DVD; CH

Genre of the content.

WM/GenreID RO Genre identifier compliant with the TCON
ID3v2.

WM/InitialKey RW audio Initial key of the music.

WM/ISRC RO International standard recording code (ISR

WM/Language RW audio; video;
radio

 Language of the item.

WM/Lyrics RW audio TR Lyrics of the content.

WM/Lyrics_Synchronised RW Lyrics of the content synchronized to time
file.

WM/MCDI RO audio TR Music CD identifier of the CD from which
file or track came.

WM/MediaClassPrimaryID RW audio; video;
playlist; radio;
other

 GUID specifying one of the primary medi
classes: music; non-music audio; video; ot

WM/MediaClassSecondaryID RW audio; video;
playlist; radio;
other

 GUID specifying the secondary media cla
details about GUIDs supported by Window
Media Player for this attribute, see the sect
follows this table.

WM/Mood RW Category name for the mood of the conten

WM/OriginalAlbumTitle RW Name of the album on which the track firs
appeared.

WM/OriginalArtist RW Name of the artist who originally produced
content.

WM/OriginalFilename RW Name of the file from which the content w
made.

WM/OriginalLyricist RW Name of the person who wrote the origina

WM/OriginalReleaseYear RW Year during which the content was origina
released.

WM/ParentalRating RW audio; video DVD; CH Parental rating of the content.

WM/PartOfSet RW Part number and the total number of parts
set to which the item belongs.

WM/Period RW audio TR Period of the item.

WM/Picture RO Graphic related to the content.

WM/PlaylistDelay RO Milliseconds of delay that should precede
playback of the item in a playlist.

WM/Producer RW video Name of the producer of the content.

WM/PromotionURL RW Address of a Web site offering a promotio
related to the content.

WM/ProtectionType RW audio; video Type of protection used on the content.

WM/Provider RO audio; video;
radio

CD; TR Name of the provider of the attribute value

WM/ProviderRating RO audio; video CD; TR;
DVD; CH

Rating of the item as assigned by the attrib
provider.

WM/ProviderStyle RO audio; video CD; TR Style of the item as assigned by the attribu
provider.

WM/Publisher RW audio; video CD; TR;
DVD; CH

Name of the company that published the c

WM/RadioStationName RO Name of the radio station associated with t
content.

WM/RadioStationOwner RO Name of the owner of the radio station ass
with the content.

WM/SubscriptionContentID RO audio; video Subscription content identifier.

WM/SubTitle RW audio Subtitle of the content.

WM/Text RW Arbitrary text specified by the user.

WM/ToolName RO Name of the application used to create the

WM/ToolVersion RO Version of the application used to create th

WM/TrackNumber RW audio TR Track number of the item; this number is 1

WM/UniqueFileIdentifier RW audio CD; TR String that uniquely identifies the item.

WM/UserWebURL RO Address and description of a Web site.

WM/WMCollectionGroupID RW audio CD; TR GUID identifying the group containing the
collection to which the item belongs.

WM/WMCollectionID RW audio CD; TR GUID identifying the collection to which t
belongs.

WM/WMContentID RW audio TR GUID identifying the content.

WM/Writer RW audio; video Name of the writer who wrote the words o
content.

About the WM/MediaClassSecondaryID Attribute

In addition to the attribute values documented in the Windows Media Format SDK, Windows Media Player 9
Series supports two globally unique identifiers (GUIDs) for the WM/MediaClassSecondaryID attribute. The
following table lists the GUIDs and their descriptions.

See Also

Attribute Aliases
Media File Attributes
Media Item Attributes
Multi-Valued Attributes
Playlist Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

Multi-Valued Attributes

The following list shows the attributes that may have multiple values. To retrieve all of the values for a multi-
valued attribute, you must use the Media.getItemInfoByType method, not the Media.getItemInfo method.

Author
Description
WM/Composer (or the alias Composer)
WM/Conductor (or the alias Conductor)
WM/Genre (or the alias Genre)
WM/Language (or the alias Language)
WM/Lyrics_Synchronised
WM/UserWebURL
WM/Writer (or the alias Writer)

See Also

Attribute Aliases

WM/Year RW Year the content was published.

GUID Description

D0E20D5C-CAD6-4F66-9FA1-6018830F1DCC The media object represents a static playlist.

EB0BAFB6-3C4F-4C31-AA39-95C7B8D7831D The media object represents an auto playlist.

Previous Next

Previous Next

Attributes with Multiple Values
Available Attributes
Media File Attributes
Media Item Attributes
Reading Attribute Values Sample

© 2000-2003 Microsoft Corporation. All rights reserved.

Attribute Aliases

The following table lists the attribute names that are actually aliases for a different attribute. You can use either
the name in the first column or the name in the second column, but the value is stored as the name in the second
column.

In many cases, using an alias name allows you to avoid an attribute name that contains a slash character ("/").

Previous Next

Previous Next

Attribute Name Alias For

Actor Author

Album WM/AlbumTitle

AlbumArtist WM/AlbumArtist

Artist Author

Composer WM/Composer

Conductor WM/Conductor

ContentDistributor WM/ContentDistributor

ContentGroupDescription WM/ContentGroupDescription

CreationDate WM/EncodingTime

DigitallySecure Is_Protected

Director WM/Director

Genre WM/Genre

InitialKey WM/InitialKey

Label WM/Publisher

Language WM/Language

See Also

Available Attributes
Media File Attributes
Media Item Attributes
Multi-Valued Attributes

Lyrics WM/Lyrics

MediaClassPrimaryID WM/MediaClassPrimaryID

MediaClassSecondaryID WM/MediaClassSecondaryID

MetadataSource WM/Provider

Mood WM/Mood

MPAARating WM/ParentalRating

Name Title

OriginalIndex WM/TrackNumber

OriginalIndexLeft WM/TrackNumber

Period WM/Period

PlayCount UserPlayCount

ProducedBy WM/Producer

ProtectionType WM/ProtectionType

Rating WM/ProviderRating

ReleasedBy WM/Publisher

Size FileSize

Studio WM/Publisher

Style WM/ProviderStyle

SubscriptionContentID WM/SubscriptionContentID

SubTitle WM/SubTitle

TOC WM/MCDI

UniqueFileIdentifier WM/UniqueFileIdentifier

WMCollectionGroupID WM/WMCollectionGroupID

WMCollectionID WM/WMCollectionID

WMContentID WM/WMContentID

Writer WM/Writer

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Media File Attributes

The following table lists the attributes that are stored in the media file, if they are present.

The first column shows the name that you use with methods such as Media.getItemInfo and
Media.getItemInfoByType.

The second column shows whether the attribute is stored in both the file and Media Library (ML) or only in
the file (F).

The third column shows the constant that you use when programming with the Windows Media Format SDK.
You do not require this information to program with the Windows Media Player SDK.

Note The file attributes that you can access using the Windows Media Player SDK are a subset of the file
attributes that you can access using the Windows Media Format SDK.

Previous Next

Attribute Location Constant

Author ML g_wszWMAuthor

AverageLevel ML g_wszAverageLevel

Bitrate ML g_wszWMCurrentBitrate

Copyright ML g_wszWMCopyright

Description F g_wszWMDescription

Duration ML g_wszWMDuration

DVDID ML g_wszWMDVDID

FileSize ML g_wszWMFileSize

Is_Protected ML g_wszWMProtected

IsVBR F g_wszWMIsVBR

ModifiedBy F g_wszWMModifiedBy

PeakValue ML g_wszPeakValue

Title ML g_wszWMTitle

WM/AlbumArtist ML g_wszWMAlbumArtist

WM/AlbumCoverURL F g_wszWMAlbumCoverURL

WM/AlbumTitle ML g_wszWMAlbumTitle

WM/AudioFileURL F g_wszWMAudioFileURL

WM/AudioSourceURL F g_wszWMAudioSourceURL

WM/AuthorURL F g_wszWMAuthorURL

WM/BeatsPerMinute F g_wszWMBeatsPerMinute

WM/Category ML g_wszWMCategory

WM/Codec F g_wszWMCodec

WM/Composer ML g_wszWMComposer

WM/Conductor ML g_wszWMConductor

WM/ContentDistributor ML g_wszWMContentDistributor

WM/ContentGroupDescription ML g_wszWMContentGroupDescription

WM/Director ML g_wszWMDirector

WM/DRM F g_wszWMDRM

WM/EncodedBy F g_wszWMEncodedBy

WM/EncodingSettings F g_wszWMEncodingSettings

WM/Genre ML g_wszWMGenre

WM/GenreID F g_wszWMGenreID

WM/InitialKey ML g_wszWMInitialKey

WM/ISRC F g_wszWMISRC

WM/Language ML g_wszWMLanguage

WM/Lyrics ML g_wszWMLyrics

WM/Lyrics_Synchronised ML g_wszWMLyrics_Synchronised

WM/MCDI ML g_wszWMMCDI

WM/MediaClassPrimaryID ML g_wszWMMediaClassPrimaryID

WM/MediaClassSecondaryID ML g_wszWMMediaClassSecondaryID

WM/Mood F g_wszWMMood

WM/OriginalAlbumTitle F g_wszWMOriginalAlbumTitle

WM/OriginalArtist F g_wszWMOriginalArtist

WM/OriginalFilename F g_wszWMOriginalFilename

WM/OriginalLyricist F g_wszWMOriginalLyricist

WM/OriginalReleaseYear F g_wszWMOriginalReleaseYear

WM/ParentalRating ML g_wszWMParentalRating

See Also

Attribute Aliases
Available Attributes
Media Item Attributes
Multi-Valued Attributes

WM/PartOfSet F g_wszWMPartOfSet

WM/Period ML g_wszWMPeriod

WM/Picture F g_wszWMPicture

WM/PlaylistDelay F g_wszWMPlaylistDelay

WM/Producer ML g_wszWMProducer

WM/PromotionURL F g_wszWMPromotionURL

WM/ProtectionType ML g_wszWMProtectionType

WM/Provider ML g_wszWMProvider

WM/ProviderRating ML g_wszWMProviderRating

WM/ProviderStyle ML g_wszWMProviderStyle

WM/Publisher ML g_wszWMPublisher

WM/RadioStationName F g_wszWMRadioStationName

WM/RadioStationOwner F g_wszWMRadioStationOwner

WM/SubTitle ML g_wszWMSubTitle

WM/Text F g_wszWMText

WM/ToolName F g_wszWMToolName

WM/ToolVersion F g_wszWMToolVersion

WM/TrackNumber ML g_wszWMTrackNumber

WM/UniqueFileIdentifier ML g_wszWMUniqueFileIdentifier

WM/UserWebURL F g_wszWMUserWebURL

WM/WMCollectionGroupID ML g_wszWMWMCollectionGroupID

WM/WMCollectionID ML g_wszWMWMCollectionID

WM/WMContentID ML g_wszWMWMContentID

WM/Writer ML g_wszWMWriter

WM/Year F g_wszWMYear

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Managing Playlists
A Playlist object represents a set of media items. You use properties and methods of the object to manipulate
the media items it contains and to retrieve metadata about the playlist. To manage playlists themselves, you use
the PlaylistCollection object and the MediaCollection object.

The following topics describe how to manage playlists using the Player control object model:

Playlist Attributes
Playlists and Media Items
Playlists and the PlaylistCollection Object
Static and Auto Playlists
Playlists and the MediaCollection Object

See Also

Managing Media Items
Playlist Object
Working with Media Library

© 2000-2003 Microsoft Corporation. All rights reserved.

Playlist Attributes

Playlists have metadata information called attributes, just as media items have attributes. You can retrieve the
names and values of playlist attributes and display them in your user interface, or your code can take actions
based on the value of an attribute.

Playlists are defined in files organized in an XML format, and particular elements in the file define playlist
attributes. Some attribute elements are well-know; the author of the metafile can also define arbitrary attributes.
For more information about attribute elements in playlist files, see Retrieving Metadata.

Media Library may provide additional playlist attributes, such as SourceURL or UserLastPlayedTime. For

Previous Next

Previous Next

Previous Next

more information about the Media Library playlist attributes, see Available Attributes

The Playlist.attributeCount property retrieves the number of attributes associated with the playlist. The
Playlist.attributeName property retrieves the name of an attribute based on its index, and the
Playlist.getItemInfo method retrieves the value of an attribute based on its name.

You can modify the value of an attribute of the current playlist with the Playlist.setItemInfo method.

A special use of the setItemInfo method is to sort the items in the playlist, using the SortAttribute attribute.
The following JScript example sorts a playlist by the values of the UserLastPlayedTime attribute. The variable
playlist is a reference to a Playlist object.

playlist.setItemInfo("SortAttribute", "UserLastPlayedTime");

The following JScript sample demonstrates retrieving playlist attributes. You can copy this sample to a text file
and save the file with the .htm file name extension. When you load the file in Internet Explorer, the top list box
displays the playlists in Media Library. When you select one of the playlists, the getSelected function fills the
bottom list box with the attributes of the selected playlist.

<HTML>
<HEAD>
<TITLE>Playlist Attributes Sample</TITLE>
</HEAD>

<BODY onLoad="getPlaylists()">
<OBJECT ID="wmpPlayer" NAME="wmpPlayer" HEIGHT="1" WIDTH="1"
 CLASSID="CLSID:6BF52A52-394A-11d3-B153-00C04F79FAA6">
 <PARAM NAME="uimode" VALUE="invisible">
</OBJECT>
<CENTER>
<FORM ID="frmTest" NAME="frmTest">
Playlists in Media Library

<SELECT ID="lstPlaylists" NAME="lstPlaylists"
 SIZE="10" STYLE="width:400px"
 onChange="getSelected()">
</SELECT>

Attributes in selected playlist

<SELECT ID="lstAttributes" NAME="lstAttributes"
 SIZE="10" STYLE="width:400px">
</SELECT>
</FORM>
</CENTER>
<SCRIPT LANGUAGE="JScript">
<!--
function getPlaylists()
{
 // Get a PlaylistArray object containing all of the
 // playlists in Media Library.
 var selPlaylists = document.frmTest.lstPlaylists;
 var plCollection = wmpPlayer.playlistCollection;
 var plArray = plCollection.getAll();

 // Add the name of each playlist to the SELECT element.
 var playlistCount = plArray.count;
 for (var i = 0; i < playlistCount; i++)
 {
 selPlaylists.options[selPlaylists.options.length]=
 new Option(plArray.item(i).name, i);
 }

}
function getSelected()
{
 // Get a PlaylistArray object containing the playlists
 // with the specified name.
 var selPlaylists = document.frmTest.lstPlaylists;
 var playlistName =
 selPlaylists.options(selPlaylists.selectedIndex).text;
 var plCollection = wmpPlayer.playlistCollection;
 var plArray = plCollection.getByName(playlistName);
 // Assume that there is only one playlist in the array.
 var pl = plArray.item(0);

 // For each attribute associated with the playlist,
 // add the name and value to the SELECT element.
 var selAttributes = document.frmTest.lstAttributes;
 selAttributes.options.length = 0;
 var attribCount = pl.attributeCount;
 for (var i = 0; i < attribCount; i++)
 {
 var attribName = pl.attributeName(i);
 var attribValue = pl.getItemInfo(attribName);
 selAttributes.options[selAttributes.options.length]=
 new Option(attribName + " -- " + attribValue, i);
 }
}
-->
</SCRIPT>
</BODY>
</HTML>

See Also

Managing Playlists
Media Item Attributes
Playlist Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Playlists and Media Items

A playlist is a set of media items. A Playlist object can manipulate the Media objects that represent those items.

Retrieving Media Items

For an existing playlist, you can read the Playlist.count property to determine how many media items are in the
playlist, and you can get a reference to the Media object corresponding to a specific item using the Playlist.item

Previous Next

Previous Next

property.

The following JScript example retrieves an object reference to a specific media item. (Throughout this topic, the
variable playlist is a reference to a Playlist object.)

var oMedia = playlist.item(5);

The following JScript example retrieves the names of all the media items in a playlist and puts them in a list box
on a Web page. The variable selItems is a reference to a SELECT element.

var itemCount = playlist.count;
for (var i = 0; i < itemCount; i++){
 selItems.options[selItems.options.length] =
 new Option(playlist.item(i).name, i);
}

Adding Items to a Playlist

You can add a media item to the end of a playlist or at a specific position in a playlist, using the
Playlist.appendItem and Playlist.insertItem methods. The following JScript example demonstrates both
techniques by adding the current media item twice, at both the end and the beginning of a playlist. The Player
control was created with ID="player".

var currMedia = player.currentMedia;
playlist.appendItem(currMedia);
playlist.insertItem(0, currMedia);

When you create a new, empty playlist by using the PlaylistCollection.newPlaylist method, you can add media
items to it by repeatedly calling the Playlist.appendItem method.

Manipulating Media Items in a Playlist

You can change the position of a media item in the playlist using the Playlist.moveItem method. You specify
the item by its current index and you specify the new index. The following JScript example moves an item from
index 5 to index 0 within a playlist.

playlist.moveItem(5, 0);

You can remove a media item from the playlist by using the Playlist.removeItem method. Note that if the
removed item was not the final item in the playlist, the index values of the subsequent items change. The
following JScript example removes the specified item. The variable oMedia is a reference to a Media object.

playlist.removeItem(oMedia);

Note Users can change the contents of a playlist outside of your application. Whenever you manipulate the
items in a playlist, you should monitor and handle the playlist-related events of the Player control to assure that
your code works correctly.

See Also

Managing Playlists
Media Object
Playlist Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Playlists and the PlaylistCollection Object

The PlaylistCollection object gives you access to certain special playlists and has methods for creating new,
empty playlists and new playlists from metafiles.

Working with Existing Playlists

The PlaylistCollection.getAll and PlaylistCollection.getByName methods each return a PlaylistArray object,
which can contain multiple playlists.

The PlaylistCollection.getAll method returns all of the existing playlists that are in Media Library. For
example, you can call this method and then retrieve the playlists in the PlaylistArray object to determine
whether a given playlist name has already been used, or to display all of the playlists to the user. The sample
code in Playlist Attributes uses the getAll method.

The PlaylistCollection.getByName method returns all of the playlists with a given name. You can use this
method to handle each of those playlists separately.

You can also use the getByName method to retrieve a unique playlist by name. In that case, the PlaylistArray
object has only one element. The following JScript example demonstrates this technique; the Player control was
created with ID="player".

var playlist =
 player.playlistCollection.getByName("PlaylistName").item(0);

Working with New Playlists

You can use the PlaylistCollection.newPlaylist method to create a new, empty playlist. The method returns a
reference to the new Playlist object. You can then call the Playlist.appendItem method to add media items to
the playlist.

You can also create a new playlist based on a playlist metafile. First, pass the name of the playlist and the path
to the metafile to the Player.newPlaylist method. That method returns a reference to the new Playlist object.
Then, pass the new Playlist object to the PlaylistCollection.importPlaylist method.

Notice the difference between the PlaylistCollection.newPlaylist method and the Player.newPlaylist method.
The PlaylistCollection method creates a new, empty playlist and adds it to Media Library. The Player method
creates a new, populated Playlist object but does not add it to Media Library.

The following JScript example demonstrates importing a playlist from a metafile. The player object was created
with ID="player" and two input elements were created with ID="txtPlFile" and ID="txtPlName".

Previous Next

Previous Next

var importedPlaylist
function importPlaylist()
{
 var playlistFile = document.frmInput.txtPlFile.value;
 var playlistName = document.frmInput.txtPlName.value;
 var newPlaylist = player.newPlaylist(playlistName, playlistFile);
 importedPlaylist =
 player.playlistCollection.importPlaylist(newPlaylist);
}
// Do some work with the importedPlaylist reference.

See Also

Managing Playlists
Player.newPlaylist
Playlist.appendItem
PlaylistArray Object
PlaylistCollection Object
Playlists and Media Items

© 2000-2003 Microsoft Corporation. All rights reserved.

Static and Auto Playlists

There are two types of playlists: static playlists, which include specific media items, and auto playlists, which
search Media Library every time they are opened and may contain different media items at different times.

To import a static playlist from a metafile, first call Player.newPlaylist to create a Playlist object based on the
data in the metafile, and then pass that object to PlaylistCollection.importPlaylist to add the playlist to Media
Library.

To import an auto playlist from a metafile, use MediaCollection.add. For more information, see Playlists and
the MediaCollection Object.

To import a static playlist from an auto playlist metafile, use Player.newPlaylist and
PlaylistCollection.importPlaylist as described earlier. The auto playlist will be executed once and a static
playlist will be created based on the result of that execution.

Using an auto playlist to query the user's Media Library is not supported for Web pages that users access over
the Internet.

The following JScript sample demonstrates importing an auto playlist metafile as a static playlist. To run this
sample, create an auto playlist using the Media Library user interface and then include the correct path to the
auto playlist metafile in this code.

Previous Next

Previous Next

<HTML>
<HEAD>
<TITLE>Convert Auto Playlist to Static Playlist</TITLE>
</HEAD>

<BODY onLoad="startUp()">

<OBJECT ID="wmpPlayer" NAME="wmpPlayer" HEIGHT="1" WIDTH="1"
 CLASSID="CLSID:6BF52A52-394A-11d3-B153-00C04F79FAA6">
 <PARAM NAME="autoStart" VALUE="False">
 <PARAM NAME="uimode" VALUE="invisible">
</OBJECT>

<FORM ID="frmOuter" NAME="frmOuter">
<CENTER>
<INPUT TYPE="button" ID="btnAddPlaylist" NAME="btnAddPlaylist"
 VALUE="Add static playlist from auto playlist file"
 onClick="addStaticPlaylist()">

Playlists in Media Library

<SELECT ID="lstPlaylists" NAME="lstPlaylists" SIZE="25" STYLE="width:400px">
</SELECT></CENTER>
</FORM>

<SCRIPT LANGUAGE="JScript">
<!--
function startUp()
{
 var gotFullAccess = wmpPlayer.settings.requestMediaAccessRights("full");

 if(gotFullAccess == true)
 {
 showPlaylists();
 } else {
 alert("This application will not work without full access. \n" +
 "Please click Refresh and start again.");
 }
}
function showPlaylists()
{
 // Get a reference to the playlists list box.
 var playlistsSelect = document.frmOuter.lstPlaylists;
 playlistsSelect.options.length = 0;

 // Get a PlaylistArray with all the playlists and
 // get the count of its playlists.
 var plCollection = wmpPlayer.playlistCollection;
 var plArray = plCollection.getAll();
 var playlistCount = plArray.count;

 // Put the names of the playlists in the list box.
 for (var i = 0; i < playlistCount; i++)
 {
 playlistsSelect.options[playlistsSelect.options.length]=
 new Option(plArray.item(i).name, i);
 }
}
function addStaticPlaylist()
{
 // Create a playlist object from the auto WPL file.
 var newPlaylist = wmpPlayer.newPlaylist("Static Name",
 "\\\\myServer\\myPath\\myAutoPlaylist.wpl");

 // Check whether there are items in the playlist.

 if(newPlaylist.count == 0)
 {
 alert("Sorry, this playlist is empty.");
 } else {
 // Import the new Playlist object.
 var addedPlaylist =
 wmpPlayer.playlistCollection.importPlaylist(newPlaylist);

 // Refresh the playlists list box.
 showPlaylists();
 }
}
-->
</SCRIPT>
</BODY>
</HTML>

See Also

Managing Playlists

© 2000-2003 Microsoft Corporation. All rights reserved.

Playlists and the MediaCollection Object

The MediaCollection object gives you access to a variety of special playlists, and includes a method for
creating a new playlist from a metafile.

The following methods retrieve special playlists:

getAll
getByAlbum
getByAttribute
getByAuthor
getByGenre
getByName

As their names suggest, these methods retrieve playlists containing all of the media items in Media Library
that match certain criteria.

Be careful not to confuse the MediaCollection.getByName method with the PlaylistCollection.getByName
method. The MediaCollection method returns a Playlist object containing all of the media items that have the
specified name. The PlaylistCollection method returns a PlaylistArray object containing all of the playlists
that have the specified name.

Previous Next

Previous Next

You can use the MediaCollection.add method to add playlists as well as media items to Media Library. To
add a playlist, you pass the method the path to the metafile that defines the playlist. The method always returns
a reference to a Media object; in order to work with the playlist that you added, get a reference to the Playlist
object that has the same name as the Media object.

The following JScript example demonstrates how to add a playlist from a metafile to Media Library. The
player object was created with ID="player" and an input element was created with ID="txtPlFile".

var addedPlaylist
function addPlaylist()
{
 // Add the playlist as a media item.
 var playlistFile = document.frmInput.txtPlFile.value;
 var addedMedia = player.mediaCollection.add(playlistFile);

 // Get the playlist object with the same name as
 // the added media obect.
 var plArray =
 player.playlistCollection.getByName(addedMedia.name);
 // Assume only one playlist in plArray.
 addedPlaylist = plArray.item(0);
}
// Do some work with the addedPlaylist reference.

Static playlists include specific media items. Auto playlists search Media Library every time they are opened
and may contain different media items at different times. You can add both static and auto playlists to Media
Library using the MediaCollection.add method. You can also add static playlists using the
PlaylistCollection.importPlaylist method.

See Also

Managing Playlists
MediaCollection Object
Playlist Object
PlaylistCollection Object
Playlists and the PlaylistCollection Object
Static and Auto Playlists

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Windows Media Player with Microsoft Office
This section describes how to embed the Windows Media Player ActiveX control in various documents created
using Microsoft Office XP.

Previous Next

Previous Next

In Microsoft Word, Excel, and PowerPoint®, you embed the control by selecting Object from the Insert menu,
then choosing Windows Media Player from the list of available object types. The Player control appears in the
document at the current location. You can then select Format Control (Format Object in Excel) from the
shortcut menu for the control to adjust the layout, text wrapping style, and other format options. In Word and
Excel, you must be in design mode to do this.

Once you have positioned and formatted the control, you can configure it using the Properties dialog box,
which is accessible from the Control Toolbox or from the shortcut menu in design mode for Word and Excel.
Here you can specify basic Player control properties such as the control name, the URL of a digital media file,
and the user interface mode. Setting the uiMode property to "none" hides everything in the control except the
video or visualization window, allowing you to add your own buttons and write script code using Visual Basic
for Applications (VBA) to handle the button clicks and Player control events.

From the basic Properties dialog box, you can also access the more sophisticated Windows Media Player
Control Properties dialog box by double-clicking the "(Custom)" row or by clicking the ellipsis ("...") button
after selecting that row. From this dialog box, you can modify all available Player control properties.

Note You must be careful not to take actions in Player control event handlers that will result in the control
being destroyed. For example, if you embed the Player control on a slide in a PowerPoint presentation, do not
call the PowerPoint Next method from the Player openStateChange event or any other event.

In addition, you should not set the Player.URL property from a Player control event handler.

In FrontPage, add the Player control to a Web page by selecting Web Component from the Insert menu. In the
Insert Web Component dialog box, select Advanced Controls from the Component type list, then select
ActiveX Control from the list of control choices. In the next window of the dialog box, select Windows Media
Player. If it is not listed, click Customize and select the Windows Media Player check box in the Control list.

After the Player control is embedded, you can position and resize it, and modify its properties by selecting
ActiveX Control Properties from the shortcut menu for the control. In the HTML view, the property values
that you specify appear in the OBJECT element representing the Player control. The object name appears as the
ID attribute, and the control properties appear as PARAM tags. The object name gives you access to the Player
control object model, which you can program using Microsoft JScript. For more information, see Embedding
the Player Control in a Web Page.

See Also

Player Control Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Windows Media Player with Visual Basic

Previous Next

Previous Next

This section describes how to use the Windows Media Player ActiveX control in applications created with
Microsoft Visual Basic 6.0. It includes a description of the DVD Player sample application, which is written in
Visual Basic.

Getting Started

To add the Player control to the toolbox, first select Components from the Project menu. In the Components
dialog box, select the check box next to "Windows Media Player". At the bottom of the dialog box, confirm that
the selected file is wmp.dll. After closing the dialog box, you can place an instance of the Player control on your
form in the usual ways.

You can set many control properties using the Properties window. To set some properties you must use the
Windows Media Player Properties dialog box, which you open using the "(Custom)" item in the Properties
window.

Object References

You use certain Player control properties to get references to particular objects. For example, the
cdromCollection property returns a reference to a CdromCollection object. You must assign such a reference
to a variable that you declared as the corresponding interface. In the case of the cdromCollection property, for
example, you assign its return value to a variable of type IWMPCdromCollection.

Read the Interfaces topic in the Object Model Reference for C++ to identify which objects implement multiple
interfaces. In those cases, you must declare an object variable as the highest-numbered interface documented in
this SDK in order to have access to all of the properties and methods of that object. For example, you should
assign the value of the Player control currentMedia property to a variable declared as IWMPMedia3 to assure
that you have access to the getAttributeCountByType and getItemInfoByType methods.

Note The WindowsMediaPlayer object implements all of the properties and methods of the IWMPCore,
IWMPCore2, IWMPCore3, IWMPPlayer, IWMPPlayer2, IWMPPlayer3, and IWMPPlayer4 interfaces.
You do not need to declare separate variables for any of these interfaces. You can access all of their members
using the name you assigned to your WindowsMediaPlayer instance.

In the Visual Basic Object Browser you will see many interfaces that are intended for private use by the Player
control, including some that support skin developers. You should use only the objects, properties, methods, and
events that are documented in this SDK.

Additional Tips

The reference documentation shows JScript syntax. In JScript, arguments passed to methods are always
enclosed in parentheses. In Visual Basic 6.0, arguments passed to methods that do not return a value must
not be enclosed in parentheses.
Some properties or methods may not appear in the Auto List code-completion feature in the Visual Basic
code editor. You can still use those members by typing their names exactly as they appear in this
documentation.
Manage the visual appearance of the control using the uimode property. You can do so in two ways. You
can use the Select a mode drop-down list in the Windows Media Player Properties dialog box, or you can
type the correct value in the Properties window.

In particular, do not use the visible property to hide the control; instead, assign the value "invisible" to the
uimode property.

Sample Application

The DVD Player sample application included in this SDK is written in Visual Basic 6.0. The main purpose of
the sample is to demonstrate how to access and manipulate DVD video content, but it also demonstrates using
the ActiveX control in a Visual Basic-based application.

The following topics describe the sample:

DVD Player Start-Up State
DVD Player Disc Navigation
Additional Functionality in the DVD Player
WMPDVD Protocol in the DVD Player

See Also

Player Control Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

DVD Player Start-Up State
At design time, the ActiveX control is given the name wmpPlayer, but otherwise left in its default state. This
means that the autoStart property is True and the URL property has no value.

There are three module-level variables:

Private oSelectedDrive As IWMPCdrom
Private oTopMenu As IWMPPlaylist
Private strProtocol As String

The oSelectedDrive variable will always refer to the drive that is currently selected in the cboDrives combo box.
Note that the data type is IWMPCdrom. DVD drives can play both CD and DVD discs; a Cdrom object can
therefore represent a CD drive or a DVD drive.

The oTopMenu variable will refer to a Playlist object representing the top-most menu of a DVD disc, the menu
containing all of the titles on the disc.

The strProtocol variable will be used with the WMPDVD protocol functionality, described in a later topic.

The following topics describe the start-up code in the application:

Handling the Form_Load Event
Enumerating the Drives
Handling Drive Selection

Previous Next

Previous Next

Displaying the Playlist
Summary

See Also

Using Windows Media Player with Visual Basic

© 2000-2003 Microsoft Corporation. All rights reserved.

Handling the Form_Load Event

The Form_Load event procedure takes three actions. First, it determines whether a DVD decoder is available.
Windows Media Player does not include a DVD decoder, so a third-party decoder must be installed separately.
The procedure calls the isAvailable method of the DVD object, which it references through the dvd property of
the control.

Second, it calls DisplayDrives, a user-defined procedure that determines which drives on the system can play
CDs, and then adds their drive letters to the combo box.

Third, it sets the ListIndex property of the combo box, which raises the cboDrives_Click event.

This is the Form_Load event procedure:

Private Sub Form_Load()
 If Not wmpPlayer.dvd.isAvailable("dvdDecoder") Then
 MsgBox "No DVD encoder installed.", vbCritical, "WARNING!"
 End If
 DisplayDrives
 cboDrives.ListIndex = 0
End Sub

See Also

DVD Player Start-Up State

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Enumerating the Drives

The DisplayDrives procedure discovers the CD drives on the system and adds their drive letters to the
cboDrives combo box.

First, it determines how many CD-capable drives are on the system through the count property of the
CdromCollection object, which it references through the cdromCollection property of the control.

It uses the count to loop through the collection of drives. For each drive, it retrieves the driveSpecifier property
and adds that value to the cboDrives combo box.

This is the DisplayDrives procedure:

Private Sub DisplayDrives()
 Dim iNumDrives As Integer
 Dim i As Integer
 Dim oThisDrive As IWMPCdrom

 iNumDrives = wmpPlayer.cdromCollection.Count
 If Not iNumDrives > 0 Then
 MsgBox "No DVD or CD drive available.", _
 vbCritical, "WARNING!"
 End If

 For i = 0 To iNumDrives - 1
 Set oThisDrive = wmpPlayer.cdromCollection.Item(i)
 cboDrives.AddItem oThisDrive.driveSpecifier
 Next i
End Sub

See Also

DVD Player Start-Up State

© 2000-2003 Microsoft Corporation. All rights reserved.

Handling Drive Selection

Every time the user selects a drive from the cboDrives combo box, the application needs to update the list box

Previous Next

Previous Next

Previous Next

that displays the titles which are on the disc in that drive. The cboDrives_Click event procedure handles this
task. The procedure executes for the first time when the combo box ListIndex property is set in the Form_Load
event procedure.

First, this event procedure stores the new drive selection in the module-level variable oSelectedDrive. It
references the CdromCollection object through the cdromCollection property of the control. It passes the
combo box ListIndex property to the Item property of the CdromCollection object in order to specify a
particular CD-capable drive.

Second, it calls the user-defined procedure ShowProtocol, which is related to the WMPDVD protocol
functionality and will be discussed in a later topic.

Third, recall that the data type of oSelectedDrive is IWMPCdrom. The value of that object's playlist property
is a Playlist object containing the items in the top-most menu of the disc in the drive. For a DVD disc, that
menu contains the titles on the disc. The event procedure assigns the playlist to the module-level oTopMenu
variable and also to the currentPlaylist property of the Player control. Because the autoStart property of the
control is True, specifying the current playlist has the effect of beginning playback.

Finally, it calls the user-defined procedure DisplayPlaylist, which adds the items from the current playlist to the
lstMenuItems list box.

This is the cboDrives_Click procedure:

Private cboDrives_Click()
 Set oSelectedDrive = _
 wmpPlayer.cdromCollection.Item(cboDrives.ListIndex)
 ShowProtocol
 Set oTopMenu = oSelectedDrive.Playlist
 wmpPlayer.currentPlaylist = oTopMenu
 DisplayPlaylist
End Sub

See Also

DVD Player Start-Up State

© 2000-2003 Microsoft Corporation. All rights reserved.

Displaying the Playlist

The user-defined procedure DisplayPlaylist simply adds each item in the current playlist to the lstMenuItems
list box. The procedure is called each time the current playlist changes.

It is called the first time from the cboDrives_Click event procedure. It is also called from the

Previous Next

Previous Next

wmpPlayer_CdromMediaChange and wmpPlayer_OpenPlaylistSwitch event procedures. The
CdromMediaChange event is raised when the user inserts or removes a disc. The OpenPlaylistSwitch event
is raised when the current playlist changes for other reasons, for example, when playback moves from an
introductory title to the main title.

The DisplayPlaylist procedure starts by assigning the current playlist to the oSelectedPlaylist variable.
Depending on the context, oSelectedPlaylist will represent the titles on the disc or the chapters in a particular
title.

It then retrieves the Count property and uses that number to enumerate the items in the list. For each item, it
retrieves the Name property and adds that value to the list box.

This is the DisplayPlaylist procedure:

Private Sub DisplayPlaylist()
 Dim oSelectedPlaylist As IWMPPlaylist
 Dim iNumItems As Integer
 Dim i As Integer

 Set oSelectedPlaylist = wmpPlayer.currentPlaylist
 iNumItems = oSelectedPlaylist.Count
 If Not iNumItems > 0 Then
 MsgBox "No items in the playlist or" & vbCrLf & _
 "no disc in the drive.", vbCritical, "WARNING!"
 End If
 lstMenuItems.Clear

 For i = 0 To iNumItems - 1
 lstMenuItems.AddItem oSelectedPlaylist.Item(i).Name
 Next i
End Sub

See Also

DVD Player Start-Up State

© 2000-2003 Microsoft Corporation. All rights reserved.

Summary

This completes the description of the code that executes as soon as you run the DVD Player project. The
Form_Load event procedure calls a user-defined procedure to add all of the CD-capable drives to the cboDrives
combo box, and then raises the cboDrives_Click event procedure. The cboDrives_Click event procedure sets
the top-most menu of the DVD disc as the current playlist, and then calls a user-defined procedure to add the
items from the current playlist to the lstMenuItems list box.

Previous Next

Previous Next

The final effect is that the first chapter of the first title on the DVD disc begins playing. If the DVD disc has
been previously played on this system, then the disc begins playing at the point where it last stopped playing.

See Also

DVD Player Start-Up State

© 2000-2003 Microsoft Corporation. All rights reserved.

DVD Player Disc Navigation
The content of a DVD disc is organized into one or more titles, each of which has one or more chapters. At any
given moment during playback, the content comes from a specific chapter.

There is no required standard for the arrangement of titles and chapters. It is typical for a disc to begin with one
or two titles of one chapter each, containing copyright and other introductory material. This may be followed by
a title with many chapters, containing the primary content of the disc. And the structure may conclude with
additional titles containing extra content, such as interviews, short features, and so on.

Because of the lack of requirements, the Windows Media Player object model methods for navigating a disc
may have different effects with different DVD discs.

Four of the command buttons in the DVD Player application user interface relate to navigating the content
structure of the DVD disc. Two of them display the basic menus of the DVD content structure. One of them
navigates back one level in the menu structure. One of them resumes playback from a menu page.

The following topics describes the disc navigation functionality:

Basic Menus
Additional Navigation

See Also

Using Windows Media Player with Visual Basic

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Basic Menus

In the Windows Media Player object model, the top-most menu is called the top menu. Its items are typically
titles. Other menus are called title menus because they typically have the chapter items from one title.

The cmdShowTopMenu command button, which displays "List titles on disc" in the user interface, calls the
topMenu method of the DVD object. It references that object through the dvd property of the control. This
method will usually navigate to the top-most menu of the disc.

The event procedure first retrieves the availability of the method using the isAvailable property of the DVD
object; however, depending on how a particular disc was authored, this method may return True even when the
topMenu method has no effect.

This is the cmdShowTopMenu_Click procedure:

Private Sub cmdShowTopMenu_Click()
 If wmpPlayer.dvd.isAvailable("topMenu") Then
 wmpPlayer.dvd.topMenu
 Else
 MsgBox "The topMenu method is not available" & vbCrLf & _
 "at this point on this disc.", vbInformation
 End If
End Sub

The cmdShowTitleMenu command button, which displays "List chapters in title" in the user interface, calls the
titleMenu method of the DVD object. It references that object through the dvd property of the control. This
method will usually navigate to the chapter menu for the current title.

The event procedure first retrieves the availability of the method using the isAvailable property of the DVD
object; however, depending on how a particular disc was authored, this method may return True even when the
titleMenu method has no effect.

This is the cmdShowTitleMenu_Click procedure:

Private Sub cmdShowTitleMenu_Click()
 If wmpPlayer.dvd.isAvailable("titleMenu") Then
 wmpPlayer.dvd.titleMenu
 Else
 MsgBox "The titleMenu method is not available" & vbCrLf & _
 "at this point on this disc.", vbInformation
 End If
End Sub

See Also

DVD Player Disc Navigation

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Additional Navigation

The DVD Player project uses two other DVD methods that navigate the menu structure.

The cmdMenuBack command button, which displays "<< Previous menu" in the user interface, calls the back
method of the DVD object. It references that object through the dvd property of the control. This method will
usually navigate back to the previous menu.

In the event procedure, we first retrieve the availability of the method using the isAvailable property of the
DVD object; however, depending on how a particular disc was authored, this method may return True even
when the back method has no effect.

This is the cmdMenuBack_Click procedure:

Private Sub cmdMenuBack_Click()
 If wmpPlayer.dvd.isAvailable("back") Then
 wmpPlayer.dvd.back
 DisplayPlaylist
 Else
 MsgBox "The Back method is not available" & vbCrLf & _
 "at this point on this disc.", vbInformation
 End If
End Sub

The cmdMenuResume command button, which displays "Resume from menu" in the user interface, calls the
resume method of the DVD object. It references that object through the dvd property of the control. This
method will usually resume playback at the point from which the menu was invoked.

The event procedure first retrieves the availability of the method using the isAvailable property of the DVD
object; however, depending on how a particular disc was authored, this method may return True even when the
resume method has no effect.

This is the cmdMenuResume_Click procedure:

Private Sub cmdMenuResume_Click()
 If wmpPlayer.dvd.isAvailable("resume") Then
 wmpPlayer.dvd.resume
 Else
 MsgBox "The Resume method is not available" & vbCrLf & _
 "at this point on this disc.", vbInformation
 End If
End Sub

See Also

Previous Next

DVD Player Disc Navigation

© 2000-2003 Microsoft Corporation. All rights reserved.

Additional Functionality in the DVD Player
The DVD Player sample project demonstrates features of the DVD object in addition to the content navigation
features.

The application will automatically play a DVD disc if one is already in a drive when the application starts, or if
one is inserted while the application is running, because of the code discussed in the topic DVD Player Start-Up
State. The user can also use the title or chapter items displayed in the lstMenuItems list box to play a specific
portion of the disc.

The user can select an item in the list box and then click the cmdPlaySelected command button, which displays
"Play selected item" in the user interface.

The cmdPlaySelected_Click event procedure starts by checking to see whether a list box item is actually
selected. This avoids errors when passing an index from the list box to an object model method. If an item is
selected, the event procedure uses the ListIndex property of the list box to get a specific media item from the
current playlist. It assigns that item to the currentItem property of the control, which it references through the
Controls property. Because the autoStart property of the control is True, specifying the current item has the
effect of beginning playback with the current item.

Private Sub cmdPlaySelected_Click()
 If lstMenuItems.ListIndex = -1 Then
 MsgBox "Please select an item and then try again.", vbExclamation
 Exit Sub
 End If
 wmpPlayer.Controls.currentItem = _
 wmpPlayer.currentPlaylist.Item(lstMenuItems.ListIndex)
 wmpPlayer.Controls.play
End Sub

The user can also play back a specific item by double-clicking it in the list box. The application implements this
functionality by calling the cmdPlaySelected_Click procedure from the lstMenuItems_DblClick event
procedure.

Finally, the application displays the current DVD domain whenever it changes. This is the
wmpPlayer_DomainChange procedure:

Private Sub wmpPlayer_DomainChange(ByVal strDomain As String)
 lblDomain.Caption = "Domain: " & strDomain
End Sub

Previous Next

Previous Next

See Also

Using Windows Media Player with Visual Basic

© 2000-2003 Microsoft Corporation. All rights reserved.

WMPDVD Protocol in the DVD Player
You can write an application to play back any DVD disc inserted in a DVD drive using the Cdrom and Playlist
objects as described in previous topics. You can also write an application that plays back DVD media from a
local hard disk or network share.

From a file system point of view, a DVD disc has two top-level folders, named AUDIO_TS and VIDEO_TS.
The VIDEO_TS folder contains a file named VIDEO_TS.IFO. Video content in DVD format preserves that
structure when it is stored on a hard disk.

You can play back DVD media by assigning a value to the Player control URL property that specifies the path
to a VIDEO_TS.IFO file. The protocol that you use for the URL is WMPDVD.

The text boxes and command button at the bottom of the DVD Player user interface demonstrate using
WMPDVD. They use the protocol to navigate a DVD disc in a drive, but can be modified to point to DVD
media that is not on a disc.

The following topics describe the WMPDVD functionality in the DVD Player application:

Creating the Protocol String
Using the Protocol

See Also

Using Windows Media Player with Visual Basic
WMPDVD Protocol

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Creating the Protocol String

Whenever the user selects a drive in the cboDrives combo box, the cboDrives_Click event procedure calls the
user-defined procedure ShowProtocol. The txtTitle_Change and txtChapter_Change event procedures also call
ShowProtocol. It is called for the first time when the Form_Load procedure calls the cboDrives_Click
procedure.

The ShowProtocol procedure constructs a valid WMPDVD URL from the current drive letter, the current value
of the txtTitle text box, and the current value of the txtChapter text box. It assigns that WMPDVD string to the
module-level variable strProtocol and then displays it in the caption of the frame.

This is the ShowProtocol procedure:

Private Sub ShowProtocol()
 strProtocol = "wmpdvd://" & Left$(cboDrives.Text, 1)
 If Trim(txtTitle.Text) <> "" Then
 strProtocol = strProtocol & "/" & Trim(txtTitle.Text)
 If Trim(txtChapter.Text) <> "" Then
 strProtocol = strProtocol & "/" & Trim(txtChapter.Text)
 End If
 End If

 fraPlayWithProtocol.Caption = "Play DVD using WMPDVD protocol - " _
 & strProtocol
End Sub

See Also

WMPDVD Protocol in the DVD Player

© 2000-2003 Microsoft Corporation. All rights reserved.

Using the Protocol

The user can click the cmdPlayWithProtocol command button, which displays "Play using WMPDVD
protocol" in the user interface, after selecting a drive, after entering a title number, or after entering both a title
number and a chapter number.

Previous Next

Previous Next

Previous Next

The cmdPlayWithProtocol_Click event procedure first turns on error handling and then assigns the module-
level variable strProtocol to the Player control URL property. The ShowProtocol procedure, described in the
previous topic, assures that strProtocol is always a valid WMPDVD URL. Because the autoStart property of
the control is True, specifying the URL has the effect of beginning playback.

This is the cmdPlayWithProtocol_Click event procedure:

Private Sub cmdPlayWithProtocol_Click()
 wmpPlayer.Error.clearErrorQueue
 On Error GoTo ErrHandler

 wmpPlayer.URL = strProtocol
 Exit Sub

ErrHandler:
 Dim i As Integer
 For i = 0 To wmpPlayer.Error.errorCount - 1
 MsgBox wmpPlayer.Error.Item(i).errorDescription
 Next
End Sub

The WMPDVD protocol functionality allows you to build an application that plays back DVD media created on
the local computer.

See Also

WMPDVD Protocol in the DVD Player

© 2000-2003 Microsoft Corporation. All rights reserved.

Embedding the Player Control in a C++ Program
There are several different ways to embed the Windows Media Player control in a custom C++ program. The
Microsoft Foundation Classes (MFC) library provides a user-friendly embedding experience similar to
Microsoft Visual Basic. This approach does not require extensive experience with the Microsoft Component
Object Model (COM), and is suitable for novice C++ programmers. Those who are familiar with COM can
implement interfaces provided to run the embedded Player control in remote mode and to customize the user
interface by applying a skin definition file.

This information is described in the following topics.

Previous Next

Previous Next

Topic Description

See Also

Object Model Reference for C++
Player Control Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Embedding the Player Control in an MFC Project
This section describes how to embed the Windows Media Player control in a window-based program that you
create using Microsoft Visual C++ version 6.0 and the Microsoft Foundation Classes (MFC) Library.

MFC makes it almost as easy to embed ActiveX controls in C++ programs as it is in Visual Basic-based
programs. When you install Windows Media Player, the ActiveX control is registered and made available to
Microsoft Visual Studio, where you can add it to the Controls palette in the dialog resource editor. From here,
you can drag it onto a dialog resource, modify its properties, and add code to manipulate it.

The Player control uses Microsoft Component Object Model (COM) technology to expose a number of
interfaces. MFC generates a C++ wrapper class for most of these interfaces, letting you manipulate the control
using standard object-oriented programming (OOP) syntax.

The following sections describe the basic steps you use to embed the control, add buttons to provide a custom
user interface, and provide code that plays, pauses, and stops your digital media when a button is clicked:

Adding the Control to Your Project
Adding the Control to a Dialog Resource
Adding Code to Manipulate the Control
Handling Player Control Events
Using Player Interfaces Without a Wrapper Class
Using Player Objects With a Wrapper Class

Embedding the Player Control in an MFC Project Describes how to embed the Player control in a C++
program by using the MFC Library.

Remoting the Windows Media Player Control Describes how to embed the Player control in a C++
program in remote mode, which lets your users
undock the control to switch to the full mode of the
Player.

Using Skins with the Windows Media Player Control Describes how to apply a skin file to a Player control
embedded in a C++ program.

Previous Next

Previous Next

See Also

Embedding the Player Control in a C++ Program

© 2000-2003 Microsoft Corporation. All rights reserved.

Adding the Control to Your Project

First, start a new dialog-based project using MFC AppWizard (exe), making sure the ActiveX Controls
support option is selected.

Next, add the control through the Project menu by selecting Add To Project, then Components and Controls.
This displays the Components and Controls Gallery dialog box and places you in the Gallery folder. From
here, you can access the Registered ActiveX Controls folder, select Windows Media Player, and insert it into
the project.

When you insert the control, the wizard generates a C++ wrapper class for most of the COM interfaces that the
control exposes. The primary class is CWMPPlayer4, which corresponds to the IWMPPlayer4 interface. MFC
does not automatically generate a wrapper class for certain interfaces. To determine whether a particular
interface has a wrapper class, you can browse the ClassView tab in Visual Studio and look for a class name that
contains the corresponding Windows Media Player object name. For instance, the DVD object has a wrapper
class named "CWMPDVD". Whether or not a particular interface generates a wrapper class in MFC is also
documented on the main page for each Player interface in Object Model Reference for C++.

See Also

Embedding the Player Control in an MFC Project
Using Player Interfaces Without a Wrapper Class
Using Player Objects With a Wrapper Class

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

Adding the Control to a Dialog Resource

After you add the control to your project, it appears on the Controls palette. To insert it into a dialog resource,
delete the TODO label in the center of the dialog box, then drag the Player control to the form and resize the
control border until the entire user interface is visible.

Next, display the Windows Media Player Properties dialog box using the shortcut menu. On the General tab,
change the ID to IDC_PLAYER. On the Control tab, type the file name or URL of a digital media file, or use
the Browse button to locate a file. Then, because you will provide a custom user interface, select "none" from
the Select a mode list. In this mode, only the video or visualization window is displayed.

Next, create three button controls. On the property dialog box for each control, modify its ID and caption. For
the button IDs, use IDC_PLAY_BUTTON, IDC_PAUSE_BUTTON, and IDC_STOP_BUTTON. For the
captions, use Play, Pause, and Stop.

See Also

Embedding the Player Control in an MFC Project

© 2000-2003 Microsoft Corporation. All rights reserved.

Adding Code to Manipulate the Control

Before your code can reference the Player control, you must provide a member variable for it. To do this, open
the ClassWizard from the shortcut menu for the control. Next, select the Member Variables tab, and select
IDC_PLAYER from the Control IDs list. Finally, click Add Variable, and type m_ctrlPlayer for the member
variable name. This member variable is in the Control category and represents an instance of the
CWMPPlayer4 class, through which you can access the entire object model.

To add event handlers for the buttons you've created, double-click each one in turn, and accept the default
member function name in the Add Member Function dialog box. This generates a function block into which
you can type the event handler code shown below. Your functions should be similar to following three,
differing only in the dialog class name, which is based on the project name.

void CWMPEmbedDlg::OnPlayButton()
{
 m_ctrlPlayer.GetControls().play();
}

void CWMPEmbedDlg::OnPauseButton()
{
 m_ctrlPlayer.GetControls().pause();
}

Previous Next

Previous Next

void CWMPEmbedDlg::OnStopButton()
{
 m_ctrlPlayer.GetControls().stop();
}

See Also

Embedding the Player Control in an MFC Project

© 2000-2003 Microsoft Corporation. All rights reserved.

Handling Player Control Events

In addition to handling button click events, you can handle any of the events documented in the Player control
object model. These events are listed when you select Events from the shortcut menu for the control. To create
an event handler for a particular event, select the event from the New Windows messages/events list and click
Add and Edit.

The following code example illustrates an event handler for the PlayStateChange event.

void CWMPEmbedDlg::OnPlayStateChangePlayer(long NewState)
{
 if (NewState == 8) { // playback has completed
 MessageBox("The End");
 }
}

See Also

Embedding the Player Control in an MFC Project

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Player Interfaces Without a Wrapper Class

Previous Next

Previous Next

Previous Next

Previous Next

To use Windows Media Player interface for which MFC does not generate a wrapper class, you must first
obtain a pointer to parent interface by using the appropriate IWMPPlayer4 wrapper class accessor method,
then use that pointer to QueryInterface for the subsequent numbered interface you want to work with. Once
you have the pointer to the specific interface you want to use, you can then call its methods through the pointer.
The following code example demonstrates using the get_defaultAudioLanguage method of the
IWMPSettings2 interface:

IWMPPlayer4 m_ctrlPlayer;
IDispatch *pSettings = NULL;
IWMPSettings2 *pSettings2 = NULL;
HRESULT hr = S_OK;

// Get a pointer to the IDispatch interface from CWMPSettings.
pSettings = m_ctrlPlayer.GetSettings().m_lpDispatch;

if(pSettings != NULL)
{
 // Get a pointer to the IWMPSettings2 interface.
 hr = pSettings->QueryInterface(__uuidof(IWMPSettings2), reinterpret_cast<void**>(&pS

 if(SUCCEEDED(hr))
 {
 long lLangID;
 hr = pSettings2->get_defaultAudioLanguage(&lLangID);
 }

 if(SUCCEEDED(hr))
 {
 // Use the lLangID value somehow...
 }

 // Don't forget to call release through the pointers.
 if(pSettings)
 {
 pSettings->Release();
 }

 if(pSettings2)
 {
 pSettings2->Release();
 }
}

For the preceding example to compile, you need to add the include statement for the CWMPSettings class
header. The following code would be added to your project's main header file:

#include "wmpsettings.h"

See Also

Embedding the Player Control in an MFC Project
Using Player Objects With a Wrapper Class

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Using Player Objects With a Wrapper Class

When you browse the generated classes from the ClassView tab of the Workspace pane in Visual Studio, you
can see a list of the methods each class supports, including all the Player object model methods and accessor
methods for each Player property. These accessor methods have names that begin with "Get" or "Set" followed
by the name of the property. For example, to use the Player.controls property of the Player object model to
retrieve the Controls object and then call the Controls.play method, you would use the following syntax:

m_ctrlPlayer.GetControls().play();

Because you are now referencing a wrapper class, you must add an include statement for the class header to
your project's main header file. For the CWMPControls class, you would use the following syntax:

#include "wmpcontrols.h"

See Also

Embedding the Player Control in an MFC Project
Using Player Interfaces Without a Wrapper Class

© 2000-2003 Microsoft Corporation. All rights reserved.

Remoting the Windows Media Player Control
When you embed the Windows Media Player control in a C++ program, you can use it as a remote extension of
the full mode of the Player. This is called "remoting" the Player control, and it lets you provide all the features
of the full Player without implementing them yourself. When you remote the control, it shares the same
playback engine as the full mode of the Player and your users can switch back and forth between embedded
mode (the "docked" state) and full mode (the "undocked" state) while digital media playback continues
uninterrupted.

Enabling Remote Embedding

To enable remote embedding of the Player control, your program must implement the IServiceProvider and
IWMPRemoteMediaServices interfaces. IServiceProvider is a standard Component Object Model (COM)

Previous Next

Previous Next

Previous Next

interface with a single method called QueryService. Windows Media Player calls this method to retrieve a
pointer to an IWMPRemoteMediaServices interface.

IWMPRemoteMediaServices has several methods, but only two of them are directly relevant to remoting. In
GetApplicationName, you return the name of your program, which Windows Media Player adds to the Switch
to Other Program list on the View menu. In GetServiceType, you indicate the embedding mode of the control
by returning a value of either "Remote" or "Local". If a remote connection is successfully established, the
get_isRemote method of the IWMPPlayer4 interface returns true.

Docking and Undocking

The IWMPPlayer4 interface also provides access to the IWMPPlayerApplication interface through the
get_playerApplication method. Use IWMPPlayerApplication to switch back and forth between the docked
and undocked states and to determine the current docked state and the location of the video or visualization
display.

The IWMPPlayerApplication::switchToPlayerApplication method undocks the control by opening the full
mode of the Player and transferring the video or visualization display to the Now Playing pane. The
IWMPPlayerApplication::switchToControl method docks the control by transferring the video or
visualization display to your program and closing the full mode of the Player, if it is open. The control can also
be docked by selecting a program from the Switch to Other Program list mentioned earlier, or by closing the
full mode of the Player. In both cases, any digital media that is playing continues uninterrupted.

Transferring the Video or Visualization Display

A video or visualization can display in only one location at a time. When several programs with embedded,
remoted Player controls run simultaneously, they all share the same playback engine and the same instance of
the full mode of the Player in the undocked state. In the docked state, however, only one of them can display the
video or visualization. In the undocked state, only the full mode of the Player displays the video or
visualization. The switchToControl method works in both the docked and undocked states, transferring the
video or visualization display to whichever program calls it.

The only difference between the docked and undocked states is the presence of the full mode of the Player and
its ownership of the video or visualization display. In the undocked state, all embedded, remoted controls
currently running are still visible and their user interfaces are still fully functional. If a video or visualization
window is present, however, it is empty. In the docked state, only one of the embedded, remoted controls owns
the display, but all user interfaces continue to function.

Hiding or Changing the Control in the Undocked State

You must provide your own implementation if you want to hide or alter the user interface of an embedded
control in the undocked state or when your program does not own the display. You can make these alterations
when you dock and undock the control or you can make them in response to Windows Media Player events.
Because the Player can be docked through the Switch to Other Program menu option, however, it is usually
better to provide this functionality in response to events.

You can implement event handlers for the SwitchedToPlayerApplication and SwitchedToControl events, or
you can implement a single event handler for the PlayerDockedStateChange event. In the latter case, you can
determine the docked state by calling IWMPPlayerApplication::get_playerDocked. In both cases, use
IWMPPlayerApplication::get_hasDisplay to determine whether your program owns the video or
visualization display.

Re-Establishing a Remote Connection

In certain circumstances, the connection between a remoted, embedded control and the standalone Player will
fail, invalidating your pointers to the Windows Media Player interfaces. The Player will automatically attempt
to reconnect, and will fire the PlayerReconnect event to signal this attempt. Although the reconnection is
automatic, you must provide an event handler for this event if you want to release your invalid pointers and
retrieve new ones so that you can access the standalone Player through the new connection.

Controlling the Undocked Player

Remote embedding of the Player control lets you extend your program to include everything that is already
available in the full mode of Windows Media Player. Although enabling this feature provides a great benefit to
your users, you may be wondering whether the undocked, full mode of the Player will ultimately distract your
users from your own program.

To retain continuity between your program and the undocked Player, use the IWMPPlayerServices interface.
This interface lets you specify both the full mode pane that the Player undocks into and the contents of that
pane. Use the setTaskPane method to specify the pane, and the setTaskPaneURL method to specify a Web
page that appears in that pane. If you undock into the Now Playing pane, you can specify a user interface plug-
in to display there by calling activateUIPlugin. This method also activates background and separate window
UI plug-ins.

By specifying Web pages for the various panes of the full Player, you can control many aspects of the user
experience in the undocked state. You can use these Web pages to display your own branding and advertising,
for example, or to replace windowsmedia.com in the Media Guide pane with your own media guide.

You can also provide supplementary user interfaces by embedding the Player control in your HTML and
writing Microsoft JScript code to manipulate it. The control embedded in the HTML recognizes that the full
Player is hosting it and establishes a remote connection automatically. This allows you to manipulate the Player
in JScript code as described for metafile Web pages in Displaying Web Pages in Windows Media Player.

All remoted instances of the Player control can manipulate the full mode of the Player regardless of the docked
state. Features that have no relevance to the full mode of the Player, however, are ignored until the Player
control is docked. This includes properties of the IWMPPlayer and derived interfaces, such as enabled,
enableContextMenu, uiMode, and windowlessVideo.

Error Dialog Boxes

From a remoted Windows Media Player control instance, the Settings.enableErrorDialogs property behaves in
a specific manner. The following rules apply:

When the Player is undocked (the Windows Media Player application is visible), the
enableErrorDialogs property is ignored and error dialog boxes are handled by Windows Media Player.
When the Player is docked, the value specified by each remoted instance of the control for
enableErrorDialogs applies only to the individual control instance. That is, if a particular control
instance specifies a value of "true" for enableErrorDialogs, only that instance will display a dialog box
when an error occurs if all other instances of the control have specified a value of "false".

See Also

Embedding the Player Control in a C++ Program

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Skins with the Windows Media Player
Control
When you embed the Player control in a C++ program, you have the option of customizing its user interface by
applying a skin definition file to it. A skin definition file is an XML-based document specifying the layout of
standard and customizable user interface components and any accompanying graphics. Using Microsoft JScript,
you can specify the behavior of these components and manipulate the Player control without the overhead of
C++ and COM syntax.

Skins provide an easy way to keep your user interface code and your main program code separate so that they
can be maintained and developed independently. You can also reuse skins originally designed for use by the
standalone Player in skin mode. Skin code that you design specifically for C++ programs can interact with your
programs through a scriptable object that your program can provide.

To enable skin mode for the Player control, your program must implement the IWMPRemoteMediaServices
interface. Although using skins with the control and remoting the control go well together, you can use this
interface to enable either feature without enabling the other. To disable remoting, simply pass a value of
"Local" as the out parameter of the GetServiceType method, and return an HRESULT of E_NOTIMPL from
the GetApplicationName method.

To switch the Player control to skin mode, call the IWMPPlayer::put_uiMode method, passing in a value of
"custom". Specify the path and file name of the skin definition file to use by returning it from the
IWMPRemoteMediaServices::GetCustomUIMode method. If you want to provide a scriptable object for
communication between your skin and your program, pass a name and a pointer to an IDispatch pointer as the
two out parameters of the IWMPRemoteMediaServices::GetScriptableObject method. Your skin can then
make calls to the scriptable object by using the name specified as though it were a global attribute similar to the
player global attribute.

A skin applied to a remoted Player control can access the PlayerApplication object using another global
attribute called playerApplication. Because the Player.playerApplication property is inaccessible to skins,
you must use this global attribute when you want your skin code to manage docking and undocking.

See Also

Embedding the Player Control in a C++ Program

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Embedding the Player Control in a .NET
Framework Solution
The Windows Media Player 9 Series ActiveX control supports embedding in .NET Framework applications.
The following sections provide information specific to using the Player control with the .NET Framework.

See Also

Player Control Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

About Primary Interop Assemblies
Embedding the Player control with the Microsoft .NET Framework requires the use of the Windows Media
Player primary interop assembly (PIA). A PIA is a unique .NET Framework assembly that contains type

Previous Next

Section Description

About Primary Interop Assemblies Provides information about primary interop
assemblies and how to use the Windows Media
Player primary interop assembly with your Visual
Studio .NET solution.

About .NET Framework Data Types Provides the information you need to translate the
script-oriented Object Model Reference into
Microsoft .NET Framework base data types.

Using the Player Control with Microsoft Visual
Studio .NET

Provides details about how to add the Windows
Media Player 9 Series control to your Visual
Studio .NET solution.

Embedding the Player Control in a C# Solution Provides step-by-step instructions for how to create a
very simple C# application using the Player control.

Previous Next

Previous Next

definitions (as metadata) of types implemented by a COM component. Only the publisher of a type library can
produce a true PIA, which becomes the unit of official type definitions for interoperating with the underlying
COM types.

For more information, see Primary Interop Assemblies (PIAs) on the MSDN Web site.

The following topics discuss how to register and re-distribute a PIA.

Registering Primary Interop Assemblies for Application Development
Re-distributing a Primary Interop Assembly with Your Application

See Also

Embedding the Player Control in a .NET Framework Solution

© 2000-2003 Microsoft Corporation. All rights reserved.

Registering Primary Interop Assemblies for Application Development

You must register and install the Windows Media Player PIA by using the Assembly Registration Tool
(RegAsm.exe) and the Global Assembly Cache Utility (GacUtil.exe).

To register a PIA, at the command prompt, type:

regasm assemblyname

In this command, assemblyname is the file name of the assembly to be registered.

The following example registers the wmppia.dll PIA.

regasm C:\WMSDK\WMPSDK9\redist\wmppia.dll

Regasm.exe adds a registry entry for the PIA under the same registry key as the original type library.

After you register the PIA, install it in the global assembly cache (GAC) using the Global Assembly Cache
Utility.

To install a PIA in the GAC, at the command prompt, type:

Gacutil /i assemblyname

In this command, assemblyname is the file name of the assembly to be installed.

Previous Next

Previous Next

The following example installs the Windows Media Player PIA in the GAC

Gacutil /i C:\WMSDK\WMPSDK9\redist\wmppia.dll

Note: You should search your computer for both RegAsm.exe and Gacutil.exe. Usually these can be found in
%windir%\Microsoft.NET\Framework\v1.0.xxxx where xxxx is the build number of the .NET Framework
release you are using, or in the \FrameworkSDK\Bin folder where you installed the development environment.

The folder that contains the C# sample application included with the full installation of this SDK also contains a
script file named regpiagac.vbs. This utility can make it easy to register the PIA and add it to the GAC. Simply
double-click the file and provide the correct paths when prompted to complete the process. If you installed this
SDK and Visual Studio .NET using the default installation paths, you should only need to change drive letters.
If you did not install the products using the default paths, unexpected results may occur.

See Also

About Primary Interop Assemblies

© 2000-2003 Microsoft Corporation. All rights reserved.

Re-distributing a Primary Interop Assembly with Your Application

Primary interop assemblies (PIAs) are redistributed to end users as part of a .NET Framework application.
Other than requiring that each relevant COM type library be registered on a user's computer, the deployment of
an application containing one or more PIAs is the same as for any .NET-based application.

By definition, PIAs are always signed by their publisher to ensure uniqueness. As the single, official definition
of the types they describe, you can expect popular PIAs to be installed in the global assembly cache even if you
deploy the same assembly to an application directory. The common language runtime always directs your
application to the PIA in the global assembly cache when both the global assembly and your local assembly
have the same vendor signature. In this case, your application is not protected from version changes initiated by
the vendor. The best practice is to always install the latest version from the vendor. However, when your
application requires such protection, you can generate your own interop assembly by using Type Library
Importer (Tlbimp.exe) instead of using the PIA.

See Also

About Primary Interop Assemblies

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

About .NET Framework Data Types
This section contains the information you need to translate the script-oriented Object Model Reference into
Microsoft .NET Framework base data types. The Windows Media Player script reference has almost all the
information you need to use the Windows Media Player control in a .NET Framework-based program, and in
most cases, the syntax will be similar to other scripting languages such as Microsoft JScript.

The Player reference provides the JScript data type and if necessary, the C++ conversion. For example, a
Number might be returned by a method. JScript treats all numbers the same, but other languages distinguish
between different types of numbers (integer, floating point, and so on). The reference gives the C++ conversion
for number data types because numbers can be processed differently by C++; for example, C++ uses the int
data type for integer arithmetic and float for floating point.

The .NET Framework uses a slightly different system of base data types. The following table shows the
differences in the common data types you are likely to use. For more information on .NET Framework base data
types and the conversion to other data type systems, see the .NET Framework Developer's Guide discussion of
System Namespace base data types. The table gives the .NET Framework class name and the C# data type; data
types for other languages are defined for each language in their respective language references.

If you are using Microsoft Visual Studio .NET, you can use the Microsoft IntelliSense® technology to
determine what data type is expected for a specific function. For example, when using Microsoft Visual
C# .NET you can type the following code fragment:

playercontrolname.settings.setMode(

The IntelliSense popup will tell you that the setMode method requires two parameters, a string and a bool.

See Also

Previous Next

Script data type C++ data type .NET framework class (C# data
type)

Number int Int32 (int)

Number long Int32 (int)

Number double Double (double)

Number float Single (float)

String BSTR String (string)

Boolean VARIANT_BOOL Boolean (bool)

Object Object Object (object)

Embedding the Player Control in a .NET Framework Solution
Object Model Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Using the Player Control with Microsoft Visual
Studio .NET
You can use the Windows Media Player ActiveX control in a .NET Framework application very easily by using
the following procedure:

1. Make sure that the latest version of the Player and the Player SDK is installed on your machine.
2. Install and register the PIA. For more information, see Registering Primary Interop Assemblies for

Application Development.
3. Start a new project in Visual Studio .NET.
4. From the Tools menu, select Customize Toolbox.
5. In the COM Components tab, click on the check box for Windows Media Player item to select the

Player. Click OK to close the dialog and add the Player to the Toolbox.

Once you have added the Player to the Toolbox, it will be listed in the Components tab. You can select the
Player in the toolbox and add it to a form. Visual Studio .NET will give the Player a default name such as
"axWindowsMediaPlayer1". Adding the Player to the Toolbox also adds references to two libraries which it
creates. You can see them in the Solution Explorer under references and they will have names similar to:
"AxWMPLib" and "WMPLib".

Visual Studio will automatically recognize that you are adding a reference to a type library that has a registered
PIA, so it will use the registered PIA instead of reimporting the type library.

In order to use all of the objects in the PIA, you must reference the PIA namespace as shown in the following
code snippet:

using Microsoft.MediaPlayer.Interop;

When you first add the Player control to a form, it will be visible. Unless you want to use the visible image of
the Player in your application, you can hide the default Player one of the following code snippets:

axWindowsMediaPlayer1.uiMode = "invisible";

or

axWindowsMediaPlayer1.visible = "false";

Previous Next

Previous Next

You can also set the Size property to 0,0 in the Properties window by clicking on the visible image of the
Player in the Form Design mode.

See Also

Embedding the Player Control in a .NET Framework Solution

© 2000-2003 Microsoft Corporation. All rights reserved.

Embedding the Player Control in a C# Solution
You can use the functionality of the Player in a C# application very easily. Install the Player and add it to the
Microsoft Visual Studio .NET Toolbox using the procedure discussed in Using the Player Control with
Microsoft Visual Studio .NET. The following procedure will create an application that plays video and has a
play and stop button. Before you begin, you should make sure your PIA is registered and installed in the global
assembly cache. For more information, see Registering Primary Interop Assemblies for Application
Development.

Add the Video Window

Once you have added the Player to a form, drag the window where you want the video window of the Player to
appear. With the Player control selected in the form, change the uiMode property to none to hide the UI
controls. If you are playing a video, the video will appear in the window; otherwise a visualization will appear.

Add Two Buttons and Adjust the Form

Then add two buttons to your form. Select the first one and in the Properties pane, change the Text property to
"Play". Select the second button and change its Text property to "Stop". Position the two buttons and the video
window on the form and size the form accordingly. You can name the form by selecting it and changing the
Text property to something like "My Player".

Add the Play Code

Double-click the Play button to reveal the Code window. In C#, the following code will be displayed:

private void button1_Click(object sender, System.EventArgs e)
{

}

Add this line between the two curly braces:

Previous Next

Previous Next

axWindowsMediaPlayer1.URL = "c:\\mediafile.wma";

In the preceding code example, axWindowsMediaPlayer1 is the name of the Player control and mediafile.wma
is the name of the media you want to play. Any valid file path can be used. Note that in C#, you must use
double back slashes to escape any back slashes in your URL. If you have the media from the Player SDK added
to your media library, you can use this line instead:

axWindowsMediaPlayer1.currentPlaylist = axWindowsMediaPlayer1.mediaCollection.getByName("l

Because the autoStart property is true, the Player will start playing when you set a current playlist or set the
URL property.

Add the Stop Code

Double-click the Stop button to reveal the Code Window. In C#, the following code will be displayed:

private void button2_Click(object sender, System.EventArgs e)
{

}

Add this line between the two curly braces:

axWindowsMediaPlayer1.controls.stop();

Build your Application

You are now ready to build your application. From the Build menu, choose Build Solution. If all went well,
you will have created an application. If you distribute your application, be sure to distribute
AxInterop.WMPLib.dll and wmppia.dll as well. You will also need to make sure that the Player is installed on
any machine that your application runs on.

See Also

Embedding the Player Control in a .NET Framework Solution

© 2000-2003 Microsoft Corporation. All rights reserved.

Object Model Migration Guide
Windows Media Player 7 introduced a new object model that offers a rich new set of functionality that you can
use to enhance your Web pages. Subsequent versions have extended the version 7 object model with additional
properties, methods, and events. However, the new object model differs substantially from the Windows Media

Previous Next

Previous Next

Player 6.4 object model, so you need to understand how to update your existing code if you want to support
Windows Media Player 7 and later in your projects.

For a sample that demonstrates how to detect the user's Windows Media Player version and current browser, see
the sample named "detection" that is installed with this SDK. For more information about samples, see
Samples.

This guide refers to the new object model as the Windows Media Player 9 Series object model. For details
about which functionality is available in each version of Windows Media Player, see Object Model Reference.

These object model issues are covered by the following topics:

Differences Between the Object Models
Using the Windows Media Player 9 Series Object Model
Error Handling
Playlists
Closed Captioning
DVD
Detailed Object Model Comparison

See Also

Player Control Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Differences Between the Object Models
There are two primary differences between the Windows Media Player 6.4 object model and the Windows
Media Player 9 Series object model.

CLSID The Windows Media Player 9 Series object model is a complete departure from the version 6.4
object model. The Component Object Model (COM) specification requires that all existing interfaces
must continue to function in new versions of a COM component. This means that new interfaces can be
added to a COM component, but existing interfaces must never be altered, ensuring older client code will
always work with the particular component it was designed to use. Therefore, the Windows Media Player
7 or later ActiveX control has a new class ID: 6BF52A52-394A-11D3-B153-00C04F79FAA6. If you
want to take advantage of the new functionality of the control for this version, you must change your
CLSID.
Hierarchical Object Model If you've been using the Windows Media Player 6.4 ActiveX control, you
may have noticed that all the properties, methods, and events are accessed through the same object: the
Player object. By contrast, the Windows Media Player 9 Series object model is organized as a hierarchy

Previous Next

Previous Next

of objects. The Player object is still the root object, but functions are now accessed through a variety of
child objects.

See Also

Object Model Migration Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Using the Windows Media Player 9 Series Object
Model
Most of the tasks you may have been performing using the Windows Media Player 6.4 ActiveX control object
model will require a new approach. In many cases, the names of the properties, methods, and events have
changed in the Windows Media Player 9 Series object model. For instance, to specify the file path in the version
6.4 object model, you set the Player6.FileName property:

WMP64.FileName = "http://www.microsoft.com/somefile.wmv";

Using the Windows Media Player 9 Series object model, you must set the Player.URL property:

WMP9.URL = "http://www.microsoft.com/somefile.wmv";

Alternatively, using the 9 Series object model, you can obtain a Media object from Media Library, and then
set the Player.currentMedia property:

// Get the first media object in the media collection.
var MyMediaItem = WMP9.mediaCollection.getAll().item(0)

// Make the MyMediaItem object the current media.
WMP9.currentMedia = MyMediaItem;

Much of the functionality in the Windows Media Player 9 Series object model is accessed through the object
hierarchy. As the previous example showed, you can obtain a Playlist object by using the getAll method of the
mediaCollection object, which is accessed through the root Player object. You can then obtain a particular
Media object from the Playlist object by using the item method of the Playlist object. There are five additional
methods accessible through the mediaCollection object that return a Playlist object; each method allows you to
retrieve the object based on specific criteria, like genre or album.

The hierarchical structure of the Windows Media Player 9 Series ActiveX control object model provides a more
logical approach to organizing the properties, methods, and events available for your use. All the functionality
for the Player controls is contained in the Controls object, all the functionality for the Player network

Previous Next

Previous Next

connection is contained in the Network object, and so forth. For example, to start content playing using the
version 6.4 object model, you use the Player6.Play method:

WMP64.Play();

Using the 9 Series object model, you must access the Play method using the Controls object:

WMP9.controls.play();

The depth of the object model, however, can lead to very long script statements:

WMP9.currentPlaylist.appendItem(WMP9.mediaCollection.getByName("MySong").item(0));

Statements like the preceding one can be made much simpler and more readable by working with individual
named objects. The following example replaces the preceding code statement with syntax using separate object
variables:

// Store the current playlist object.
var pl = WMP9.currentPlaylist;

// Get a playlist from the media collection that contains
// one media item named "MySong".
var temp = WMP9.mediaCollection.getByName("MySong");

// Get the individual media item from the temp playlist.
var song = temp.item(0);

// Append the media item to the current playlist.
pl.appendItem(song);

This coding style requires more lines of script, but is much easier to follow, especially with the added
comments. There is another advantage: the currentPlaylist object is easy to reuse because it is stored in the
variable pl.

Many of the properties, methods, and events in the Windows Media Player 9 Series object model set or retrieve
different values, or return values of a different type or number, compared to corresponding functionality in the
version 6.4 object model. For instance, when Player6.openState retrieves 2, that value corresponds to the
Visual Basic constant nsLoadingNSC, meaning the Player is loading a station file with a .nsc file name
extension. But when the 9 Series object model property Player.openState retrieves 2, that value corresponds to
the state PlaylistLocating, meaning Windows Media Player is attempting to locate a playlist. Additionally, the
Player6.openState property can retrieve seven different values, while the 9 Series Player.openState property
can retrieve 22 different values. Be sure to refer to the Object Model Reference section of the Windows Media
Player SDK when revising code to use a different object model version.

See Also

About the Player Object Model
Object Model Reference
Object Model Migration Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Error Handling
The Windows Media Player 6.4 ActiveX control provides default error handling by displaying error messages
in dialog boxes and on the status bar. You can also provide custom error handling by processing errors in your
script. Error handling is event driven, which means you receive a notification for each error, and must decide
how to deal with each error event when it occurs. For more information about handling errors using the version
6.4 object model, see the Error Handling section of the Version 6.4 Player Object Model Guide, which is part of
the Windows Media Player SDK.

The Windows Media Player 9 Series object model provides the Error object and the ErrorItem object to
handle errors. These two objects work together to provide you with an error handling mechanism that gives you
complete and flexible control of the error handling process. The Error object provides access to a collection of
ErrorItem objects; each ErrorItem object provides details about an individual error message.

When an error occurs, the error information is posted to an error queue. The queue is a collection of ErrorItem
objects. As each error is added to the queue, it is associated with an index number (beginning with zero) that
can be used to identify the particular ErrorItem object. The Error.errorCount property retrieves the number
of errors in the error queue. Since the index numbers are zero-based, the most recent error posted to the queue
will always have an index value equal to Error.errorCount minus one.

You can create an error event handler for Windows Media Player using script. The following JScript example
shows how to retrieve the most recent error item from the error queue and display the error code and error
description using the 9 Series object model. The Player object was created with ID = "WMP9".

<!-- Create an error event handler for Windows Media Player 9 Series errors. -->
<SCRIPT LANGUAGE = "JScript" FOR = WMP9 EVENT = error()>

// Store the number of errors in the error queue.
var max = WMP9.error.errorCount;

// Retrieve most recent ErrorItem object.
var err = WMP9.error.item(max-1)

// Store the error code number.
var errNum = err.errorCode;

// Store the error description string.
var errDesc = err.errorDescription;

// Build a message string to notify the user.
var msg = "Error number: " + errNum + "\n";
msg += "Error description: " + errDesc;

// Display the message box.
alert(msg);

</SCRIPT>

Previous Next

The Error object has two additional methods that you can use. The Error.clearErrorQueue method allows
you to remove all the errors from the error queue and reset the index number to zero. You have complete
control over this process; you can keep errors in the queue for as long as you need them to be available, and
then empty the queue when you're finished handling the errors.

The Error.webHelp method provides a way to display the most current error information to the user by using
the Internet. When called, this method transfers all relevant information about the first error in the queue (the
one with index zero) to Microsoft Windows Media Player Web Help, which displays further information about
the error in the current browser window.

See Also

Error Object
ErrorItem Object
Object Model Migration Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Playlists
The Windows Media Player 6.4 ActiveX control object model includes four methods and one property for
working with Windows Media metafile playlists:

Player6.GetCurrentEntry
Player6.SetCurrentEntry
Player6.GetMediaParameter
Player6.GetMediaParameterName
Player6.EntryCount.

Together, these provide limited functionality for navigating a playlist metafile with a .asx file name extension
and retrieving information about the entries contained in the playlist.

Windows Media Player 7 introduced Media Library. Media Library allows users to organize their digital
media content, as well as to create custom playlists that can be managed from the Player graphical user
interface. The Windows Media Player 9 Series ActiveX control object model provides support for working with
Media Library playlists, as well as playlists contained in Windows Media metafiles with an .asx file name
extension.

Note For security reasons, the user must grant access rights to Media Library before your program can
manipulate its content. Access rights can only be requested and granted through the Windows Media Player 9
Series object model. For details about access rights, see Media Library Access.

Previous Next

Previous Next

The 9 Series object model includes three objects for handling playlists. The PlaylistCollection object provides
functionality for organizing playlists; it represents the entire collection of playlists in the user's Media Library.
The PlaylistArray object provides a way to retrieve a specific playlist from the PlaylistCollection object by
using an index number; two of the PlaylistCollection object methods retrieve a PlaylistArray object. The
Playlist object provides the properties and methods necessary to manipulate media items contained in a single
playlist.

As an example, since each playlist in Media Library has a unique name, you can retrieve a playlist from
Media Library using the PlaylistCollection.getByName method:

// Retrieve a PlaylistArray object that contains
// exactly one Playlist object.
var plarray = WMP9.playlistCollection.getByName("MyPlaylist");

// Get the Playlist object from the PlaylistArray object.
// The Playlist object has index number zero.
var pl = plarray.item(0);

// Make the retrieved playlist the current playlist.
WMP9.currentPlaylist = pl;

You will most frequently want to work with the current playlist. While it is possible to use several playlist
objects, only one can be retrieved by the Player.currentPlaylist property at any given time: the one that
Windows Media Player is processing at that moment.

When Windows Media Player 9 Series plays a Windows Media metafile with a .asx file name extension, it first
creates a Playlist object. Next, it fills the object with the information from the .asx playlist, and then makes that
Playlist object the current playlist. This means that you can use the properties and methods associated with the
Playlist object to manipulate .asx playlists exactly as you would handle playlists in Media Library. For
instance, to retrieve the number of entries in an .asx playlist using the version 6.4 object model, you use the
Player6.EntryCount property:

var entrycount = WMP64.EntryCount;

Using the Windows Media Player 9 Series object model, you use the Playlist.count property:

var entrycount = WMP9.currentPlaylist.count;

Using the version 6.4 control, you can use the Player6.GetCurrentEntry method to retrieve the index of the
current entry in a .asx playlist:

var entrynum = WMP64.GetCurrentEntry();

You can achieve the same result using the 9 Series object model in script. The following JScript example
compares the current media object to each item in the playlist. When Media.isIdentical returns true, a message
box displays the index of the current media item.

function matchit(){
// Store the current playlist object in a variable.
var pl = WMP9.currentPlaylist;

// Loop through the playlist one entry at a time.
 for (var i = 0; i < pl.count; i++){

 // Test whether the current media item matches
 // the item in the playlist at the current loop index.

 if (WMP9.currentmedia.isIdentical(pl.item(i))){

 // They match, display the index.
 var message = "Current media at index: " + i;
 alert(message);

 // Exit the function, don't continue looping!
 return;
 }
 }
}

To specify the index of the current entry in a .asx playlist, you use Player6.SetCurrentEntry. Playlist entry
indexes in version 6.4 start with 1, so to make the second entry in a metafile playlist the current one, use the
following syntax:

WMP6.SetCurrentEntry(2);

Windows Media Player 9 Series playlist entry indexes are zero-based; to make the second entry in a metafile
playlist the current one using the 9 Series object model, use the following syntax:

WMP9.controls.currentItem = WMP9.currentPlaylist.item(1);

The following JScript example demonstrates a function that accepts an index number as a parameter, and then
makes the playlist entry that corresponds to the index the current media item:

function setindex(idx){
// Store the current playlist in a variable.
var pl = WMP9.currentPlaylist;

// Get the first playlist entry.
var firstmedia = pl.item(0);

// Start the Player to allow navigation within the playlist.
WMP9.controls.playItem(firstmedia);

// Test whether idx is within a valid range.
 if (idx < pl.count && idx >= 0){

 // Set the currentItem to the desired playlist item.
 WMP9.controls.currentItem = pl.item(idx);

 // Display the name of the media item.
 alert(WMP9.currentMedia.name);
 return true;
 }

// The index is out of range, stop the Player, alert the user.
WMP9.controls.stop();
alert("Index out of range");
return false;
}

Windows Media metafiles can contain custom parameter elements, which you specify by using the <PARAM>
tag. Using the version 6.4 object model, you can retrieve the name of a particular parameter with the
Player6.GetMediaParameterName method. The following JScript example retrieves the name of the first
parameter in the first entry of a .asx playlist:

var paramname = WMP6.GetMediaParameterName(1,1);

Similarly, you can retrieve the value associated with the parameter using Player6.GetMediaParameter:

var paramvalue = WMP6.GetMediaParameter(1, paramname);

The following JScript example uses the Windows Media Player 9 Series object model to retrieve the parameter
name and value from the first entry in a .asx playlist:

function getattribute(){
// Store the first playlist entry as a Media object.
var firstmedia = WMP9.currentplaylist.item(0);

// Get the name of the first parameter in the object named firstmedia.
var attname = firstmedia.getAttributeName(0);

// Get the value of the first parameter in the object named firstmedia.
var attval = firstmedia.getItemInfo(attname);

// Display the information.
alert(attname + ": " + attval);
}

You can use the PlaylistCollection.importPlaylist method to add a .asx playlist to Media Library. Once
imported, the metafile playlist becomes a Media Library playlist, so you can manipulate it using all the
properties and methods at your disposal. The user must grant full access rights to Media Library in order for
your application to be able to use the importPlaylist method.

You can use PlaylistCollection.getByName to test whether a playlist exists. This method always returns a valid
PlaylistArray object. If the playlist array retrieved contains exactly one playlist, then there exists a playlist with
that name in Media Library. Otherwise, the playlist array will contain no playlist object; this means there is no
playlist in Media Library with the name passed as an argument to the getByName method. The following
JScript example demonstrates this:

// Specify a .asx playlist file.
WMP9.URL = "http://www.microsoft.com/someplaylist.asx";

// Open the playlist and start playing the content.
WMP9.controls.play();

// Store the current playlist object.
var pl = WMP9.currentPlaylist;

// Attempt to retrieve from Media Library
// a playlist having the same name as the current playlist.
var plarray = WMP9.playlistCollection.getByName(pl.name);

// Test whether the PlaylistArray object, plarray, contains
// a Playlist object.
if (!plarray.count)

 // If plarray contains no playlist, then import
 // the current one.
 WMP9.playlistCollection.importPlaylist(pl);
}

See Also

Managing Playlists
Object Model Migration Guide

Playlist Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Closed Captioning
The Windows Media Player 6.4 ActiveX control includes an integrated closed caption display panel that, when
made visible, enables Synchronized Accessible Media Interchange (SAMI) closed captions and displays the
closed caption text. The 9 Series control enables SAMI closed caption display by using an HTML <DIV>
element. For example:

<DIV ID = "CCDiv"></DIV>

This technique provides you with complete flexibility, since you can design your Web page to display closed
captions in a customized manner; the closed caption display is no longer required to be in a fixed location
adjacent to the Windows Media Player user interface.

Once you have created an area to display closed captions, use the ClosedCaption.captioningID property to
specify the location where Windows Media Player renders the closed caption text.

Player.closedCaption.captioningID = "CCDiv";

The Windows Media Player Software Development Kit (SDK) contains a working sample of an embedded
Player that displays closed caption text. To get the SDK samples, download and install the complete Windows
Media Player SDK from the Microsoft Web Site. For more information about closed captions and SAMI, see
the Microsoft Accessibility Web site.

See Also

Adding Closed Captions to Digital Media
ClosedCaption Object
Object Model Migration Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

DVD
The Windows Media Player 6.4 ActiveX control contains a DVD object that exposes a variety of methods and
properties, and one event, for dealing specifically with DVD content. For instance, to determine the number of
DVD titles available, you use the Player6.titlesAvailable property:

var numTitles = WMP64.DVD.TitlesAvailable;

The Windows Media Player 9 Series object model implements a more integrated approach to DVD. DVD-
specific properties, methods, and events are implemented only where needed. Otherwise, existing object model
functionality works with DVD media as you might expect. For example, to determine the number of DVD titles
available using 9 Series, you retrieve a Playlist object from the Cdrom object:

var dvdTitles = WMP9.cdromCollection.item(0).playlist;

The preceding example retrieves a Playlist object with a first entry representing the DVD media in the first
drive. Additional entries represent individual DVD titles. Therefore, the number of titles available can be
calculated as follows:

var numTitles = dvdTitles.count - 1;

Here are the main differences to keep in mind when migrating from version 6.4:

DVD playback is supported only when using Windows Media Player for Windows XP or later and the
Windows XP operating system or later.
DVD-ROM drives are enumerated exactly like CD-ROM drives using the CdromCollection object.
Individual DVD-ROM drives are managed using the Cdrom object.
The DVD object extends the object model with methods and one property specifically for working with
DVD.
There are two new events, OpenPlaylistSwitch and DomainChange, specifically for working with
DVD.
DVD content is organized using Playlist objects and Media objects.
DVD languages are managed using the language functionality available from the Controls object
(Windows Media Player 9 Series or later).
Transport controls and position information for DVD work the same as for other digital media types.

For a description of a DVD Player application written in Visual Basic 6.0 using Windows Media Player 9 Series
SDK, see Using Windows Media Player with Visual Basic.

See Also

Object Model Migration Guide
Using Windows Media Player with Visual Basic

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Detailed Object Model Comparison
The following table compares the Windows Media Player 6.4 object model properties with the Windows Media
Player 9 Series object model.

Previous Next

Windows Media Player 6.4 property Windows Media Player 9 Series equivalent

Player6.AllowChangeDisplaySize The Windows Media Player 9 Series display automatically
resizes to fit the media. You can set the height and width
properties in the <OBJECT> tag or in script.

Player6.AllowScan Controls.fastForward and Controls.fastReverse are
automatically enabled for file types that support these
methods.

Player6.AnglesAvailable Not available.

Player6.AnimationAtStart Not available.

Player6.AudioStream Use Controls.currentAudioLanguageIndex.

Player6.AudioStreamsAvailable Use Controls.audioLanguageCount.

Player6.AutoRewind Use Controls.currentPosition in script to specify or
retrieve the current position. Alternatively, use markers and
the Player.markerHit event.

Player6.AutoSize Automatic sizing is the default behavior. To override
automatic sizing, set the height and width properties in the
<OBJECT> tag or in script.

Player6.AutoStart Use Settings.autoStart.

Player6.Balance Use Settings.balance.

Player6.Bandwidth Use Network.bandWidth.

Player6.BaseURL Use Settings.baseURL.

Player6.BufferingCount Use Network.bufferingCount.

Player6.BufferingProgress Use Network.bufferingProgress.

Player6.BufferingTime Use Network.bufferingTime.

Player6.ButtonsAvailable Not available.

Player6.CanPreview Not available.

Player6.CanScan Use Controls.isAvailable("FastForward") and
Controls.isAvailable("FastReverse").

Player6.CanSeek Use Controls.isAvailable to test whether a particular seek
method can be performed.

Player6.CanSeekToMarkers Use Controls.isAvailable("CurrentMarker"). Use
Media.markerCount to retrieve the count of markers in a
particular media item. Use Controls.currentMarker to
specify or retrieve the current marker number.

Player6.CaptioningID Use ClosedCaption.captioningID.

Player6.CCActive Not available. See Closed Captioning for information about
how closed captioning has changed in Windows Media
Player.

Player6.ChannelDescription Not available.

Player6.ChannelName Not available.

Player6.ChannelURL Not available.

Player6.ClickToPlay Not available. You should provide controls in your user
interface to start playback. Alternatively, the user can right-
click the video image to open a pop-up menu that contains
a Play/Pause selection if Player.enableContextMenu
equals true.

Player6.ClientID Not available.

Windows Media Player 9 Series allows the user to select
whether a unique Player ID is transmitted to content
providers.

If the user selects this option, the Player sends a unique ID
to the Windows Media server. The ID is logged in the
server's log file, located in the ..system32\logfiles folder by
default. The log field name is "c-playerid". Server logging
is not enabled by default in Windows Media Services.

If the user does not select this option, the server generates a
random session ID, which is unique for each client for a
given session.

For more information, see the Windows Media Services 9
Series documentation.

Player6.CodecCount Not available.

Player6.ColorKey Not available.

Player6.ConnectionSpeed Not available. Use Network.bitRate to determine the
current bit rate.

Player6.ContactAddress Not available.

Player6.ContactEmail Not available.

Player6.ContactPhone Not available.

Player6.CreationDate Use MediaCollection.getMediaAtom("CreationDate") to
retrieve the index of the creation date atom. Use
Media.getItemInfoByAtom to retrieve the metadata.

Player6.CurrentAngle Not available.

Player6.CurrentAudioStream Use Controls.currentAudioLanguageIndex.

Player6.CurrentButton Not available.

Player6.CurrentCCService Not available.

Player6.CurrentChapter Retrieve the current playlist. If the current playlist is not
the same one as the playlist returned by Cdrom.playlist,
then there is no current chapter. Otherwise, the current
chapter number is the index of the current media in the
current playlist.

Player6.CurrentDiscSide Not available.

Player6.CurrentDomain Use DVD.domain.

Player6.CurrentMarker Use Controls.currentMarker.

Player6.CurrentPosition Use Controls.currentPosition.

Player6.CurrentSubpictureStream Not available.

Player6.CurrentTime Use Controls.currentPositionTimeCode,
Controls.currentPositionString, or
Controls.currentPosition.

Player6.CurrentTitle Retrieve the current playlist. If the current playlist is the
same one as the playlist returned by Cdrom.playlist, then
the title number is the index of the current media in the
current playlist.

Player6.CurrentVolume Not available.

Player6.CursorType Not available. Use Internet Explorer styles instead.

Player6.DefaultFrame Use Settings.defaultFrame, or use a <PARAM> attribute
in the <OBJECT> element:

<PARAM NAME="defaultFrame" VALUE="right">

Player6.DisplayBackColor Not available.

Player6.DisplayForeColor Not available.

Player6.DisplayMode The current position can be retrieved in seconds from the
beginning as a Number using Controls.currentPosition,
as a String formatted as HH:MM:SS (hours, minutes,
seconds) using Controls.currentPositionString, or in time

code format using Controls.currentPositionTimeCode.

Player6.DisplaySize The default display automatically resizes to fit the media.
You can set the height and width properties in the
<OBJECT> tag, or in script. Use Player.fullScreen to
switch to full-screen mode.

Player6.Duration Use Media.duration.

Player6.DVD Use Player.DVD.

Player6.EnableContextMenu Use Player.enableContextMenu.

Player6.Enabled Use Player.enabled.

Player6.EnableFullScreenControls Using Windows Media Player 9 Series or later, full-screen
controls are enabled automatically unless Player.uiMode =
"none".

Player6.EnablePositionControls Not available. You can provide custom controls or use
Player.uimode to choose a default configuration.

Player6.EnableTracker Not available. You can provide a custom control or use
Player.uimode to choose a default configuration.

Player6.EntryCount Use Playlist.count

Player6.ErrorCode Use ErrorItem.errorCode.

Player6.ErrorCorrection Not available.

Player6.ErrorDescription Use ErrorItem.errorDescription.

Player6.FileName Use Player.URL or Player.currentMedia. Use
Controls.currentItem when working within a playlist.

Player6.FramesPerSecond Not available.

Player6.HasError Use Error.errorCount.

Player6.HasMultipleItems Not available.

Player6.ImageSourceHeight Use Media.imageSourceHeight.

Player6.ImageSourceWidth Use Media.imageSourceWidth.

Player6.InvokeURLs Use Settings.invokeURLs.

Player6.IsBroadcast Use Network.sourceProtocol.

Player6.IsDurationValid Not available. Media.duration contains a valid value when
used with the current media object.

Player6.Language Use Controls.currentAudioLanguage

Player6.LostPackets Use Network.lostPackets.

Player6.MarkerCount Use Media.markerCount.

Player6.Mute Use Settings.mute.

Player6.OpenState Use Player.openState.

Player6.PlayCount Use Settings.playCount.

Player6.PlayState Use Player.playState.

Player6.PreviewMode Not available. Use a script loop structure with an HTML
timer to duplicate this functionality.

Player6.Rate Use Settings.rate.

Player6.ReadyState Use Player.openState.

Player6.ReceivedPackets Use Network.receivedPackets.

Player6.ReceptionQuality Use Network.receptionQuality.

Player6.RecoveredPackets Use Network.recoveredPackets.

Player6.Root Not available.

Player6.SAMIFileName Use ClosedCaption.SAMIFileName.

Player6.SAMILang Use ClosedCaption.SAMILang.

Player6.SAMIStyle Use ClosedCaption.SAMIStyle.

Player6.SelectionEnd Use Media.duration to determine the length of a Media
object. Use a marker with Controls.currentMarker to
specify a custom end position.

Player6.SelectionStart Use Controls.currentPosition to start playback from a
particular position or use a marker with
Controls.currentMarker to specify a custom start
position.

Player6.SendErrorEvents Errors are queued. Use the Error object and the
ErrorItem object to retrieve error information.

Player6.SendKeyboardEvents Not available.

Player6.SendMouseClickEvents Not available.

Player6.SendMouseMoveEvents Not available.

Player6.SendOpenStateChangeEvents Not available.

Player6.SendPlayStateChangeEvents Not available.

Player6.SendWarningEvents Not available.

Player6.ShowAudioControls Not available. You can provide custom controls or use
Player.uimode to choose a default configuration.

Player6.ShowCaptioning Not available. You can provide a custom closed caption
display.

Player6.ShowControls Not available. You can provide custom controls or use
Player.uimode to choose a default configuration.

Player6.ShowDisplay Not available.

The following table compares the Windows Media Player version 6.4 object model methods with the Windows
Media Player 9 Series object model.

Player6.ShowGotoBar Not available. You can provide custom functionality using
the Media object

Player6.ShowPositionControls Not available. You can provide custom controls or use
Player.uimode to choose a default configuration.

Player6.ShowStatusBar Not available. You can provide custom controls or use
Player.uimode to choose a default configuration.

Player6.ShowTracker Not available. You can provide custom controls or use
Player.uimode to choose a default configuration.

Player6.SourceLink Use Media.sourceURL.

Player6.SourceProtocol Use Network.sourceProtocol.

Player6.StreamCount Not available. Use Controls.audioLanguageCount to
retrieve the number of audio language streams.

Player6.SubpictureOn Not available.

Player6.SubpictureStreamsAvailable Not available

Player6.TitlesAvailable Use the following:

Player.Cdrom.playlist.count - 1

Player6.TotalTitleTime Use currentMedia.duration or
currentMedia.durationString.

Player6.TransparentAtStart Use script to specify the height and width values to make
the player visible or invisible.

Player6.UniqueID Not available.

Player6.VideoBorder3D Not available.

Player6.VideoBorderColor Not available.

Player6.VideoBorderWidth Not available.

Player6.Volume Use Settings.Volume.

Player6.VolumesAvailable Not available.

Windows Media Player 6.4 method Windows Media Player 9 Series equivalent

Player6.AboutBox Use Player.versionInfo to retrieve the version of
Windows Media Player.

Player6.BackwardScan Use Settings.rate.

Player6.ButtonActivate Not available.

Player6.ButtonSelectAndActivate Not available.

Player6.Cancel Not available.

Player6.ChapterPlay If already playing the specified title playlist, retrieve the
desired chapter as a media object using the following
syntax:

var media = Player.currentPlaylist.item(index);

Then, specify Player.currentMedia using the media
object returned.

Player6.ChapterPlayAutoStop Not available.

Player6.ChapterSearch If already playing the specified title playlist, retrieve the
desired chapter as a media object using the following
syntax:

var media = Player.currentPlaylist.item(index);

Then, specify Player.currentMedia using the media
object returned.

Player6.FastForward Use Controls.fastForward.

Player6.FastReverse Use Controls.fastReverse.

Player6.ForwardScan Use Settings.rate.

Player6.GetAllGPRMs Not available.

Player6.GetAllSPRMs Not available.

Player6.GetAudioLanguage Use Controls.currentAudioLanguage to retrieve the
LCID of the current audio language.

Player6.GetCodecDescription Not available.

Player6.GetCodecInstalled Not available.

Player6.GetCodecURL Use ErrorItem.customUrl.

Player6.GetCurrentEntry Use script to loop through the current playlist. Use
Media.isIdentical to compare each entry in the playlist to
the Player.currentMedia object.

Player6.GetMarkerName Use Media.getMarkerName.

Player6.GetMarkerTime Use Media.getMarkerTime.

Player6.GetMediaInfoString Use Media.getItemInfo, Media.getItemInfoByAtom,
and their associated methods to retrieve metadata.

Player6.GetMediaParameter Use Playlist.item to retrieve a media item. Then use
Media.getItemInfo to retrieve the parameter string.

Player6.GetMediaParameterName Use Playlist.item to retrieve a media item. Then use
Media.getAttributeName to retrieve the parameter string.

Player6.GetMoreInfoURL Not available.

Player6.GetNumberOfChapters If a title is currently playing, use currentPlaylist.count.

Player6.GetStreamGroup Not available.

Player6.GetStreamName Not available.

Player6.GetStreamSelected Not available.

Player6.GetSubpictureLanguage Not available.

Player6.GoUp Use DVD.back.

Player6.IsSoundCardEnabled Not available.

Player6.LeftButtonSelect Not available.

Player6.LowerButtonSelect Not available.

Player6.MenuCall Use DVD.titleMenu or DVD.topMenu.

Player6.Next Use Controls.next.

Player6.NextPGSearch Use Controls.next.

Player6.Open Use Player.URL or Player.currentMedia. Files always
open asynchronously.

Player6.Pause Use Controls.pause.

Player6.Play Use Controls.play.

Player6.Previous Use Controls.previous.

Player6.PrevPGSearch Use Controls.previous.

Player6.ResumeFromMenu Use DVD.resume.

Player6.RightButtonSelect Not available.

Player6.SetCurrentEntry Retrieve a media object using currentPlaylist.item
(entryNumber). Then, specify the retrieved media object
using Controls.currentItem.

Player6.ShowDialog Not available.

Player6.StillOff Use Controls.play. Alternatively, use Controls.Next if
currently in still mode.

Player6.Stop Use Controls.stop.

Player6.StreamSelect Not available. Use Controls.currentAudioLanguage to
specify an audio language stream.

Player6.TimePlay From the root playlist, use currentPlaylist.item(index) to
retrieve a media object. Then, set the media object as the
current one using Controls.currentItem. Then, specify
Controls.currentPosition using a time value in seconds.

Player6.TimeSearch Use Controls.currentPosition.

Player6.TitlePlay If already playing the specified title playlist, retrieve the

The following table compares the Windows Media Player version 6.4 object model events with the Windows
Media Player 9 Series object model.

desired chapter as a media object using the following
syntax:

var media = Player.currentPlaylist.item(index);

Then, specify Player.currentMedia using the media
object returned.

Alternatively, use currentPlaylist.item to retrieve a media
object, and then use the media object returned to specify
Controls.currentItem.

Player6.TopPGSearch Not available.

Player6.UOPValid Not available

Player6.UpperButtonSelect Not available.

Windows Media Player 6.4 event Windows Media Player 9 Series equivalent

Player6.Buffering Use Player.Buffering.

Player6.Click Use Player.Click

Player6.DblClick Use Player.DoubleClick

Player6.Disconnect Not available.

Player6.DisplayModeChange Not available.

Player6.DVDNotify Player.DomainChange and
Player.OpenPlaylistSwitch are DVD-specific events.
Other events related to playlists, media, and CD-ROM
media may apply as well depending on the application.

Player6.EndOfStream Use Player.PlayState.

Player6.Error The event is unchanged. Errors, however, are queued.
Use the Error object with the ErrorItem object to
retrieve error information from the queue. See the
example code in the preceding section, Error handling.

Player6.KeyDown Use Player.Keydown

Player6.KeyPress Use Player.KeyPress

Player6.KeyUp Use Player.KeyUp

Player6.MarkerHit Use Player.MarkerHit.

Player6.MouseDown Use Player.MouseDown

Player6.MouseMove Use Player.MouseMove

Player6.MouseUp Use Player.MouseUp

See Also

Object Model Migration Guide
Object Model Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Object Model Reference
The Windows Media Player Object Model Reference contains detailed information about the Windows Media
Player ActiveX control object model. The information in this section is presented in a style designed for use
with script languages like Microsoft JScript.

For information about how to use this reference with the C++ programming language, see Object Model
Reference for C++.

For information about how to use this reference with the Microsoft Visual Basic programming language, see
Using Windows Media Player with Visual Basic.

For information about how to use this reference with .NET Framework programming languages, see Embedding
the Player Control in a .NET Framework Solution.

The Object Model Reference documents the following objects and their associated methods, properties, and
events.

Player6.NewStream Use Player.OpenStateChange

Player6.OpenStateChange Use Player.OpenStateChange.

Player6.PlayStateChange Use Player.PlayStateChange.

Player6.PositionChange Use Player.PositionChange.

Player6.ReadyStateChange Use Player.PlayStateChange.

Player6.ScriptCommand Use Player.ScriptCommand.

Player6.Warning Not available.

Previous Next

Previous Next

Object Description

Cdrom Methods and properties for accessing a CD or DVD in its drive.

See Also

Windows Media Player Object Model

© 2000-2003 Microsoft Corporation. All rights reserved.

CdromCollection Methods and properties for accessing a collection of CD-ROM drives or
DVD-ROM drives.

ClosedCaption Properties for including captions with a media clip.

Controls Methods and properties representing the transport controls of Windows
Media Player, such as Play, Stop, and Pause.

DVD A property, methods, and events for working with DVDs.

Error Methods and properties providing access to a collection of ErrorItem
objects.

ErrorItem Properties that provide information about errors.

External Provides functionality to Web pages hosted in Windows Media Player.

Media Methods and properties relating to multimedia clips.

MediaCollection Methods that provide access to a collection of Media objects.

MetadataPicture Properties for retrieving information on the image values of the
WM/Picture metadata attribute.

MetadataText Properties for retrieving metadata for complex textual metadata
attributes.

Network Properties relating to the network connection of Windows Media Player.

Player Methods, properties, and events that Windows Media Player can be
programmed to respond to.

PlayerApplication Methods and properties for switching between a remoted Player control
and the full mode of the Player. Can only be used with C++ programs
that embed the control in remote mode.

Playlist Methods and properties for manipulating lists of media clips.

PlaylistArray A method and a property for accessing a collection of Playlist objects by
index number.

PlaylistCollection Methods for organizing a collection of Playlist objects.

Settings Properties that allow the specification or retrieval of Windows Media
Player settings.

StringCollection A method and a property for manipulating collections of strings.

Previous Next

Cdrom Object
The Cdrom object provides a way to access a CD or DVD in its drive.

The Cdrom object supports the following properties.

The Cdrom object supports the following method.

The Cdrom object is accessed through the following method.

For purposes of illustration, player.cdromCollection.item(index) is used in the reference syntax sections.

See Also

Object Model Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Cdrom.driveSpecifier

Previous Next

Property Description

driveSpecifier Retrieves the CD-ROM or DVD-ROM drive letter.

playlist Retrieves a Playlist object representing the tracks on the CD currently in
the CD-ROM drive or the root-level title entries for DVD.

Method Description

eject Ejects the CD or DVD from the drive.

Object Method

CdromCollection item

Previous Next

Previous Next

The driveSpecifier property retrieves the CD-ROM or DVD-ROM drive letter.

Syntax

player.cdromCollection.item(index).driveSpecifier

Possible Values

This property is a read-only String.

Remarks

Typically, DVD-ROM drives can play CD media, but CD-ROM drives cannot play DVD media. This property
retrieves a drive specifier for a zero-based drive index within the range retrieved using CdromCollection.count.
The value retrieved takes the form X:, where X represents the drive letter.

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

Example Code

The following JScript example uses Cdrom.driveSpecifier to fill an HTML text area named myText with a
comma-separated list of available CD-ROM and DVD-ROM drives. The Player object was created with ID =
"Player".

// Allocate an array to store the drive specifiers.
var MYdriveSpecifiers = new Array();

// Loop through the available drives using CdromCollection.count.
for (var i = 0; i < Player.cdRomCollection.count; i++){

// For each available drive, add a corresponding item
// to the MYdriveSpecifiers array.
 MYdriveSpecifiers[i] = Player.CDRomCollection.item(i).driveSpecifier;
}

// Write the array of drive letter specifiers to the text area.
myText.value = "Drive letters found: " + MYdriveSpecifiers;

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

Platform: Windows XP or later for DVD.

See Also

Cdrom Object
CdromCollection.count
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Cdrom.eject
The eject method ejects the CD or DVD from the drive.

Syntax

player.cdromCollection.item(index).eject()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

If the drive door is open, this method closes the door.

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Example Code

The following example creates an HTML button element that uses Cdrom.eject to open the door of the drive
that has drive specifier index zero. The player object was created with ID = "Player".

<INPUT TYPE = "BUTTON"
 NAME = "EJECTBUTTON"
 VALUE = "EJECT"
 OnClick = "Player.cdromCollection.item(0).eject()"
>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Previous Next

Previous Next

Library: Use wmp.dll.

Platform: Windows XP or later for DVD.

See Also

Cdrom Object
Player.playState
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Cdrom.playlist
The playlist property retrieves a Playlist object representing the tracks on the CD currently in the CD-ROM
drive or the root-level title entries for DVD.

Syntax

player.cdromCollection.item(index).playlist

Possible Values

This property is a read-only Playlist object.

Remarks

Typically, DVDs are organized into titles. Each title contains one or more chapters. Each DVD is authored
differently, so how titles and chapters are used is up to the content author.

For DVD, this method retrieves a playlist that contains as the first item a Media object named "DVD". This
object represents the DVD media. Playing the item results in the DVD playing from the beginning if it is the
first play after inserting a new DVD, or resuming playback if the DVD is the same as the last DVD viewed.
Setting this item as the current one during playback results in the DVD playing from the beginning.

Additional items (Media objects) in the playlist are DVD titles that are represented by nested playlists. When
you specify Controls.currentItem to equal one of these nested playlist items, Windows Media Player
automatically sets the nested playlist as Player.currentPlaylist after chapter playback begins. You can then use
the currentPlaylist object properties, methods, and events to work with DVD chapters, which are also playlist
items.

Previous Next

Previous Next

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

Example Code

The following example uses Cdrom.playlist to fill an HTML text element, named myText, with the titles of the
audio CD currently in the first CD-ROM drive. Use CdromCollection.count to determine the number of
available CD-ROM drives. The player object was created with ID = "Player".

// Store the CD playlist object.
var pl = Player.cdromCollection.Item(0).Playlist;

// Iterate through the CD track list.
for(var i = 0; i < pl.count; i++){

 // Print each CD track name.
 myText.value += pl.Item(i).name + "\n";
}

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

Platform: Windows XP or later for DVD.

See Also

Cdrom Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

CdromCollection Object
The CdromCollection object provides a way to organize and access a collection of CD-ROM drives or DVD-
ROM drives.

The CdromCollection object supports the following property.

Previous Next

Previous Next

The CdromCollection object supports the following methods.

The CdromCollection object is accessed through the following property.

See Also

Object Model Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

CdromCollection.count
The count property retrieves the number of available CD-ROM drives and DVD-ROM drives on the system.

Syntax

player.cdromCollection.count

Possible Values

This property is a read-only Number (long).

Remarks

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

Property Description

count Retrieves the number of available CD-ROM drives and DVD-ROM
drives on the system.

Method Description

getByDriveSpecifier Retrieves the Cdrom object associated with a particular drive letter.

item Retrieves the Cdrom object at the given index.

Object Property

Player cdromCollection

Previous Next

Previous Next

Example Code

The following JScript example uses CdromCollection.count to display the number of CD-ROM drives and
DVD-ROM drives available on the user's computer. The player object was created with ID = "Player".

// Store the count of drives found on the computer.
var numCDROMS = Player.cdromCollection.count;

// Build the string to display to the user.
var displayString = numCDROMS + " drive(s) found.";

// Show a message box with the count information.
alert(displayString);

Remarks

DVD-ROM drives are counted exactly like CD-ROM drives. However, the Windows Media Player control only
supports DVD functionality for Windows XP or later operating systems. Typically, DVD-ROM drives can play
CD media, but CD-ROM drives cannot play DVD media.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

CdromCollection Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

CdromCollection.getByDriveSpecifier
The getByDriveSpecifier method retrieves the Cdrom object associated with a particular drive letter.

Syntax

player.cdromCollection.getByDriveSpecifier(driveSpecifier)

Previous Next

Previous Next

Parameters

 driveSpecifier

String containing the drive letter followed by a colon (":") character.

Return Values

This method returns a Cdrom object.

Remarks

Drive specifiers must be given in the form X:, where X represents the drive letter.

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Example Code

The following JScript example uses CdromCollection.getByDriveSpecifier to retrieve the Cdrom object that
corresponds to a drive letter provided by the user. An HTML text element was created, with NAME =
"MyText", for user input. The player object was created with ID = "Player".

// Store the drive letter provided by the user.
var DriveLetter = MyText.value;

// Append a colon to the drive letter to create a valid drive specifier.
DriveLetter += ":";

// Get the Cdrom object using the drive specifier.
var Drive = Player.cdRomCollection.getByDriveSpecifier(DriveLetter);

// Use the Cdrom object to open the drive door.
Drive.eject();

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Cdrom Object
Cdrom.eject
CdromCollection Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

CdromCollection.item
The item method retrieves the Cdrom object at the given index.

Syntax

player.cdromCollection.item(index)

Parameters

 index

Number (long) containing the index.

Return Values

This method returns a Cdrom object.

Remarks

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Example Code

The following JScript example uses CdromCollection.item to print the playlist name from each CD-ROM
available on the computer. If the drive actually contains DVD content, Windows XP or later is required. An
HTML TextArea element was created with ID = "playlists". The player object was created with ID = "Player".

// Create an array to store the CD playlists.
var cdPlaylists = new Array();

// Loop through the available CD-ROM drives.
for (var i = 0; i < Player.cdromCollection.count; i++){

 // Fill the cdPlaylists array with playlist objects.
 cdPlaylists[i] = Player.cdromCollection.item(i).Playlist;

 // Print each drive specifier.
 playlists.value+=Player.cdromCollection.item(i).driveSpecifier + " ";

 // Print the name of each CD playlist to the text area.
 playlists.value += cdPlaylists[i].name + "\n";
}

Previous Next

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Cdrom.driveSpecifier
CdromCollection Object
CdromCollection.count
Playlist.name
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

ClosedCaption Object
The ClosedCaption object provides a way to include captions with a media clip. The captioning text is in a
Synchronized Accessible Media Interchange (SAMI) file.

The ClosedCaption object supports the following properties.

The ClosedCaption object supports the following methods.

Previous Next

Previous Next

Property Description

captioningID Specifies or retrieves the name of the frame or control displaying the
captioning.

SAMIFileName Specifies or retrieves the name of the file containing the information
needed for closed captioning.

SAMILang Specifies or retrieves the language displayed for closed captioning.

SAMILangCount Retrieves the number of languages supported by the current SAMI file.

SAMIStyle Specifies or retrieves the closed captioning style.

SAMIStyleCount Retrieves the number of styles supported by the current SAMI file.

The ClosedCaption object is accessed through the following property.

See Also

Adding Closed Captions to Digital Media
Object Model Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

ClosedCaption.captioningID
The captioningID property specifies or retrieves the name of the element displaying the captioning.

Syntax

player.closedCaption.captioningID

Possible Values

This property is a read/write String.

Remarks

The element name specified can be any HTML element in the Web page as long as it supports the innerHTML
attribute. If the Web page contains multiple frames, the element name can only refer to an element in the same
frame as the Player control.

Example Code

Method Description

getSAMILangID Retrieves the locale identifier (LCID) of a language supported by the
current SAMI file.

getSAMILangName Retrieves the name of a language supported by the current SAMI file.

getSAMIStyleName Retrieves the name of a style supported by the current SAMI file.

Object Property

Player closedCaption

Previous Next

Previous Next

The following Microsoft JScript example uses ClosedCaption.captioningID to choose the area of a Web page
used to display captions. Two HTML DIV elements were created, with ID = CC1 and ID = CC2, respectively.
The player object was created with ID = "Player".

<!-- Create two HTML BUTTON elements to allow the user to choose a display region. -->
<INPUT TYPE = "BUTTON" NAME = "SET1" VALUE = "Move Caption to CC1"
 OnClick = "
 /* Clear the caption text from the other DIV */
 CC2.innerHTML = 'This is the CC2 DIV';

 /* Show the captions in the DIV named CC1. */
 Player.ClosedCaption.captioningID = 'CC1';
 ">

<INPUT TYPE = "BUTTON" NAME = "SET2" VALUE = "Move Caption to CC2"
 OnClick = "
 /* Clear the caption text from the other DIV */
 CC1.innerHTML = 'This is the CC1 DIV';

 /* Show the captions in the DIV named CC2. */
 Player.ClosedCaption.captioningID = 'CC2';
 ">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Adding Closed Captions to Digital Media
ClosedCaption Object

© 2000-2003 Microsoft Corporation. All rights reserved.

ClosedCaption.getSAMILangID
The getSAMILangID method retrieves the locale identifier (LCID) of a language supported by the current
SAMI file.

Syntax

Previous Next

Previous Next

player.closedCaption.getSAMILangID(index)

Parameters

 index

Number (long) specifying the index of the LCID to retrieve.

Return Values

This method returns a Number (long) containing the LCID of the language with the specified index.

Remarks

The languages in a SAMI file are indexed in the order shown in the file, starting with zero.

This method cannot be used until a digital media file is open (Player.openState is equal to 13).

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Adding Closed Captions to Digital Media
ClosedCaption Object

© 2000-2003 Microsoft Corporation. All rights reserved.

ClosedCaption.getSAMILangName
The getSAMILangName method retrieves the name of a language supported by the current SAMI file.

Syntax

player.closedCaption.getSAMILangName(index)

Previous Next

Previous Next

Parameters

 index

Number (long) specifying the index of the language name to retrieve.

Return Values

This method returns a String containing the name of the language as specified in the SAMI file.

Remarks

The languages in a SAMI file are indexed in the order shown in the file, starting with zero.

This method cannot be used until a digital media file is open (Player.openState is equal to 13).

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Adding Closed Captions to Digital Media
ClosedCaption Object
ClosedCaption.SAMILang

© 2000-2003 Microsoft Corporation. All rights reserved.

ClosedCaption.getSAMIStyleName
The getSAMIStyleName method retrieves the name of a style supported by the current SAMI file.

Syntax

player.closedCaption.getSAMIStyleName(index)

Parameters

Previous Next

Previous Next

 index

Number (long) specifying the index of the style name to retrieve.

Return Values

This method returns a String containing the name of the style as specified in the SAMI file.

Remarks

The styles in a SAMI file are indexed in the order shown in the file, starting with zero.

This method cannot be used until a digital media file is open (Player.openState is equal to 13).

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Adding Closed Captions to Digital Media
ClosedCaption Object
ClosedCaption.SAMIStyle

© 2000-2003 Microsoft Corporation. All rights reserved.

ClosedCaption.SAMIFileName
The SAMIFileName property specifies or retrieves the name of the file containing the information needed for
closed captioning.

Syntax

player.closedCaption.SAMIFileName

Possible Values

Previous Next

Previous Next

This property is a read/write String.

Remarks

The Synchronized Accessible Media Interchange (SAMI) file must use an .smi or .sami file name extension.

If you don't specify a value for SAMIFileName, this property retrieves a string containing the file name or
URL associated with the current media item. This association can occur when a SAMI file is specified using the
sami URL parameter, or automatically when the SAMI file has the same name as the digital media file name
(except for the file name extension). If there is no SAMI file associated with the current media, this property
retrieves an empty string ("").

Once you specify a value for SAMIFileName, that value persists until you specify a new value (or until a new
media item is opened using the sami URL parameter). Therefore, you must specify a new value for this
property before you play each new media item. That way, the new value for SAMIFileName will take effect
when the next media item is opened (or when Player.close is called). Specifying a new value for
SAMIFileName has no effect for the current media.

To cause Windows Media Player to return to using the SAMI file associated with a particular media item,
specify a value for SAMIFileName equal to an empty string ("") before you play the next media item.

Example Code

The following three JScript examples use ClosedCaption.SAMIFileName to specify the name of a closed
caption text file. The player object was created with ID = "Player".

// Display the closed captions from a Web site.
Player.closedCaption.SAMIFileName="http://www.proseware.com/ccsample.smi";

// Display the closed captions from a local network.
// You must add an escape sequence of a backslash for every original backslash.
Player.closedCaption.SAMIFileName="\\\\yourservername\\Public\\ccsample.smi";

// Display the closed captions from a file on a local drive.
// Be sure to add the appropriate escape sequences.
Player.closedCaption.SAMIFileName="C:\\WMSDK\\WMPSDK9\\samples\\media\\ccsample.smi";

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Adding Closed Captions to Digital Media
ClosedCaption Object
Player.close

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

ClosedCaption.SAMILang
The SAMILang property specifies or retrieves the language displayed for closed captioning.

Syntax

player.closedCaption.SAMILang

Possible Values

This property is a read/write String.

Remarks

A SAMI file can contain text for one or many languages. The languages available for closed captioning are
defined between the <STYLE> and </STYLE> tags in the SAMI file. A language identifier is specified with a
unique alphanumeric string that is preceded by a period (.). The name specified for a language can be any string.
For example, the following could be used to define US English:

.ENUSCC {Name:'English Captions' lang: en-US; SAMIType:CC;}

If no SAMI language is specified, the first language defined in the SAMI file is used by default.

The value you pass using ClosedCaption.SAMILang must match the Name attribute in the language specifier.

Example Code

The following JScript example uses ClosedCaption.SAMILang in an HTML SELECT element to specify the
closed caption language. The player object was created with ID = "Player".

<!-- Create the SELECT element. -->
<SELECT ID = CCLANG NAME = "CCLANG" LANGUAGE = "JScript"

 /* Set the closed caption language when the SELECT element changes. */
 onChange = "Player.closedCaption.SAMILang = CCLANG.value;
 ">

 /* Fill in the SELECT element options. */
 <OPTION VALUE = "'Spanish Captions'">Spanish
 <OPTION VALUE = "'Japanese Captions'">Japanese
 <OPTION VALUE = "'English Captions'">English
 <OPTION VALUE = "'French Captions'">French
 <OPTION VALUE = "'German Captions'" SELECTED>German
</SELECT>

Previous Next

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Adding Closed Captions to Digital Media
ClosedCaption Object

© 2000-2003 Microsoft Corporation. All rights reserved.

ClosedCaption.SAMILangCount
The SAMILangCount property retrieves the number of languages supported by the current SAMI file.

Syntax

player.closedCaption.SAMILangCount

Possible Values

This property is a read-only Number (long).

Remarks

This method cannot be used until a digital media file is open (Player.openState is equal to 13).

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Previous Next

Previous Next

Adding Closed Captions to Digital Media
ClosedCaption Object
ClosedCaption.getSAMILangName
ClosedCaption.SAMILang

© 2000-2003 Microsoft Corporation. All rights reserved.

ClosedCaption.SAMIStyle
The SAMIStyle property specifies or retrieves the closed captioning style.

Syntax

player.closedCaption.SAMIStyle

Possible Values

This property is a read/write String.

Remarks

A SAMI file can contain several format style definitions. SAMI styles are defined between the <STYLE> and
</STYLE> tags in the SAMI file. A style is defined with a text string preceded by a # character. For example:

#Emphasis1 {Name: Big Bold Italic; font-size: 14pt; text-align: center;
 color: blue; font-family: sans-serif; font-weight: bold;
 font-style: italic;}

This specifies a style that produces a particular font.

If no SAMI style is specified, the first style defined in the SAMI file is used by default.

Example Code

The following JScript example creates an HTML SELECT element that uses closedCaption.SAMIStyle to
change the appearance of the closed caption text. The player object was created with ID = "Player".

<!-- Create the SELECT element. -->
<SELECT ID = CCMode NAME = "CCMode" LANGUAGE = "JScript"

 /* Change the text style when the SELECT element changes. */
 onChange = "Player.closedCaption.SAMIStyle = CCMode.value;
 ">

Previous Next

Previous Next

 /* Fill the SELECT list with options, set the default to Strong. */
 <OPTION VALUE = "Normal">Normal
 <OPTION VALUE = "Small">Small
 <OPTION VALUE = "Big Bold Italic" SELECTED>Strong
</SELECT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Adding Closed Captions to Digital Media
ClosedCaption Object

© 2000-2003 Microsoft Corporation. All rights reserved.

ClosedCaption.SAMIStyleCount
The SAMIStyleCount property retrieves the number of styles supported by the current SAMI file.

Syntax

player.closedCaption.SAMIStyleCount

Possible Values

This property is a read-only Number (long).

Remarks

This method cannot be used until a digital media file is open (Player.openState is equal to 13).

Requirements

Version: Windows Media Player 9 Series or later.

Previous Next

Previous Next

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Adding Closed Captions to Digital Media
ClosedCaption Object
ClosedCaption.getSAMIStyleName
ClosedCaption.SAMIStyle

© 2000-2003 Microsoft Corporation. All rights reserved.

Controls Object
The Controls object provides a way to manipulate the playback of media using the following properties and
methods.

The Controls object supports the following properties.

Previous Next

Previous Next

Property Description

audioLanguageCount Retrieves the number of supported audio languages.

currentAudioLanguage Specifies or retrieves the locale identifier (LCID) of the audio
language for playback

currentAudioLanguageIndex Specifies or retrieves the index that corresponds to the audio
language for playback.

currentItem Specifies or retrieves the current media item.

currentMarker Specifies or retrieves the current marker number.

currentPosition Specifies or retrieves the current position in the media item in
seconds from the beginning.

currentPositionString Retrieves the current position in the media item as a String.

currentPositionTimecode Specifies or retrieves the current position in the current media item
using a time code format. This property currently supports SMPTE
time code.

isAvailable Retrieves whether a specified type of information is available or a

The Controls object supports the following methods.

The Controls object is accessed through the following property.

See Also

Object Model Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

given action can be performed.

Method Description

fastForward Starts fast play of the media item in the forward direction.

fastReverse Starts fast play of the media item in the reverse direction.

getAudioLanguageDescription Retrieves the description for the audio language corresponding to
the specified index.

getAudioLanguageID Retrieves the LCID for a specified audio language index.

getLanguageName Retrieves the name of the audio language with the specified LCID.

next Sets the current item to the next item in the playlist.

pause Pauses the playing of the media item.

play Causes the media item to start playing.

playItem Causes the current media item to start playing, or resumes play of a
paused item.

previous Sets the current item to the previous item in the playlist.

step Causes the current video media item to freeze playback on the next
frame.

stop Stops the playing of the media item.

Object Property

Player controls

Previous Next

Previous Next

Controls.audioLanguageCount
The audioLanguageCount property retrieves the count of supported audio languages.

Syntax

player.controls.audioLanguageCount

Possible Values

This property is a read-only Number (long).

Remarks

For Windows Media-based content, properties and methods related to language selection only support a single
output.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls Object
Controls.currentAudioLanguage
Controls.currentAudioLanguageIndex
Controls.getAudioLanguageDescription
Controls.getAudioLanguageID
Controls.getLanguageName

© 2000-2003 Microsoft Corporation. All rights reserved.

Controls.currentAudioLanguage
The currentAudioLanguage property specifies or retrieves the locale identifier (LCID) of the audio language
for playback.

Previous Next

Previous Next

Syntax

player.controls.currentAudioLanguage

Possible Values

This property is a read/write Number (long).

Remarks

An LCID uniquely identifies a particular language dialect, called a locale.

For Windows Media-based content, properties and methods related to language selection only support a single
output.

When working with DVD content, specifying an LCID will cause the first available audio track having the
specified language ID to be selected.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls Object
Controls.audioLanguageCount
Controls.currentAudioLanguageIndex
Controls.getAudioLanguageDescription
Controls.getAudioLanguageID
Controls.getLanguageName

© 2000-2003 Microsoft Corporation. All rights reserved.

Controls.currentAudioLanguageIndex
The currentAudioLanguageIndex property specifies or retrieves the index that corresponds to the audio
language for playback.

Previous Next

Previous Next

Syntax

player.controls.currentAudioLanguageIndex

Possible Values

This property is a read/write Number (long).

Remarks

For Windows Media-based content, properties and methods related to language selection only support a single
output.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls Object
Controls.audioLanguageCount
Controls.currentAudioLanguage
Controls.getAudioLanguageDescription
Controls.getAudioLanguageID
Controls.getLanguageName

© 2000-2003 Microsoft Corporation. All rights reserved.

Controls.currentItem
The currentItem property specifies or retrieves the current media item.

Syntax

player.controls.currentItem

Possible Values

Previous Next

Previous Next

This property is a read/write Media object.

Remarks

This method works only with items in Player.currentPlaylist. Calling currentItem with a reference to a saved
media item is not supported.

Example Code

The following JScript example uses currentItem to set the player control current media item to the selected
value in an HTML SELECT element. The current playlist was first specified by using
PlaylistCollection.getByName. The player object was created with ID = "Player".

<SELECT ID = playItem NAME = "playItem" LANGUAGE = "JScript"

 /* Specify the current item when the selected list value changes. */
 onChange = "Player.controls.currentItem = Player.currentPlaylist.item(playItem.val

 /* Fill the SELECT element list with three items that match
 the songs in the playlist. */
 <OPTION VALUE = 0 >Laure
 <OPTION VALUE = 1 >Jeanne
 <OPTION VALUE = 2 >House
</SELECT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls Object
Media Object
PlaylistCollection.getByName

© 2000-2003 Microsoft Corporation. All rights reserved.

Controls.currentMarker

Previous Next

Previous Next

The currentMarker property specifies or retrieves the current marker number.

Syntax

player.controls.currentMarker

Possible Values

This property is a read/write Number (long) with a default value of zero.

Remarks

Setting currentMarker causes playback to start from the specified marker. Before attempting to set
currentMarker, determine whether a file has markers and how many it has by using markerCount. If a file
has no markers, setting currentMarker to anything but zero results in an error. Setting currentMarker to a
number higher than markerCount also results in an error.

The currentMarker property always returns the current or last marker, which means the actual file position can
be either at the current marker or before the next marker. Markers are numbered beginning at 1, so if a file has
markers, you can set currentMarker to zero to change the file position to zero.

Until the current media item is set (using Player.URL or Player.currentMedia), currentMarker returns zero.

Example Code

The following JScript example uses currentMarker to start video playback from the marker that corresponds
to the selectedIndex property of an HTML SELECT element. The player object was created with ID =
"Player".

<SELECT ID = "markers" NAME = "markers" LANGUAGE = "JScript"

 /* Seek to the marker number that corresponds to the SELECT element
 selectedIndex value when the list selection changes. */
 onChange = "Player.controls.currentMarker = markers.selectedIndex + 1;
 ">

 /* Fill the SELECT element with the marker identifiers. */
 <OPTION SELECTED>Sunrise
 <OPTION>Car chase
 <OPTION>Happy ending
</SELECT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls Object
Media.markerCount

Player.currentMedia
Player.URL

© 2000-2003 Microsoft Corporation. All rights reserved.

Controls.currentPosition
The currentPosition property specifies or retrieves the current position in the media item in seconds from the
beginning.

Syntax

player.controls.currentPosition

Possible Values

This property is a read/write Number (double).

Example Code

The following example uses currentPosition to seek to a position provided by the user. An HTML BUTTON
element is created to execute the JScript code. An HTML TEXT input element, named setPosition, was created
to accept a value, in seconds, from the user. The player object was created with ID = "Player".

<INPUT TYPE = "BUTTON" ID = "Set" NAME = "Set" VALUE = "Set Position"

 /* Check to be sure the TEXT element contains a valid value. */
 if (!isNaN(setPosition.value) && (setPosition.value != ''))

 /* Set the current position when the user clicks the button. */
 onClick = "Player.controls.currentPosition = setPosition.value;
 ">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Previous Next

Previous Next

Controls Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Controls.currentPositionString
The currentPositionString property retrieves the current position in the media item as a String formatted as
HH:MM:SS (hours, minutes, and seconds).

Syntax

player.controls.currentPositionString

Possible Values

This property is a read-only String.

Remarks

If the media item is less than an hour long, the HH: portion is not included.

Example Code

The following JScript example starts an HTML timer that displays the current position of the media file at one-
second intervals. An HTML TEXT element named MyText was created to display the current position. The
player object was created with ID = "Player".

var timer = window.setInterval("MyText.value = Player.controls.currentPositionString",1000

Note You should include code to stop the timer when the media is stopped or paused.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Previous Next

Previous Next

Controls Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Controls.currentPositionTimecode
The currentPositionTimecode property specifies or retrieves the current position in the current media item
using a time code format. This property currently supports SMPTE time code.

Syntax

player.controls.currentPositionTimecode

Possible Values

This property is a read/write String.

Remarks

SMPTE time code provides a standard way of identifying an individual video frame, which is useful for
synchronizing playback. If a digital media file supports SMPTE time code, Windows Media Player can retrieve
the current time code position information or seek to a video frame identified by a particular time code String.

SMPTE time code identifies a particular frame by the number of hours, minutes, seconds, and frames that
separate it from a particular reference frame—the frame designated as time zero. Usually the time zero frame is
the start of the file and a particular SMPTE time code value represents the elapsed time since the start of the
file.

The time code String is in the format [range]hh:mm:ss.ff where [range] represents the range, hh represents
hours, mm represents minutes, ss represents seconds, and ff represents frames. When specifying a value using
currentPositionTimecode, you must include all eight digits using zeroes as placeholders.

The [range] specifier corresponds to the wRange member of the Windows Media Format
WMT_TIMECODE_EXTENSION_DATA structure. For more information about time code ranges, see the
Windows Media Format SDK.

Specifying and retrieving currentPositionTimecode is only supported for files that contain SMPTE time code
information.

Example Code

The following code example specifies currentPositionTimecode as 1 hour, zero minutes, 30 seconds, and 5

Previous Next

Previous Next

frames. The Player object was created with ID = "Player".

// Seek to a frame using SMPTE time code.
Player.controls.currentPositionTimecode = "[00000]01:00:30.05";

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Controls.fastForward
The fastForward method starts fast play of the media item in the forward direction.

Syntax

player.controls.fastForward()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

The fastForward method plays the clip back at five times the normal speed. Invoking fastForward changes
the Settings.rate property to 5.0. If rate is subsequently changed, or if play or stop is called, Windows Media
Player will cease fast forwarding.

The fastForward method does not work for live broadcasts and certain media types. To determine whether you

Previous Next

Previous Next

can fast forward in a clip, call isAvailable("FastForward").

Example Code

The following example creates an HTML BUTTON element that uses fastForward to start fast play of the
media item. The player object was created with ID = "Player".

<INPUT TYPE = "BUTTON" ID = "FF" NAME = "FF" VALUE = ">>"

 /* Execute JScript when the BUTTON is clicked.
 Check first to make sure fast-forward mode is available
 for this particular media item */
 onClick = "if (Player.controls.isAvailable('FastForward'))
 Player.controls.fastForward();
 ">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls Object
Controls.isAvailable
Controls.play
Controls.stop
Settings.rate

© 2000-2003 Microsoft Corporation. All rights reserved.

Controls.fastReverse
The fastReverse method starts fast scanning of the media item in the reverse direction.

Syntax

player.controls.fastReverse()

Parameters

Previous Next

Previous Next

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

The fastReverse method scans the clip in reverse at five times the normal speed, displaying only the key frames
if it is a video file. Invoking fastReverse changes the Settings.rate property to –5.0. If rate is subsequently
changed, or if play or stop is called, Windows Media Player will cease fast reverse.

If the item is part of a playlist, fastReverse stops at the beginning of the current track. For instance, if track 3 is
in fastReverse, when the beginning of track 3 is reached, Windows Media Player will not go to track 2. The
Settings.playCount property is ignored for fastReverse.

If you call fastForward while fastReverse is in effect, fastReverse will be stopped and fastForward will
begin.

This method does not work for live broadcasts and certain media types. To determine whether you can use fast
reverse in a clip, call isAvailable("FastReverse").

Example Code

The following example creates an HTML BUTTON element that uses fastReverse to start fast-reverse play of
the media item. The player object was created with ID = "Player".

<INPUT TYPE = "BUTTON" ID = "REW" NAME = "REW" VALUE = "<<"

 /* Execute JScript when the BUTTON is clicked.
 Check first to make sure fast-reverse mode is available
 for this particular media item */
 onClick = "if (Player.controls.isAvailable('FastReverse'))
 Player.controls.fastReverse();
 ">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls Object
Controls.fastForward
Controls.isAvailable
Controls.play
Controls.stop
Settings.rate

© 2000-2003 Microsoft Corporation. All rights reserved.

Controls.getAudioLanguageDescription
The getAudioLanguageDescription method retrieves the description for the audio language corresponding to
the specified index.

Syntax

player.controls.getAudioLanguageDescription(index)

Parameters

 index

Number (long) specifying the audio language index.

Return Values

This method returns a String value.

Remarks

For Windows Media-based content, properties and methods related to language selection only support a single
output.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls Object
Controls.audioLanguageCount
Controls.currentAudioLanguage
Controls.currentAudioLanguageIndex
Controls.getAudioLanguageID

Previous Next

Previous Next

Controls.getLanguageName

© 2000-2003 Microsoft Corporation. All rights reserved.

Controls.getAudioLanguageID
The getAudioLanguageID method retrieves the locale identifier (LCID) for a specified audio language index.

Syntax

player.controls.getAudioLanguageID(index)

Parameters

 index

Number (long) specifying the audio language index.

Return Values

This method returns a Number (long).

Remarks

An LCID uniquely identifies a particular language dialect, called a locale.

For Windows Media-based content, properties and methods related to language selection only support a single
output.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls Object
Controls.audioLanguageCount

Previous Next

Previous Next

Controls.currentAudioLanguage
Controls.currentAudioLanguageIndex
Controls.getAudioLanguageDescription
Controls.getLanguageName

© 2000-2003 Microsoft Corporation. All rights reserved.

Controls.getLanguageName
The getLanguageName method retrieves the name of the audio language with the specified locale identifier
(LCID).

Syntax

player.controls.getLanguageName(LCID)

Parameters

 LCID

Number (long) specifying the LCID.

Return Values

This method returns a String.

Remarks

An LCID uniquely identifies a particular language dialect, called a locale.

For Windows Media-based content, properties and methods related to language selection only support a single
output.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

Previous Next

Previous Next

See Also

Controls Object
Controls.audioLanguageCount
Controls.currentAudioLanguage
Controls.currentAudioLanguageIndex
Controls.getAudioLanguageDescription
Controls.getAudioLanguageID

© 2000-2003 Microsoft Corporation. All rights reserved.

Controls.isAvailable
The isAvailable property indicates whether a specified type of information is available or a specified action can
be performed.

Syntax

player.controls.isAvailable(name)

Parameters

 name

String containing one of the following values.

Previous Next

Previous Next

String Description

currentItem Determines whether the user can set the currentItem property.

currentMarker Determines whether the user can seek to a specific marker.

currentPosition Determines whether the user can seek to a specific position in the file.
Some files do not support seeking.

fastForward Determines whether the file supports fast forwarding and whether that
functionality can be invoked. Many file types (or live streams) do not
support FastForward.

fastReverse Determines whether the file supports FastReverse and whether that
functionality can be invoked. Many file types (or live streams) do not
support FastReverse.

Return Values

This method returns a Boolean value.

Example Code

The following example creates an HTML BUTTON element that seeks to the starting position of the current
media item. The JScript code uses isAvailable to verify that the file supports the seek operation. The player
object was created with ID = "Player".

<INPUT TYPE = "BUTTON" ID = "START" NAME = "START" VALUE = "Seek To Zero"

 /* If supported, seek the media file to position zero. */
 onClick = "if (Player.controls.isAvailable('CurrentPosition'))
 Player.controls.currentPosition = 0;
 ">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls Object

© 2000-2003 Microsoft Corporation. All rights reserved.

next Determines whether the user can seek to the next entry in a playlist.

pause Determines whether the pause method is available.

play Determines whether the play method is available.

previous Determines whether the user can seek to the previous entry in a playlist.

step Determines whether the step method is available during playback.

stop Determines whether the stop method is available.

Previous Next

Previous Next

Controls.next
The next method sets the current item to the next item in the playlist.

Syntax

player.controls.next()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

If the playlist is on the last entry when next is invoked, the first entry in the playlist will become the current
one.

For server-side playlists, this method skips to the next item in the server-side playlist, not the client playlist.

When playing a DVD, this method skips to the next logical chapter in the playback sequence, which may not be
the next chapter in the playlist. When playing DVD stills, this method skips to the next still.

Example Code

The following example creates an HTML BUTTON element that uses next to move to the next item in the
current playlist. The player object was created with ID = "Player".

<INPUT TYPE = "BUTTON" ID = "NEXT" NAME = "NEXT" VALUE = ">>|"

 onClick = "
 /* Check first to be sure the operation is valid. */
 if (Player.controls.isAvailable('Next'))

 /* Move to the next item in the playlist. */
 Player.controls.next();
 ">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls Object
Controls.previous

Controls.stop

© 2000-2003 Microsoft Corporation. All rights reserved.

Controls.pause
The pause method pauses the playing of the media item.

Syntax

player.controls.pause()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

When a file is paused, Windows Media Player does not give up any system resources, such as the audio device.

Certain media types cannot be paused, such as live streams. To determine whether a particular media type can
be paused, use Controls.isAvailable('Pause').

Example Code

The following example creates an HTML BUTTON element that uses pause to pause playback. The player
object was created with ID = "Player".

<INPUT TYPE = "BUTTON" ID = "PAUSE" NAME = "PAUSE" VALUE = "||"

 onClick = "
 /* Check first to be sure the operation is valid. */
 if (Player.controls.isAvailable('Pause'))

 /* Pause the player. */
 Player.controls.pause();
 ">

Requirements

Previous Next

Previous Next

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls Object
Controls.isAvailable

© 2000-2003 Microsoft Corporation. All rights reserved.

Controls.play
The play method causes the current media item to start playing, or resumes play of a paused item.

Syntax

player.controls.play()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

If this method is called while fast-forwarding or rewinding, the value of Settings.rate is set to 1.0.

Example Code

The following example creates an HTML BUTTON element that uses play to play the current media item. The
player object was created with ID = "Player".

<INPUT TYPE = "BUTTON" ID = "PLAY" NAME = "PLAY" VALUE = "Play"

 onClick = "
 /* Check first to be sure the operation is valid. */

Previous Next

Previous Next

 if (Player.controls.isAvailable('Play'))

 /* Start playback. */
 Player.controls.play();
 ">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Controls.playItem
The playItem method plays the specified media item.

Syntax

player.controls.playItem(theMediaItem)

Parameters

 theMediaItem

Media object to be played.

Return Values

This method does not return a value.

Remarks

The media item will be loaded and played automatically, regardless of the value of the Settings.autoStart
property. To load an item without playing it automatically, set Settings.autoStart to false and assign a value to

Previous Next

Previous Next

Player.URL, after which play can be called to start playing the item.

Note playItem works only with items in currentPlaylist. Calling playItem with a reference to a saved
media item is not supported.

Example Code

The following JScript example uses playItem to play a media item from the current playlist. The item to play is
chosen based upon its position in the playlist. The player object was created with ID = "Player".

// Declare a variable to hold the position of the media item
// in the current playlist. An arbitrary value is supplied here.
var index = 3

// Retrieve the media item at the fourth position in the current playlist.
var media = Player.currentPlaylist.item(index);

// Play the media item.
Player.controls.playItem(media);

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls Object
Playlist.item

© 2000-2003 Microsoft Corporation. All rights reserved.

Controls.previous
The previous method sets the current item to the previous item in the playlist.

Syntax

player.controls.previous()

Previous Next

Previous Next

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

If the playlist is on the first entry when previous is invoked, the last entry in the playlist will become the current
one.

Example Code

The following example creates an HTML BUTTON element that uses previous to move to the preceding item
in the current playlist. The player object was created with ID = "Player".

<INPUT TYPE = "BUTTON" ID = "PREV" NAME = "PREV" VALUE = "|<<"

 onClick = "
 /* Check first to be sure the operation is valid. */
 if (Player.controls.isAvailable('Previous'))

 /* Move to the preceding item in the playlist. */
 Player.controls.previous();
 ">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls Object
Controls.next
Controls.stop

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Controls.step
The step method causes the current video media item to freeze playback on the next frame or the previous
frame.

Syntax

player.controls.step(frameCount)

Parameters

 frameCount

Number (long) indicating how many frames to step before freezing. Must currently be set to 1 or -1.

Return Values

This method does not return a value.

Remarks

This method currently only supports the parameters 1 or -1, so you can only step one frame at a time.

Requirements

Version: Windows Media Player for Windows XP or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls Object
DVD Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Controls.stop

Previous Next

Previous Next

The stop method stops the playing of the media item.

Syntax

player.controls.stop()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

This method causes Windows Media Player to release any system resources it is using, such as the audio
device. The current media file, however, is not released.

When the player is stopped, the track rewinds to the beginning. Calling play will then begin playback of the clip
from the beginning. To halt a play operation without changing the current position, use the pause method.

Example Code

The following example creates an HTML BUTTON element that uses stop to stop playback. The player object
was created with ID = "Player".

<INPUT TYPE = "BUTTON" ID = "STOP" NAME = "STOP" VALUE = "Stop"

 onClick = "
 /* Check first to be sure the operation is valid. */
 if (Player.controls.isAvailable('Stop'))

 /* Stop the player. */
 Player.controls.stop();
 ">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls Object
Controls.next
Controls.pause
Controls.previous

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

DVD Object
The DVD object provides properties and methods for working with DVDs.

The DVD object supports the following properties.

The DVD object supports the following methods.

The DVD object is accessed through the following property.

See Also

Object Model Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Property Description

domain Retrieves the current domain of the DVD.

isAvailable Retrieves whether a specified type of information is available or a
given action can be performed.

Method Description

back Changes the display from a submenu to its parent menu.

resume Changes to playback mode from menu mode, resuming at the same
position as when the menu was invoked.

titleMenu Stops playback and displays the title menu.

topMenu Stops playback and displays the root menu.

Object Property

Player dvd

Previous Next

DVD.back
The back method returns the display from a submenu to its parent menu.

Syntax

player.dvd.back()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

Every DVD is authored differently. Some DVDs are authored so that the back method is available from the root
menu, but when invoked, it will do nothing.

Requirements

Version: Windows Media Player for Windows XP or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

Platform: Windows XP or later.

See Also

DVD Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

DVD.domain
The domain property retrieves the current domain of the DVD.

Syntax

player.dvd.domain

Possible Values

This property is a read-only String containing one of the following values.

Remarks

Every DVD is authored differently. Some DVDs do not contain the firstPlay, videoManagerMenu, or
videoTitleSetMenu domains.

Requirements

Version: Windows Media Player for Windows XP or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

Platform: Windows XP or later.

See Also

DVD Object

Previous Next

String Description

firstPlay Performing default initialization of a DVD disc.

videoManagerMenu Displaying menus for the entire disc. Also known as
topMenu for Windows Media Player. Commonly
called the title menu or the top menu.

videoTitleSetMenu Displaying menus for current title set. Also known as
titleMenu for Windows Media Player. Commonly
called the root menu.

title Usually displaying the current title.

stop The DVD Navigator is in the DVD Stop domain.

undefined Player is not in any DVD domain.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

DVD.isAvailable
The isAvailable property indicates whether a specified type of information is available or a specified action can
be performed.

Syntax

player.dvd.isAvailable(name)

Parameters

 name

String containing one of the following values.

Return Values

This method returns a Boolean value indicating whether the specified parameter is available.

Remarks

The DVD features of Windows Media Player will not work on computers that do not have third-party DVD
decoders installed. You can determine whether a decoder is available by calling isAvailable("dvdDecoder").

Every DVD is authored differently. The methods available during DVD playback and navigation depend on

Previous Next

String Description

back Determines whether the back method is available.

dvd Determines whether the DVD is loaded.

dvdDecoder Determines whether the DVD decoder is installed on
system.

resume Determines whether the resume method is available.

titleMenu Determines whether the titleMenu method is
available.

topMenu Determines whether the topMenu method is
available. Commonly called the root menu.

how the DVD is authored.

Requirements

Version: Windows Media Player for Windows XP or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

Platform: Windows XP or later.

See Also

DVD Object

© 2000-2003 Microsoft Corporation. All rights reserved.

DVD.resume
The resume method returns to playback mode from menu mode at the same title position as when the menu was
invoked.

Syntax

player.dvd.resume()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Requirements

Version: Windows Media Player for Windows XP or later.

Header: Defined in wmp.idl; include wmp.h.

Previous Next

Previous Next

Library: Use wmp.dll.

Platform: Windows XP or later.

See Also

DVD Object

© 2000-2003 Microsoft Corporation. All rights reserved.

DVD.titleMenu
The titleMenu method stops title playback and displays the title menu.

Syntax

player.dvd.titleMenu()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

Every DVD is authored differently. The DVD must contain a menu for this method to work. Some DVDs are
authored so that the topMenu and titleMenu methods open the same menu. The titleMenu method usually
invokes the title menu but it may invoke the top menu instead, if there is no title menu available.

Requirements

Version: Windows Media Player for Windows XP or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

Platform: Windows XP or later.

Previous Next

Previous Next

See Also

DVD Object
DVD.topMenu

© 2000-2003 Microsoft Corporation. All rights reserved.

DVD.topMenu
The topMenu method stops title playback and displays the top (or root) menu for the current title.

Syntax

player.dvd.topMenu()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

Every DVD is authored differently. The DVD must contain a menu for this method to work. Some DVDs are
authored so that the topMenu and titleMenu methods open the same menu. The topMenu method usually
invokes the top (or root) menu but it may invoke the title menu instead, if there is no root menu available.

Requirements

Version: Windows Media Player for Windows XP or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

Platform: Windows XP or later.

See Also

Previous Next

Previous Next

DVD Object
DVD.titleMenu

© 2000-2003 Microsoft Corporation. All rights reserved.

Error Object
The Error object provides access to a collection of ErrorItem objects.

The Error object supports the following property.

The Error object supports the following methods.

The Error object is accessed through the following property.

See Also

Object Model Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Property Description

errorCount Retrieves the number of errors in the error queue.

Method Description

clearErrorQueue Clears the errors from the error queue.

item Retrieves an ErrorItem object from the error queue.

webHelp Launches the Microsoft Windows Media Player Web Help page to
display further information about the error.

Object Property

Player error

Previous Next

Error.clearErrorQueue
The clearErrorQueue method clears the errors from the error queue.

Syntax

player.error.clearErrorQueue()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

This method is useful to clear the error queue after a series of errors has been processed.

Example Code

The following JScript example uses Error.clearErrorQueue in an event handler to empty the error queue after
all error descriptions are displayed. The player object was created with ID = "Player".

<SCRIPT LANGUAGE = "JScript" FOR = Player EVENT = error()>

// Store the number of errors in the queue.
var max = Player.error.errorCount

// Loop through the list of errors.
for (var i = 0; i < max; i++){
 // Get the error description for this item.
 var errDesc = Player.error.item(i).errorDescription;

 // Display the error message.
 alert(errDesc);
}

// Clear the error queue to prepare for the next group of errors.
Player.error.clearErrorQueue();

</SCRIPT>

Requirements

Version: Windows Media Player version 7.0 or later.

Previous Next

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Error Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Error.errorCount
The errorCount property retrieves the number of errors in the error queue.

Syntax

player.error.errorCount

Possible Values

This property is a read-only Number (long).

Example Code

The following JScript example uses Error.errorCount in an event handler to alert the user about the most
recent error in the error queue. The player object was created with ID = "Player".

<SCRIPT LANGUAGE = "JScript" FOR = Player EVENT = error()>

// Store the number of errors in the queue.
var max = Player.error.errorCount;

// Get the description of the last error. Error items start at zero,
// so the item index will always be one less than the error count.
var errDesc = Player.error.item(max-1).errorDescription;

// Display the error description.
alert(errDesc);

</SCRIPT>

Requirements

Version: Windows Media Player version 7.0 or later.

Previous Next

Previous Next

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Error Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Error.item
The item method retrieves an ErrorItem object from the error queue.

Syntax

player.error.item(index)

Parameters

 index

Number (long) containing the index of the ErrorItem object to be retrieved.

Return Values

This method returns an ErrorItem object.

Remarks

Windows Media Player can generate a number of errors in response to an error condition. This method allows
the retrieval of a specific error in the queue using an index number. The index numbers for the error queue
begin with zero.

Example Code

The following JScript example uses the Error.item object in an event handler to alert the user to the most recent
error. The player object was created with ID = "Player".

<SCRIPT LANGUAGE="JScript" FOR=Player EVENT=error()>

// Store the most recent error item number.

Previous Next

Previous Next

var max = Player.error.errorCount - 1

// Store the most recent error in an error item object.
var errItem = Player.error.item(max);

// Use the error item object to store the error info.
errDesc = errItem.errorDescription;
errNum = errItem.errorCode;

// Display the error info.
alert(errNum + "\n" + errDesc);

</SCRIPT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Error Object
ErrorItem Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Error.webHelp
The webHelp method launches the Microsoft Windows Media Player Web Help page to display further
information about the first error in the error queue (index zero).

Syntax

player.error.webHelp()

Parameters

This method takes no parameters.

Return Values

Previous Next

Previous Next

This method does not return a value.

Remarks

The Web Help pages always contain the latest and most detailed information about Windows Media Player
errors. This method automatically transfers the other information needed by Web Help, such as the operating
system version being used.

To access the Web Help pages directly, use the error code and support center links provided in the See Also list.

Example Code

The following example creates an HTML BUTTON element that launches the Microsoft Windows Media
Player Web Help page. The player object was created with ID = "Player".

<INPUT TYPE = "BUTTON" NAME = "WHBUTTON" VALUE = "More Info"
 OnClick = "Player.error.webHelp();
 ">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Error Object
Windows Media Player Error Code Information
Windows Media Player Support Center

© 2000-2003 Microsoft Corporation. All rights reserved.

ErrorItem Object
The ErrorItem object provides a way to access error information.

The ErrorItem object supports the following properties.

Previous Next

Previous Next

The ErrorItem object is accessed through the following methods.

For purposes of illustration, player.error.item(index) is used in the reference syntax sections.

See Also

Object Model Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

ErrorItem.condition
The condition property retrieves a value indicating the condition for the error.

Syntax

player.error.item(index).condition

Possible Values

This property is a read-only Number (long) that represents the condition code.

Property Description

condition Retrieves a value indicating the condition for the error.

customUrl Retrieves the URL of a Web site that displays specific information about
codec download failure.

errorCode Retrieves the current error code.

errorContext Retrieves a value indicating the context of the error.

errorDescription Retrieves a description of the error.

remedy Reserved for future use.

Object Method

Error item

Media error

Previous Next

Previous Next

Remarks

The condition code is a value that is used by Microsoft to provide additional information for technical support
personnel.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

ErrorItem Object

© 2000-2003 Microsoft Corporation. All rights reserved.

ErrorItem.customUrl
The customURL property retrieves the URL of a Web site that displays specific information about codec
download failure.

Syntax

player.error.item(index).customURL

Possible Values

This property is a read-only String.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Previous Next

Previous Next

ErrorItem Object

© 2000-2003 Microsoft Corporation. All rights reserved.

ErrorItem.errorCode
The errorCode property retrieves the current error code.

Syntax

player.error.item(index).errorCode

Possible Values

This property is a read-only Number (long).

Example Code

The following JScript example uses ErrorItem.errorCode in an event handler to display the error code to the
user. The player object was created with ID = "Player".

<SCRIPT LANGUAGE = "JScript" FOR = Player EVENT = error()>

// Get the error code for the first error item.
errNum = Player.error.item(0).errorCode;

// Display the error information.
var message = "Error number: " + errNum);
message += "
";
message += "Use your BACK button to return ";
message += "to the previous page.";
document.write(message);

</SCRIPT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Previous Next

Previous Next

ErrorItem Object
ErrorItem.errorDescription

© 2000-2003 Microsoft Corporation. All rights reserved.

ErrorItem.errorContext
The errorContext property retrieves a value indicating the context of the error.

Syntax

player.error.item(index).errorContext

Possible Values

This property is a read-only String that represents the error context code.

Remarks

The error context is information that is used by Microsoft to provide additional information for technical
support personnel.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

ErrorItem Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

ErrorItem.errorDescription
The errorDescription property retrieves a description of the error.

Syntax

player.error.item(index).errorDescription

Possible Values

This property is a read-only String.

Example Code

The following JScript example uses ErrorItem.errorDescription in an event handler to display the error
message to the user. The player object was created with ID = "Player".

<SCRIPT LANGUAGE = "JScript" FOR = Player EVENT = error()>

// Get the error description for the first error item.
errDesc = Player.error.item(0).errorDescription;

// Display the error code.
var message = "Error: " + errDesc";
message += "
";
message += "Use your BACK button to return ";
message += "to the previous page.";
document.write(message);

</SCRIPT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

ErrorItem Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

External Object
The External object can provide functionality to Web pages hosted in Windows Media Player that were opened
using IWMPPlayerServices::setTaskPaneURL.

Note The properties, methods, and events exposed by the External object are available for use with Windows
Media Player 9 Series in the Windows XP operating system. They may be altered or unavailable in subsequent
versions.

The External object exposes the following properties.

The External object exposes the following event.

See Also

IWMPPlayerServices::setTaskPaneURL
Object Model Reference
Remoting the Windows Media Player Control

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Property Description

appColorLight Retrieves the current color of the Windows Media
Player user interface.

version Retrieves the current version of Windows Media
Player.

Event Description

OnColorChange Occurs when the color of the Windows Media Player
user interface changes.

Previous Next

Previous Next

External.appColorLight
The appColorLight property retrieves the current color of the Windows Media Player user interface.

Syntax

window.external.appColorLight

Possible Values

This property is a read-only String.

Requirements

Windows Media Player 9 Series or later.

See Also

External Object

© 2000-2003 Microsoft Corporation. All rights reserved.

External.OnColorChange Event
The OnColorChange event occurs when the color of the Windows Media Player user interface changes.

Syntax

window.external.OnColorChange = functionname

Parameters

 functiontname

The name of the function in script that Windows Media Player calls when the event occurs

Requirements

Windows Media Player 9 Series or later.

Previous Next

Previous Next

See Also

External Object

© 2000-2003 Microsoft Corporation. All rights reserved.

External.version
The version property retrieves the current version of Windows Media Player.

Syntax

window.external.version

Possible Values

This property is a read-only String.

Requirements

Windows Media Player 9 Series or later.

See Also

External Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Media Object
The Media object provides a way to specify or retrieve properties of a multimedia clip, using the following

Previous Next

Previous Next

Previous Next

Previous Next

properties and methods.

The Media object supports the following properties.

The Media object supports the following methods.

Property Description

attributeCount Retrieves the number of attributes that can be queried and/or set for
the media item.

duration Retrieves the duration in seconds of the current media item.

durationString Retrieves a String value indicating the duration of the current media
item in HH:MM:SS format.

error Retrieves an ErrorItem object if the media item has an error
condition.

imageSourceHeight Retrieves the height of the current media item in pixels.

imageSourceWidth Retrieves the width of the current media item in pixels.

markerCount Retrieves the number of markers in the media item.

name Specifies or retrieves the name of the media item.

sourceURL Retrieves the URL of the media item.

Method Description

getAttributeCountByType Retrieves the number of attributes associated with the specified
attribute name and language.

getAttributeName Retrieves the name of the attribute corresponding to the specified
index.

getItemInfo Retrieves the value of the specified attribute for the media item.

getItemInfoByAtom Retrieves the value of the attribute with the specified index number.

getItemInfoByType Retrieves the value of the attribute corresponding to the specified
attribute name, language, and index.

getMarkerName Retrieves the name of the marker at the specified index.

getMarkerTime Retrieves the time of the marker at the specified index.

isIdentical Retrieves a value indicating whether the supplied object is the same as
the current one.

isMemberOf Retrieves a value indicating whether the specified media item is a
member of the specified playlist.

isReadOnlyItem Retrieves a value indicating whether the attributes of the specified
media item can be edited.

setItemInfo Sets the value of the specified attribute for the media item.

The Media object is accessed through the following properties and methods.

Because it is the most common means of access, player.currentMedia is used for purposes of illustration in the
reference syntax sections.

See Also

Object Model Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Media.attributeCount
The attributeCount property retrieves the number of attributes that can be queried and/or set for the media
item.

Syntax

player.currentMedia.attributeCount

Possible Values

This property is a read-only Number (long).

Remarks

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

For information about the attributes supported by Windows Media Player, see Available Attributes.

Example Code

Object Property or method

Controls currentItem

Player currentMedia, newMedia

Playlist item

Previous Next

Previous Next

The following JScript example uses Media.attributeCount to determine the number of attributes available in
the current media item. The code uses that value to print a list of attribute names and values in an HTML text
area, named myText. The player object was created with ID = "Player".

// Store the current media object.
var cm = Player.currentMedia;

// Create arrays to hold each attribute name and value.
var atNames = new Array();
var atValues = new Array();

// Loop through the attribute list.
for(var i = 0; i < cm.attributeCount; i++){

 // Fill the arrays with the attribute info.
 atNames[i] = cm.getAttributeName(i);
 atValues[i] = cm.getItemInfo(atNames[i]);

 // Print the attribute information to the text area.
 myText.value += atNames[i] + ": " + atValues[i];
 myText.value += "\n";
}

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object
Media.getAttributeName
Media.getItemInfo
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Media.duration
The duration property retrieves the duration of the current media item in seconds.

Previous Next

Previous Next

Syntax

player.currentMedia.duration

Possible Values

This property is a read-only Number (double).

Remarks

If this property is used with a media item other than the one specified in Player.currentMedia, it may not
contain a valid value.

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

Example Code

The following JScript example uses Media.duration to display the time remaining in the current media item.
An HTML DIV element named RemTime displays the information. An HTML timer updates the text in the
DIV element every second. The following JScript code starts the timer:

// Execute the update() function at one-second intervals.
idTmr = window.setInterval("update()",1000);

The following JScript code stops the timer:

window.clearInterval(idTmr);

Use the Player.PlayStateChange event with a switch statement to determine when to start and stop the timer.

The following JScript code executes each time the timer calls the update function:

// Store the current position of the current media item.
var TimeNow = Player.controls.currentPosition;

// Display the time remaining information.
RemTime.innerHTML = "Seconds remaining: ";

// Subtract the current position from the duration of the current media.
// Use the Math.floor method to round the result down to the nearest integer.
RemTime.innerHTML += Math.floor(Player.currentMedia.duration - TimeNow);

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object

Player.currentMedia
Player.PlayStateChange Event
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Media.durationString
The durationString property retrieves a String value indicating the duration of the current media item in
HH:MM:SS format.

Syntax

player.currentMedia.durationString

Possible Values

This property is a read-only String.

Remarks

If this property is used with a media item other than the one specified in Player.currentMedia, it may not
contain a valid value. If the media item is less than an hour long, the HH: portion of the return value is omitted.

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

Example Code

The following JScript example uses Media.durationString to display the duration of the current media item as
formatted text. An HTML DIV element named MediaInfo displays the duration information. The player object
was created with ID = "Player".

<!-- Create an event handler to update the display when
 the current media item changes. -->
<SCRIPT LANGUAGE = "JScript" FOR = Player EVENT = OpenStateChange(NewState)>

// Test whether the new media item is open.
if (NewState == 13){

 // Write the formatted duration string to the DIV region.
 MediaInfo.innerHTML = "Duration: " + Player.currentMedia.durationString;

Previous Next

Previous Next

}
</SCRIPT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object
Media.duration
Player.currentMedia
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Media.error
The error property retrieves an ErrorItem object if the media item has an error condition.

Syntax

player.currentMedia.error

Possible Values

This property is a read-only ErrorItem object.

Remarks

If the media item cannot be played, this property retrieves an ErrorItem object that contains information about
the problem encountered.

Requirements

Version: Windows Media Player for Windows XP or later.

Previous Next

Previous Next

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

ErrorItem Object
Media Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Media.getAttributeCountByType
The getAttributeCountByType method retrieves the number of attributes associated with the specified
attribute name and language.

Syntax

player.currentMedia.getAttributeCountByType(name, language)

Parameters

 name

String containing the name of the attribute. For information about the attributes supported by Windows Media
Player, see Available Attributes.

 language

String representing the language. If the value is set to null or "" (empty string) the current locale string is used.
Otherwise, the value must be a valid RFC 1766 language string such as "en-us".

Return Values

This method returns a Number (long) containing the attribute count.

Remarks

This method is used to determine the number of attributes corresponding to a particular attribute name for a
given Media object. Index numbers can then be passed to the getItemInfoByType method. This is useful, for
example, when a media item has been categorized under multiple genres.

Previous Next

Previous Next

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object
Media.getItemInfoByType
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Media.getAttributeName
The getAttributeName method retrieves the name of the attribute corresponding to the specified index.

Syntax

player.currentMedia.getAttributeName(index)

Parameters

 index

Number (long) containing the index of the attribute.

Return Values

This method returns a String specifying the name of the attribute.

Remarks

The attribute name returned can be used in conjunction with getItemInfo to retrieve the value for a specific

Previous Next

Previous Next

named attribute.

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

For information about the attributes supported by Windows Media Player, see Available Attributes.

Example Code

The following JScript example uses Media.getAttributeName to fill an HTML text area named myText with
the index and name of each attribute for the current media item. The player object was created with ID =
"Player".

// Store the current media object.
var cm = Player.currentMedia;

// Get the number of attributes for the current media.
var atCount = cm.attributeCount;

// Loop through the attribute list.
for(var i=0; i < atCount; i++){

 // Print each attribute index and name.
 myText.value += "Attribute " + i +": ";
 myText.value += cm.getAttributeName(i);
 myText.value += "\n";
}

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object
Media.attributeCount
Media.getItemInfo
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Media.getItemInfo
The getItemInfo method retrieves the value of the specified attribute for the current media item.

Syntax

player.currentMedia.getItemInfo(name)

Parameters

 name

String containing the name of the attribute. For information about the attributes supported by Windows Media
Player, see Available Attributes.

Return Values

This method returns a String representing the value of the specified attribute. For attributes whose underlying
value is Boolean, it returns the string "true" or "false".

Remarks

This method is used to retrieve metadata information about a specific piece of media content, whether it stands
alone or is part of a playlist.

The attributeCount property can be used to determine the number of attribute names available for a given
Media object. Index numbers can then be used with the getAttributeName method to determine the names of
the attributes, which can in turn be passed to getItemInfo.

To retrieve attributes with multiple values and attributes with complex values, use the getItemInfoByType
method.

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object
Media.attributeCount
Media.getAttributeName
Media.getItemInfoByType
Media.setItemInfo

Reading Attribute Values
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Media.getItemInfoByAtom
The getItemInfoByAtom method retrieves the value of the attribute with the specified index number.

Syntax

player.currentMedia.getItemInfoByAtom(index)

Parameters

 index

Number (long) specifying the index at which a given attribute resides within the set of available attributes.

Return Values

This method returns a String representing the value of the specified attribute. For attributes whose underlying
value is Boolean, it returns the string "true" or "false".

Remarks

This method can be used to retrieve metadata information about a specific piece of media using an index
number. The attributeCount property can be used to determine the number of attributes available for the media
item. The getMediaAtom method of the MediaCollection object can also be used to retrieve the index of a
particular media library attribute. This technique is generally more efficient than the getItemInfo or
getItemInfoByType methods when working with large playlists.

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

For information about the attributes supported by Windows Media Player, see Available Attributes.

See Also

Media Object
Media.attributeCount

Previous Next

Previous Next

Media.getItemInfo
Media.getItemInfoByType
Media.setItemInfo
MediaCollection.getMediaAtom
Reading Attribute Values
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Media.getItemInfoByType
The getItemInfoByType method retrieves the value of the attribute corresponding to the specified attribute
name, language, and index.

Syntax

player.currentMedia.getItemInfoByType(name, language, index)

Parameters

 name

String containing the name of the attribute. For information about the attributes supported by Windows Media
Player, see Available Attributes.

 language

String representing the language. If the value is set to null or "" (empty string) the current locale string is used.
Otherwise, the value must be a valid RFC 1766 language string such as "en-us".

 index.

Number (long) containing the zero-based index of the attribute.

Return Values

This method returns a String, MetadataPicture object, or MetadataText object as indicated in the following
table.

Previous Next

Previous Next

Attribute Return value

For attributes whose underlying value is Boolean, it returns the string "true" or "false".

Remarks

This method is used to retrieve metadata information about a specific piece of media content, whether it stands
alone or is part of a playlist.

This method supports attributes with multiple values and attributes with complex values, which the getItemInfo
method does not support.

The attributeCount property can be used to determine the number of attributes available for a given Media
object. Index numbers can then be used with the getAttributeName method to determine the names of the
attributes, which can in turn be passed to the name parameter of getItemInfoByType.

The getAttributeCountByType method can be used to determine the number of attributes corresponding to a
particular attribute name for a given Media object. Index numbers can then be passed to the index parameter of
getItemInfoByType. This is useful, for example, when a media item has been categorized under multiple
genres.

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

This method can throw errors. You should include error handling code when you call this method. For example,
in JScript you can implement error handling using the try...catch...finally structure.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object
Media.attributeCount
Media.getAttributeCountByType
Media.getAttributeName
Media.getItemInfo
Media.setItemInfo
MetadataPicture Object
MetadataText Object
Reading Attribute Values
Settings.mediaAccessRights

WM/Lyrics_Synchronised MetadataText Object

WM/Picture MetadataPicture Object

WM/UserWebURL MetadataText Object

all other attributes String

Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Media.getMarkerName
The getMarkerName method retrieves the name of the marker at the specified index.

Syntax

player.currentMedia.getMarkerName(markerNum)

Parameters

 markerNum

Number (long) specifying a marker index.

Return Values

This method returns a String.

Remarks

This method returns NULL if the specified marker does not exist.

Some media clips do not contain markers. Use markerCount to find out how many markers are in the current
clip.

Marker index numbers start at 1.

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Example Code

The following JScript example uses Media.getMarkerName to fill an HTML TEXTAREA element named
MNAMES with the names of the markers in the current media item. The player object was created with ID =
"Player".

// Get the number of markers in the current media.
var mcount = Player.currentMedia.markerCount;

Previous Next

Previous Next

// Verify that at least one marker exists in the current media.
if (mcount > 0){

// Loop through the marker list.
for (var i = 1; i < mcount + 1; i++){

 // Print the marker name to the text area.
 MNAMES.value += Player.currentMedia.getMarkerName(i);
 MNAMES.value += "\n";
}

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object
Media.getMarkerTime
Media.markerCount
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Media.getMarkerTime
The getMarkerTime method retrieves the time of the marker at the specified index.

Syntax

player.currentMedia.getMarkerTime(markerNum)

Parameters

 markerNum

Number (long) specifying the marker index.

Previous Next

Previous Next

Return Values

This method returns a Number (double) specifying the location of the marker in seconds from the beginning of
the clip.

Remarks

This method returns NULL if the specified marker does not exist.

Some media clips do not contain markers. Use markerCount to find out how many markers are in the current
clip.

Marker index numbers start at 1.

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Example Code

The following JScript example uses Media.getMarkerTime to fill an HTML TEXTAREA element named
MTIMES with the location of each marker. The player object was created with ID = "Player".

// Get the number of markers in the current media.
var mcount = Player.currentMedia.markerCount;

// Verify that at least one marker exists in the current media.
if (mcount > 0){

// Loop through the marker list.
for (var i = 1;i < mcount + 1; i++){

 // Print the message to the text area.
 MTIMES.value += "Marker number " + i + " occurs at ";
 MTIMES.value += Player.currentMedia.getMarkerTime(i);
 MTIMES.value += " second(s).";
 MTIMES.value += "\n";
}

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object
Media.getMarkerName
Media.markerCount
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Media.imageSourceHeight
The ImageSourceHeight property retrieves the height of the current media item in pixels.

Syntax

player.currentMedia.imageSourceHeight

Possible Values

This property is a read-only Number (long).

Remarks

If the media item is not the current one, this property returns zero.

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

Example Code

The following JScript example uses Media.imageSourceHeight to display the image size, in pixels, of the
current media item. The information is printed to an HTML TEXTAREA element named VideoSize. The player
object was created with ID = "player".

<!-- Create an event handler to refresh the information when the current media changes. --
<SCRIPT LANGUAGE = "JScript" FOR = Player EVENT = OpenStateChange(NewState)>

// Test whether the new media item is open.
if (NewState == 13){

 // Store the height and width of the new media item.
 var Height = Player.currentMedia.imageSourceHeight;
 var Width = Player.currentMedia.imageSourceWidth;

 // Erase the information in the text area.
 VideoSize.value = "";

 // Test whether an image is visible.
 if (Height != 0 && Width != 0)

 // Display the image size information.
 VideoSize.value = Width + " x " + Height;

Previous Next

Previous Next

}
</SCRIPT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object
Player.currentMedia
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Media.imageSourceWidth
The imageSourceWidth property retrieves the width of the current media item in pixels.

Syntax

player.currentMedia.imageSourceWidth

Possible Values

This property is a read-only Number (long).

Remarks

If the media item is not the current one, this property returns zero.

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

Example Code

The following JScript example uses Media.imageSourceWidth to display the image size, in pixels, of the

Previous Next

Previous Next

current media item. The information is printed to an HTML TEXTAREA element named VideoSize. The player
object was created with ID = "player".

<!-- Create an event handler to refresh the information when the current media changes. --
<SCRIPT LANGUAGE = "JScript" FOR = "Player" EVENT = OpenStateChange(NewState)>

// Test whether the new media item is open.
if (NewState == 13){

 // Store the height and width of the new media item.
 var Height = Player.currentMedia.imageSourceHeight;
 var Width = Player.currentMedia.imageSourceWidth;

 // Erase the information in the text area.
 VideoSize.value = "";

 // Test whether an image is visible.
 if (Height != 0 && Width != 0)

 // Display the image size information.
 VideoSize.value = Width + " x " + Height;
}
</SCRIPT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object
Player.currentMedia
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Media.isIdentical
The isIdentical method retrieves a value indicating whether the supplied object is the same as the current one.

Previous Next

Previous Next

Syntax

player.currentMedia.isIdentical(media)

Parameters

 media

Media object to compare with the current one.

Return Values

This method returns a Boolean.

Example Code

The following JScript example uses Media.isIdentical to check whether a media item named newMedia is the
same as the current media item. If they are not the same, the new media item is played. Otherwise, the current
media continues to play uninterrupted. The player object was created with ID = "Player".

// Check the new media item to see if it matches the current one.
if (newMedia.isIdentical(Player.currentMedia) != true){

 // Change the current media to the new media item.
 Player.currentMedia = newMedia;

 // Play the new media item.
 Player.controls.play();
}

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Media.isMemberOf
The isMemberOf method returns a value indicating whether the media item is a member of the specified
playlist.

Syntax

player.currentMedia.isMemberOf(playlist)

Parameters

 playlist

Playlist object that might contain the media item.

Return Values

This method returns a Boolean.

Remarks

This method is not supported with playlists retrieved through the MediaCollection object. To test whether a
media item is a member of a particular named playlist, retrieve the playlist with
player.playlistCollection.getByName(name).item(0). This method can also be used with CD and metafile
playlists.

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Example Code

The following JScript example uses Media.isMemberOf to test whether the current media item is a member of
the playlist named Sample Playlist. If it is not, the current media item is appended to the sample playlist. The
player object was created with ID = "Player".

// Store the playlist object named Sample Playlist.
var sPlaylist = Player.playlistcollection.getbyname("Sample Playlist").item(0);

// Test whether the current media item is a member of Sample Playlist.
 var answer = ((Player.currentMedia.isMemberOf(sPlaylist))?"Yes":"No");

// If the current media item is not a member of Sample Playlist,
// append the current media item to the playlist.
if (answer == "No"){
 sPlaylist.appendItem(Player.currentMedia);
}

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object
Playlist Object
PlaylistCollection Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Media.isReadOnlyItem
The isReadOnlyItem method returns a value indicating whether the specified attribute of the media item can be
edited.

Syntax

player.currentMedia.isReadOnlyItem(attribute)

Parameters

 attribute

String indicating the name of the attribute to test. For information about the attributes supported by Windows
Media Player, see Available Attributes.

Return Values

This method returns a Boolean.

Remarks

If an attribute is read-only then it cannot be set with the setItemInfo method.

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Example Code

Previous Next

Previous Next

The following JScript example uses Media.isReadOnlyItem to fill an HTML TEXTAREA element named
rwText with information about the current media item. The code outputs each attribute of the current media
item, along with text indicating whether the attribute is read-only or read/write. The player object was created
with ID = "Player".

// Store the current media item object.
var cm = Player.currentMedia;

// Create a variable to hold each attribute name.
var atName;

// Loop through the attribute list.
for(var i = 0; i < cm.attributeCount; i++){

 // Get the attribute name.
 atName = cm.getAttributeName(i);

 // Test whether the attribute is read-only.
 var test = ((cm.isReadOnlyItem(atName))?"Read-Only":"Read/Write");

// Print the attribute information to the text area.
 rwText.value += atName + " is " + test;
 rwText.value += "\n";
}

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object
Media.setItemInfo
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Media.markerCount
The markerCount property retrieves the number of markers in the media item.

Previous Next

Previous Next

Syntax

player.currentMedia.markerCount

Possible Values

This property is a read-only Number (long) specifying the number of markers in the file.

Remarks

This property returns zero if a file has no markers, or if the media item is not the same as Player.currentMedia.
Marker numbers start at 1.

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

Example Code

The following JScript example uses Media.markerCount to retrieve the number of markers in the current
media item. That value is then used as the upper boundary for a looping structure, which iterates through the
marker list to retrieve each marker name. An HTML TEXTAREA element named MNAMES displays the
names of the markers in the current media item. The player object was created with ID = "Player".

// Get the number of markers in the current media item.
var mcount = Player.currentMedia.markerCount;

// Verify that at least one marker exists in the current media item.
if (mcount > 0){

// Loop through the marker list.
for (var i = 1; i < mcount + 1; i++){

 // Print the marker name to the text area.
 MNAMES.value += Player.currentMedia.getMarkerName(i);
 MNAMES.value += "\n";
}

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object
Player.currentMedia
Settings.mediaAccessRights
Settings.requestMediaAccessRights

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Media.name
The name property specifies or retrieves the name of the media item.

Syntax

player.currentMedia.name

Possible Values

This property is a read/write String containing the name of the media item.

Remarks

To retrieve the value of this property, read access to Media Library is required. To specify the value of this
property, full access to Media Library is required. For more information, see Media Library Access.

Remarks

Before using this method to specify the name of a media item, use isReadOnlyItem to determine whether the
name can be set.

Example Code

The following JScript example uses Media.name to change the name of the current media item. An HTML
TEXT input element named NameText allows the user to enter a text string for the new name. The player object
was created with ID = "Player".

<!—-Create an HTML BUTTON element to execute the name change. -->
<INPUT type = "BUTTON" id = "NewName" name = "NewName" value = "Change Name"
onClick = "
 /* Store the current media item. */
 var cm = Player.currentMedia;

 /* Change the name. */
 cm.name = NameText.value;
">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Previous Next

Library: Use wmp.dll.

See Also

Media Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Media.setItemInfo
The setItemInfo method sets the value of the specified attribute for the current media item.

Syntax

player.currentMedia.setItemInfo(attribute, value)

Parameters

 attribute

String containing the attribute name. For information about the attributes supported by Windows Media Player,
see Available Attributes.

 value

String containing the new value.

Return Values

This method does not return a value.

Remarks

The attributeCount property can be used to determine the number of attributes available for a given Media
object. Index numbers can then be used with the getAttributeName method to determine the names of the
built-in attributes that can be used with this method.

Before using this method, use the isReadOnlyItem method to determine whether a particular attribute can be
set.

Previous Next

Previous Next

To use this method, full access to Media Library is required. For more information, see Media Library Access.

Note If you embed the control in your application, file attributes that you change will not be written to the
media file itself until the user runs Windows Media Player. If you use the control in a remoted application
written in C++, file attributes that you change will be written to the media file itself shortly after you make the
changes. In either case, the changes are immediately available to you through Media Library.

Example Code

The following JScript example uses Media.setItemInfo to change the value of the Genre attribute for the
current media item. An HTML TEXT input element named genText allows the user to enter a text string, which
is then used to change the attribute information. The player object was created with ID = "Player".

<!-- Create the button element. -->
<INPUT type = "BUTTON" id = "NEWGEN" name = "NEWGEN" value = "Change Genre"
onClick = "
 /* Store the current media item. */
 var cm = Player.currentMedia;

 /* Get the user input from the text box. */
 var atValue = genText.value;

 /* Test for read-only status of the attribute. */
 if(cm.isReadOnlyItem('Genre') == false){

 /* Change the attribute value. */
 cm.setItemInfo('Genre' ,atValue);
 }
">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object
Media.getItemInfo
Media.isReadOnlyItem
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Media.sourceURL
The sourceURL property retrieves the URL of the media item.

Syntax

player.currentMedia.sourceURL

Possible Values

This property is a read-only String.

Example Code

The following JScript example uses Media.sourceURL to retrieve the URL of the first media item in the
sample playlist; the URL of the media item is then assigned to the player object URL property. The player
object was created with ID = "Player".

// Store the sample playlist object in a variable.
var pl = Player.playlistCollection.getByName("Sample Playlist").item(0);

// Store the first media item from the sample playlist.
var media = pl.item(0);

// Change the URL property of the player to the URL of the media item.
Player.URL = media.sourceURL;

// Play the media item.
Player.controls.play();

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

MediaCollection Object
The MediaCollection object provides a way to organize a large collection of media items. It can be queried to
generate playlists automatically.

The MediaCollection object supports the following methods.

The MediaCollection object is accessed through the following property.

Previous Next

Method Description

add Adds a new media item or playlist to Media Library.

getAll Retrieves a Playlist object containing all media items in Media
Library.

getAttributeStringCollection Retrieves a StringCollection object representing the set of all
values for a given attribute within a given media type.

getByAlbum Retrieves a Playlist object containing media items from the
specified album.

getByAttribute Retrieves a Playlist object containing media items with the
specified attribute having the specified value.

getByAuthor Retrieves a Playlist object containing media items by the specified
author.

getByGenre Retrieves a Playlist object containing media items with the
specified genre.

getByName Retrieves a Playlist object containing media items with the
specified name.

getMediaAtom Retrieves the index at which a given property resides within the set
of available properties.

isDeleted Retrieves a value indicating whether the specified media item is in
the deleted items folder.

remove Removes an item from the media collection.

setDeleted Moves the specified media item to the deleted items folder.

Object Property

Player mediaCollection

See Also

Object Model Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

MediaCollection.add
The add method adds a new media item or playlist to Media Library.

Syntax

player.mediaCollection.add(path)

Parameters

 path

String containing the path.

Return Values

This method returns a Media object.

Remarks

This method loads an existing media item or playlist into Media Library, given a path. This method does not
move or change the file. This method fails if given an invalid local path, but media items themselves are not
checked for validity before they are added to Media Library.

This method accepts both static and auto playlist files. The PlaylistCollection.importPlaylist method can also
be used to add a static playlist to Media Library.

To use this method, full access to Media Library is required. For more information, see Media Library Access.

Example Code

The following Microsoft JScript example adds three media objects to the player media collection. The player
object was created with ID="Player".

// Adding a media object using a Web site.
Player.mediaCollection.add("http://www.proseware.com/Media/Laure.wma");

Previous Next

Previous Next

// Adding a media object from a local network.
// You must add an escape sequence of a backslash for every original backslash.
Player.mediaCollection.add("\\\\yourservername\\Public\\Jeanne.wma");

// Adding a media object from a file on a local drive.
// Be sure to add appropriate escape sequences.
Player.mediaCollection.add("C:\\WMSDK\\WMPSDK\\docs\\samples\\media\\house.wma");

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Managing Playlists
Media Object
MediaCollection Object
MediaCollection.remove
PlaylistCollection.importPlaylist
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

MediaCollection.getAll
The getAll method retrieves a playlist containing all media items in Media Library.

Syntax

player.mediaCollection.getAll()

Parameters

This method takes no parameters.

Return Values

Previous Next

Previous Next

This method returns a Playlist object.

Remarks

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Example Code

The following JScript example uses MediaCollection.getAll to play media items randomly from the media
collection. The Player object was created with ID = "Player".

// Store the count of all media items in the media collection.
var count = Player.mediaCollection.getAll().count;

// Generate a random number using the media count.
var rand = Math.random() * count;

// Round down the random number to the nearest integer.
rand = Math.floor(rand);

// Make the random media item the current media item.
Player.currentMedia = Player.mediaCollection.getAll().item(rand);

// Play the media item.
// Player.controls.play();

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

MediaCollection Object
Playlist Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

MediaCollection.getAttributeStringCollection
The getAttributeStringCollection method retrieves a StringCollection object representing the set of all values
for a given attribute within a given media type.

Syntax

player.mediaCollection.getAttributeStringCollection(attribute, mediaType)

Parameters

 attribute

String specifying the attribute.

 mediaType

String representing the media type. Contains one of the following values: "Audio", "Video", "Playlist", or
"Other".

Return Values

This method returns a StringCollection object.

Remarks

The following table lists the attributes supported by this method for each media type when using Windows
Media Player 9 Series.

Audio Video Playlist Other

Actor

Album

AlbumArtist

AlbumArtistSortOrder

AlbumID

AlbumIDAlbumArtist

AlbumTitleSortOrder

Artist

Author

AuthorSortOrder

Actor

Artist

Author

AuthorSortOrder

Director

Genre

Label

Language

ProducedBy

ReleasedBy

Genre

WM/Genre

Genre

WM/Genre

BuyNow

BuyTickets

Composer

Conductor

Genre

Label

Language

MetadataSource

MoreInfo

ProviderLogoURL

ProviderURL

Rating

ReleasedBy

Studio

Style

TOC

WM/AlbumArtist

WM/AlbumTitle

WM/Composer

WM/Conductor

WM/Genre

WM/Language

WM/MCDI

WM/Provider

WM/ProviderRating

WM/ProviderStyle

Studio

WM/Director

WM/Genre

WM/Language

WM/Producer

WM/Publisher

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

For information about the attributes supported by Windows Media Player, see Media Item Attributes.

Example Code

The following JScript example uses MediaCollection.getAttributeStringCollection to display a list of values
that correspond to a particular attribute for audio media in the media collection. An HTML SELECT element,
created with ID = "Attribute", allows the user to select an attribute, such as Artist, Genre, or Album. An HTML
TEXTAREA element, created with ID = "AttributeVals", displays the result. The Player object was created with
ID = "Player".

// Clear the text in the display area.
AttributeVals.value = "";

// Store the mediaCollection object.
var library = Player.mediaCollection;

// Get the string collection for the attribute type the user selects.
var all = library.getAttributeStringCollection(Attribute.value, "Audio");

// Loop through the string collection.
for (i = 0; i < all.count; i++){

 // Display the items one line at a time.
 AttributeVals.value += all.item(i);
 AttributeVals.value += "\n";
}

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

WM/Publisher

WM/WMCollectionGroupID

WM/WMCollectionID

WM/Writer

WMCollectionGroupID

WMCollectionID

Writer

MediaCollection Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights
StringCollection Object

© 2000-2003 Microsoft Corporation. All rights reserved.

MediaCollection.getByAlbum
The GetByAlbum method retrieves a playlist containing the media items from the specified album.

Syntax

player.mediaCollection.getByAlbum(album)

Parameters

 album

String containing the name of the album.

Return Values

This method returns a Playlist object.

Remarks

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Example Code

The following JScript example uses MediaCollection.getByAlbum to retrieve a playlist of media items. The
playlist contains items with the album specified by the user in an HTML TEXT input element named
GetAlbum. The Player object was created with ID = "Player".

<!-- Create an HTML BUTTON element to create the playlist and play the media. -->
<INPUT TYPE = "BUTTON" NAME = "PlayAlbum" ID = "PlayAlbum" VALUE = "Play Album"
onClick = "
 /* Retrieve the album title text from the user. */
 var album = GetAlbum.value;

 /* Create the playlist using getByAlbum. */

Previous Next

Previous Next

 var pl = Player.mediaCollection.getByAlbum(album);

 /* Make the new playlist the current playlist. */
 Player.currentPlaylist = pl;

 /* Play the media in the new playlist. */
 Player.controls.play();
">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

MediaCollection Object
Playlist Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

MediaCollection.getByAttribute
The getByAttribute method retrieves a playlist of media items with the specified attribute having the specified
value.

Syntax

player.mediaCollection.getByAttribute(attribute, value)

Parameters

 attribute

String indicating the name of the attribute to search on. For information about the attributes supported by
Windows Media Player, see Available Attributes.

 value

Previous Next

Previous Next

String indicating the value that the attribute should have.

Return Values

This method returns a Playlist object.

Remarks

This method can be used to create a generic query for media items that match a value for an attribute in the
database. This is especially useful in the case of user-defined attributes. If the attribute does not exist, an error
will result.

You can use this method to retrieve all of the media items of a specific type. Use the attribute name
"MediaType" and one of the following values:

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Example Code

The following JScript example uses MediaCollection.getByAttribute to play all content from Media Library
by the artist named Triode 48. The Player object was created with ID = "Player".

// Get a playlist object filled with media items by a particular artist.
var pl = Player.mediaCollection.getByAttribute("Artist", "Triode 48");

// Make the new playlist the current one.
Player.currentPlaylist = pl;

// Start the player.
Player.controls.play();

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

MediaCollection Object

Value Description

audio Music and other audio-only items.

playlist Playlist items. You can also retrieve these items using
PlaylistCollection.getAll.

radio Radio station items.

video Video items.

Playlist Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

MediaCollection.getByAuthor
The getByAuthor method retrieves a playlist of the media items by the specified author.

Syntax

player.mediaCollection.getByAuthor(author)

Parameters

 author

String containing the name of the author.

Return Values

This method returns a Playlist object.

Remarks

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Example Code

The following JScript example uses MediaCollection.getByAuthor to retrieve a playlist of media items. The
playlist contains items matching the author specified by the user in an HTML TEXT input element named
GetAuthor. The Player object was created with ID = "Player".

<!-- Create an HTML BUTTON element to create the playlist and play the media item. -->
<INPUT TYPE = "BUTTON" NAME = "PlayAuthor" ID = "PlayAuthor" VALUE = "Play Author"
onClick = "
 /* Retrieve the author name text from the user. */
 var author = GetAuthor.value;

 /* Create the playlist using getByAuthor. */
 var pl = Player.mediaCollection.getByAuthor(Author);

Previous Next

Previous Next

 /* Make the new playlist the current playlist. */
 Player.currentPlaylist = pl;

 /* Play the media item in the new playlist. */
 Player.controls.play();
">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

MediaCollection Object
Playlist Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

MediaCollection.getByGenre
The getByGenre method retrieves a playlist of the media items with the specified genre.

Syntax

player.mediaCollection.getByGenre(genre)

Parameters

 genre

String containing the name of the genre.

Return Values

This method returns a Playlist object.

Previous Next

Previous Next

Remarks

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Example Code

The following JScript example uses MediaCollection.getByGenre to retrieve a playlist of media items. The
playlist contains items with the genre specified by the user in an HTML TEXT input element named GetGenre.
The Player object was created with ID = "Player".

<!-- Create an HTML BUTTON element to create the playlist and play the media. -->
<INPUT TYPE = "BUTTON" NAME = "PlayGenre" ID = "PlayGenre" VALUE = "Play Genre"
onClick = "
 /* Retrieve the genre text from the user. */
 var genre = GetGenre.value;

 /* Create the playlist using getByGenre. */
 var pl = Player.mediaCollection.getByGenre(genre);

 /* Make the new playlist the current playlist. */
 Player.currentPlaylist = pl;

 /* Play the media item in the new playlist. */
 Player.controls.play();
">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

MediaCollection Object
Playlist Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

MediaCollection.getByName
The getByName method retrieves a playlist of the media items with the specified name.

Syntax

player.mediaCollection.getByName(name)

Parameters

 name

String containing the name.

Return Values

This method returns a Playlist object.

Remarks

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Example Code

The following JScript example uses MediaCollection.getByName to retrieve three items from the Media
Library. Each item is then appended to the current playlist. The Player object was created with ID="Player".

// In each case, use the name exactly as it appears in Media Library.
// Windows Media Player does not include file extensions or file paths
// in the name. Internet URL's include the entire path, but not the
// file extension.

// Get a playlist object which contains an Internet URL.
var One = Player.mediaCollection.getByName("http://www.proseware.com/Media/Laure");

// Get a playlist object which contains a file on a network server.
 var Two = Player.mediaCollection.getByName("Jeanne");

// Get a playlist object which contains a file on a local drive.
var Three = Player.mediaCollection.getByName("house");

// Append each item to the current playlist. Since each playlist retrieved
// using getByName contains one media item, use Playlist.item with an
// index of zero to reference that item.
Player.currentPlaylist.appendItem(One.item(0));
Player.currentPlaylist.appendItem(Two.item(0));
Player.currentPlaylist.appendItem(Three.item(0));

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

MediaCollection Object
Playlist Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

MediaCollection.getMediaAtom
The getMediaAtom method retrieves the index at which a given attribute resides within the set of available
attributes.

Syntax

player.mediaCollection.getMediaAtom(attribute)

Parameters

 attribute

String containing the attribute name. For information about the attributes supported by Windows Media Player,
see Available Attributes.

Return Values

This method returns a Number (long).

Remarks

The index number retrieved with this method can be passed to the Media.getItemInfoByAtom method to
access attribute values. This technique is generally more efficient when working with large playlists than
accessing an attribute value by name using Media.getItemInfo or Media.getItemInfoByType.

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Requirements

Previous Next

Previous Next

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media.getItemInfo
Media.getItemInfoByAtom
Media.getItemInfoByType
MediaCollection Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

MediaCollection.isDeleted
The isDeleted method retrieves a value indicating whether the specified media item is in the deleted items
folder.

Syntax

player.mediaCollection.isDeleted(item)

Parameters

 item

Media object that might be deleted.

Return Values

This method returns a Boolean.

Remarks

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Previous Next

Previous Next

Example Code

The following JScript example uses MediaCollection.isDeleted to test whether a particular media item, stored
in the variable named mediaObject, is in the deleted items folder. If the media item is not deleted already, then
it is moved to the deleted items folder. The Player object was created with ID = "Player".

// Test whether the media item is in the deleted items folder.
if (!Player.mediaCollection.isDeleted(mediaObject)){

 // The media item is available to be deleted, move it to
 // the deleted items folder.
 Player.mediaCollection.setDeleted(mediaObject, true);

 // Inform the user that the operation succeeded.
 alert("Media item moved to deleted items folder.");}

else
 // Tell the user the operation is unnecessary.
 alert("Media item is already deleted!");
 }

Requirements

Version: Windows Media Player version 7.0, Windows Media Player version 7.1, or Windows Media Player
for Windows XP. This method is not supported for Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object
MediaCollection Object
MediaCollection.setDeleted
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

MediaCollection.remove
The remove method removes an item from the media collection.

Previous Next

Previous Next

Syntax

player.mediaCollection.remove(item, delete)

Parameters

 item

Media object to be removed.

 delete

Boolean indicating whether to remove the media item.

Return Values

This method does not return a value.

Remarks

This method deletes an item from Media Library. This method does not delete files from the user's hard disk.

To use this method, full access to Media Library is required. For more information, see Media Library Access.

Example Code

The following JScript example, after prompting the user, permanently deletes the first media item in the media
collection using MediaCollection.remove. The Player object was created with ID = "Player".

// Retrieve the first item from the media collection.
var mediaObject = Player.mediaCollection.getAll().item(0);

// Store the name of the retrieved object.
var mediaName = mediaObject.name;

// Prompt the user for permission to delete the object.
var answer = confirm("OK to permanently delete " + mediaName + "?");

// Check the user response.
if (answer){

 // Permanently delete the item.
 Player.mediaCollection.remove(mediaObject, true);

 // Report that the item was deleted.
 alert("Deleted item " + mediaName);
}

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object
MediaCollection Object
MediaCollection.add
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

MediaCollection.setDeleted
The setDeleted method moves the specified media item to the deleted items folder.

Syntax

player.mediaCollection.setDeleted(item, true)

Parameters

 item

Media object being moved.

 true

Always specify this value.

Return Values

This method does not return a value.

Remarks

This method does not remove files from the user's hard disk.

To use this method, full access to Media Library is required. For more information, see Media Library Access.

Example Code

The following JScript example uses MediaCollection.setDeleted to move a particular media item, stored in the

Previous Next

Previous Next

variable named mediaObject, to the deleted items folder. The MediaCollection.isDeleted method first tests
whether the media item is already deleted. The Player object was created with ID = "Player".

 // Test whether the media item is in the deleted items folder.
 if (!Player.mediaCollection.isDeleted(mediaObject)){

 // The media item is available to be deleted; move it to
 // the deleted items folder.
 Player.mediaCollection.setDeleted(mediaObject, true);

 // Inform the user that the operation succeeded.
 alert("Media item moved to deleted items folder.");}

 else
 // Tell the user the operation is unnecessary.
 alert("Media item is already deleted!");
 }

Requirements

Version: Windows Media Player version 7.0, Windows Media Player version 7.1, or Windows Media Player
for Windows XP. This method is not supported for Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object
MediaCollection Object
MediaCollection.isDeleted
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

MetadataPicture Object
The MetadataPicture object provides a way to retrieve the values of the WM/Picture metadata attribute. This
attribute corresponds to album art contained in a digital media file, not to album art downloaded over the
Internet.

The MetadataPicture object supports the following properties.

Previous Next

Previous Next

The MetadataPicture object is accessed through the following method.

For purposes of illustration, player.currentMedia.getItemInfoByType(name, language, index) is used in the
reference syntax sections.

See Also

Object Model Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

MetadataPicture.description
The description property retrieves a description of the metadata image.

Syntax

player.currentMedia.getItemInfoByType(name, language, index).description

Possible Values

This property is a read-only String.

Remarks

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

Property Description

description Retrieves a description of the metadata image.

mimeType Retrieves the MIME type of the metadata image.

pictureType Retrieves the picture type of the metadata image.

URL Retrieves the URL of the metadata image.

Object Method

Media getItemInfoByType

Previous Next

Previous Next

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

MetadataPicture Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

MetadataPicture.mimeType
The mimeType property retrieves the standard MIME type of the metadata image.

Syntax

player.currentMedia.getItemInfoByType(name, language, index).mimeType

Possible Values

This property is a read-only String.

Remarks

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

Previous Next

Previous Next

See Also

MetadataPicture Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

MetadataPicture.pictureType
The pictureType property retrieves the picture type of the metadata image.

Syntax

player.currentMedia.getItemInfoByType(name, language, index).pictureType

Possible Values

This property is a read-only String.

Remarks

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

MetadataPicture Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

MetadataPicture.URL
The URL property retrieves the URL of the metadata image.

Syntax

player.currentMedia.getItemInfoByType(name, language, index).URL

Possible Values

This property is a read-only String.

Remarks

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

MetadataPicture Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

MetadataText Object
The MetadataText object provides a way to retrieve metadata for complex textual metadata attributes.

The MetadataText object supports the following properties.

The MetadataText object is accessed through the following method.

For purposes of illustration, player.currentMedia.getItemInfoByType(name, language, index) is used in the
reference syntax sections.

See Also

Object Model Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

MetadataText.description
The description property retrieves a description of the metadata text.

Syntax

player.currentMedia.getItemInfoByType(name, language, index).description

Possible Values

This property is a read-only String.

Property Description

description Retrieves a description of the metadata text.

text Retrieves the metadata text.

Object Method

Media getItemInfoByType

Previous Next

Previous Next

Remarks

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

MetadataText Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

MetadataText.text
The text property retrieves the metadata text.

Syntax

player.currentMedia.getItemInfoByType(name, language, index).text

Possible Values

This property is a read-only String.

Remarks

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

Requirements

Version: Windows Media Player 9 Series or later.

Previous Next

Previous Next

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

MetadataText Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Network Object
The Network object provides properties and methods used to access statistics relating to the quality of a
network connection, and to specify and retrieve the network proxy settings.

The Network object supports the following properties.

Previous Next

Previous Next

Property Description

bandWidth Retrieves the current bandwidth of the clip.

bitRate Retrieves the current bit rate being received.

bufferingCount Retrieves the number of times buffering occurred during clip playback.

bufferingProgress Retrieves the percentage of buffering completed.

bufferingTime Specifies or retrieves the amount of buffering time in milliseconds
before playing begins.

downloadProgress Retrieves the percentage of download completed.

encodedFrameRate Retrieves the video frame rate specified by the content author.

frameRate Retrieves the current video frame rate.

framesSkipped Retrieves the total number of frames skipped during playback.

lostPackets Retrieves the number of packets lost.

maxBandwidth Specifies or retrieves the maximum allowed bandwidth.

maxBitRate Retrieves the maximum possible video bit rate.

The Network object supports the following methods.

The Network object is accessed through the following property.

See Also

Object Model Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

receivedPackets Retrieves the number of packets received.

receptionQuality Retrieves the percentage of packets received in the last 30 seconds.

recoveredPackets Retrieves the number of recovered packets.

sourceProtocol Retrieves the source protocol used to receive data.

Method Description

getProxyBypassForLocal Retrieves a value indicating whether the proxy server should by
bypassed if the origin server is on a local network.

getProxyExceptionList Retrieves the proxy exception list.

getProxyName Retrieves the name of a proxy server to use.

getProxyPort Retrieves the proxy port to use.

getProxySettings Retrieves the proxy setting for a given protocol.

setProxyBypassForLocal Specifies a value indicating whether the proxy server should by
bypassed if the origin server is on a local network.

setProxyExceptionList Specifies the proxy exception list.

setProxyName Specifies the name of a proxy server to use.

setProxyPort Specifies the proxy port to use.

setProxySettings Specifies the proxy setting for a given protocol.

Object Property

Player network

Previous Next

Previous Next

Network.bandWidth
The bandWidth property retrieves the current bandwidth of the clip.

Syntax

player.network.bandWidth

Possible Values

This property is a read-only Number (long).

Remarks

This property returns zero if the Player.URL property is not set. This property is only valid for streaming
media.

Example Code

The following Microsoft JScript example uses Network.bandWidth to display the current media bandwidth.
The information is displayed in an HTML DIV created with ID = "BW". The Player object was created with ID
= "Player".

<!-- Create an event handler for play state.-->
<SCRIPT FOR = Player EVENT = PlayStateChange()>

 switch (Player.playState){

 case 3:

 if (Player.network.bandwidth != 0){

 BW.innerHTML = "Current Bandwidth: " + Player.network.bandWidth;
 BW.innerHTML += " K bits/second";
 }

 else
 BW.innerHTML = "Bandwidth is only available for streaming media.";

 break;

 default:
}
</SCRIPT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object
Player.URL

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.bitRate
The bitRate property retrieves the current bit rate being received.

Syntax

player.network.bitRate

Possible Values

This property is a read-only Number (long).

Remarks

This value is a combination of the bit rates of both the current video and audio streams.

Example Code

The following JScript example uses Network.bitRate to display the current media bit rate. The information is
displayed in an HTML DIV created with ID = "BR". The Player object was created with ID = "Player".

<!—-Create an event handler. -->
<SCRIPT FOR = Player EVENT = PlayStateChange()>
 switch (Player.playState){

 case 3:

 if (Player.network.bitRate){

 BR.innerHTML = "Current Bit Rate: " + Player.network.bitRate;
 BR.innerHTML += " K bits/second";
 }

 break;

 default:
 }
</SCRIPT>

Previous Next

Previous Next

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.bufferingCount
The bufferingCount property retrieves the number of times buffering occurred during clip playback.

Syntax

player.network.bufferingCount

Possible Values

This property is a read-only Number (long).

Remarks

Each time playback is stopped and restarted, this property is set to zero. It is not reset if playback is paused.

Buffering only applies to streaming content. This property returns valid information only during run time when
the Player.URL property is set.

Example Code

The following JScript example uses Network.bufferingCount to display the number of times buffering occurs
during playback. The information is displayed in an HTML DIV created with ID = "CB". The Player object was
created with ID = "Player".

<!-- Create an event handler. -->
<SCRIPT FOR = Player EVENT = buffering(Start)>
 if (true == Start)

Previous Next

Previous Next

 CB.innerHTML = "Buffering count: " + Player.network.bufferingCount;
</SCRIPT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object
Player.URL

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.bufferingProgress
The bufferingProgress property retrieves the percentage of buffering completed.

Syntax

player.network.bufferingProgress

Possible Values

This property is a read-only Number (long).

Remarks

Each time playback is stopped and restarted, this property is set to zero. It is not reset if playback is paused.

Buffering only applies to streaming content. This property returns valid information only during run time, when
the Player.URL property is set.

Use the Player.Buffering event to determine when buffering starts or stops.

Example Code

The following JScript example uses Network.bufferingProgress to display the percentage of buffering

Previous Next

Previous Next

completed. The information is displayed in an HTML DIV created with ID = "BP". The example uses a timer
with a 1-second interval to update the display. The Player object was created with ID = "Player".

<!-- Create an event handler for buffering. -->
<SCRIPT FOR = Player EVENT = buffering(Start)>
 var idI; // Variable for the interval id.

 // Test whether buffering has started or stopped.
 if (true == Start){
 // Start the timer. Call the function to update the display every second.
 idI = window.setInterval("UpdateBP()", 1000);
 }

 else{
 // Buffering is complete. Stop the timer.
 window.clearInterval(idI);
 }
</SCRIPT>

<!-- Put the function to update the display in a separate code block. -->
<SCRIPT>
function UpdateBP(){
 BP.innerHTML = "";
 BP.innerHTML = "Buffering progress: " + Player.network.bufferingProgress;
 BP.innerHTML += " percent complete";
}
</SCRIPT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object
Player.Buffering Event
Player.URL

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.bufferingTime

Previous Next

Previous Next

The bufferingTime property specifies or retrieves the amount of time in milliseconds allocated for buffering
incoming data before playing begins.

Syntax

player.network.bufferingTime

Possible Values

This property is a read/write Number (long) ranging from zero to 60,000 with a default value of 5,000.

Example Code

The following JScript example uses Network.bufferingTime to specify the number of seconds allocated for
buffering incoming data. The information is retrieved from an HTML TEXT INPUT element created with ID =
"bufText". The Player object was created with ID = "Player".

<!-- Create a BUTTON element to change the bufferingTime value. -->
<INPUT TYPE = "BUTTON" NAME = "bufTime" ID = "bufTime"
 VALUE = "Change Buffer Time"
 onClick = "
 /* Test whether the user entered a valid value. */
 if (bufText.value >= 0 & bufText.value <= 60)
 Player.network.bufferingTime = bufText.value * 1000;
 else
 alert('Buffering time must be between 0 and 60.');
 ">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.downloadProgress

Previous Next

Previous Next

The downloadProgress property retrieves the percentage of download completed.

Syntax

player.network.downloadProgress

Possible Values

This property is a read-only Number (long).

Remarks

When the Windows Media Player control is connected to a media file that can be played and downloaded at the
same time, the downloadProgress property returns the percentage of the total file that has been downloaded.
This feature is currently supported only on Web servers. The following file formats can be downloaded and
played simultaneously:

Advanced Systems Format (ASF)
Windows Media Audio (WMA)
Windows Media Video (WMV)
MP3
MPEG
WAV
Some AVI files

Use the Player.Buffering event to determine when the downloading begins and ends.

Example Code

The following JScript example uses Network.downloadProgress to display the percentage of downloading
completed. The information is displayed in an HTML DIV created with ID = "DP". The example uses a timer
with a 1 second interval to update the display. The Player object was created with ID = "Player".

<!-- Create an event handler for buffering. -->
<SCRIPT FOR = Player EVENT = buffering(Start)>
 var idI; // Variable for the interval id.

 // Test whether downloading has started or stopped.
 if (true == Start){
 // Start the timer. Call the function to update the display.
 idI = window.setInterval("UpdateDP()", 1000);
 }
 else{
 // Downloading is complete. Stop the timer.
 window.clearInterval(idI);
 }
</SCRIPT>

<!-- Put the function to update the display in a separate code block. -->
<SCRIPT>
function UpdateDP(){
 DP.innerHTML = "";
 DP.innerHTML = "Download progress: " + Player.network.downloadProgress;
 DP.innerHTML += " percent complete";
}
</SCRIPT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object
Player.Buffering Event

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.encodedFrameRate
The encodedFrameRate property retrieves the video frame rate specified by the content author in frames per
second.

Syntax

player.network.encodedFrameRate

Possible Values

This property is a read-only Number (long).

Example Code

The following JScript example uses Network.encodedFrameRate to display the frame rate specified when the
file was encoded. The information is displayed in an HTML DIV created with ID = "FR". The Player object
was created with ID = "Player".

<!-- Create an event handler for play state. -->
<SCRIPT FOR = Player EVENT = PlayStateChange(NewState)>
 switch (NewState){
 case 3:
 // Display the encoded frame rate.
 FR.innerHTML = "Encoded Frame Rate: ";
 FR.innerHTML += Player.network.encodedFrameRate;
 break;

Previous Next

Previous Next

 default:
 }
</SCRIPT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object
Network.frameRate

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.frameRate
The frameRate property retrieves the current video frame rate in frames per hundred seconds. For example, a
value of 2998 indicates 29.98 frames per second.

Syntax

player.network.frameRate

Possible Values

This property is a read-only Number (long).

Example Code

The following JScript example uses Network.frameRate to display the current frame rate. The information is
displayed in an HTML DIV created with ID = "FR". The Player object was created with ID = "Player".

<!-- Create an event handler for play state. -->
<SCRIPT FOR = Player EVENT = PlayStateChange(NewState)>
 switch (NewState){
 case 3:
 // Display the current frame rate.
 FR.innerHTML = "Frame Rate: ";

Previous Next

Previous Next

 FR.innerHTML += Player.network.frameRate;
 break;

 default:
 }
</SCRIPT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object
Network.encodedFrameRate

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.framesSkipped
The framesSkipped property retrieves the total number of frames skipped during playback.

Syntax

player.network.framesSkipped

Possible Values

This property is a read-only Number (long).

Example Code

The following JScript example uses Network.framesSkipped to display the total number of frames skipped
during playback when the user clicks a button. The information is displayed in an HTML DIV created with ID
= "FS". The Player object was created with ID = "Player".

<!-- Create an HTML BUTTON element. -->
<INPUT TYPE = "BUTTON" ID = "skipped" NAME = "skipped"
 VALUE = "Count frames skipped"

Previous Next

Previous Next

 onClick = "FS.innerHTML = 'Frames skipped: ' + Player.network.framesSkipped;">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.getProxyBypassForLocal
The getProxyBypassForLocal method retrieves a value indicating whether the proxy server is bypassed if the
origin server is on a local network.

Syntax

player.network.getProxyBypassForLocal(protocol)

Parameters

 protocol

String specifying the protocol name. For a list of supported protocols, see Supported Protocols and File Types.

Return Values

This method returns a Boolean indicating whether the proxy server is bypassed. The value returned is
meaningful only when getProxySettings returns a value of two (use manual settings).

Remarks

This method fails unless the calling application is running on the local computer or intranet.

Example Code

Previous Next

Previous Next

The following JScript example uses Network.getProxyBypassForLocal to display whether Windows Media
Player is set to bypass the proxy server for local addresses. The Player object was created with ID = "Player".

// Test whether the HTTP proxy settings are manual.
if (Player.network.getProxySettings("HTTP") == 2)

 // Get the proxy bypass for local value for HTTP.
 var proxyBypassForLocalHTTP = Player.network.getProxyBypassForLocal("HTTP");

// Test whether the MMS proxy settings are manual.
if (Player.network.getProxySettings("MMS") == 2)

 // Get the proxy bypass for local value for MMS.
 var proxyBypassForLocalMMS = Player.network.getProxyBypassForLocal("MMS");

// Display the proxy bypass for local values in the browser client area.
// Unavailable proxy bypass for local values will display as "undefined".
document.write("The current HTTP proxy bypass for local value: " + proxyBypassForLocalHTTP
document.write("
");
document.write("The current MMS proxy bypass for local value: " + proxyBypassForLocalMMS);

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object
Network.getProxySettings

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.getProxyExceptionList
The getProxyExceptionList method retrieves the proxy exception list.

Syntax

player.network.getProxyExceptionList(protocol)

Previous Next

Previous Next

Parameters

 protocol

String specifying the protocol name. For a list of supported protocols, see Supported Protocols and File Types.

Return Values

This method returns a String specifying a semicolon-delimited list of hosts for which the proxy server is
bypassed. The value returned is meaningful only when getProxySettings returns a value of two (use manual
settings).

Remarks

This is a list of computers, domains, and/or addresses that will bypass the proxy server when the host portion of
the target URL matches an entry in the list.

The * character can be used as a wildcard for listing entries. For example, *.com would match all hosts in the
com domain while 67.* would match all hosts in the 67 class A subnet.

This method fails unless the calling application is running on the local computer or intranet.

Example Code

The following JScript example uses Network.getProxyExceptionList to display the lists of bypassed proxies
for the MMS and HTTP protocols. The player object was created with ID = "Player".

// Test whether the HTTP proxy settings are manual.
if (Player.network.getProxySettings("HTTP") == 2)

 // Get the proxy exception list for HTTP.
 var proxyExceptionListHTTP = Player.network.getProxyExceptionList("HTTP");

// Test whether the MMS proxy settings are manual.
if (Player.network.getProxySettings("MMS") == 2)

 // Get the proxy exception list for MMS.
 var proxyExceptionListMMS = Player.network.getProxyExceptionList("MMS");

// Display the proxy exception lists in the browser client area.
// Unavailable proxy exception lists will display as "undefined".
document.write("The current HTTP proxy exception list: " + proxyExceptionListHTTP);
document.write("
");
document.write("The current MMS proxy exception list: " + proxyExceptionListMMS);

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object
Network.getProxySettings

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.getProxyName
The getProxyName method retrieves the name of the proxy server being used.

Syntax

player.network.getProxyName(protocol)

Parameters

 protocol

String specifying the protocol name. For a list of supported protocols, see Supported Protocols and File Types.

Return Values

This method returns a String containing the name of the proxy server being used. The value returned is
meaningful only when getProxySettings returns a value of 2 (use manual settings).

Remarks

This method fails unless the calling application is running on the local computer or intranet.

Example Code

The following JScript example uses Network.getProxyName to display the Windows Media Player proxy
server names for the HTTP and MMS protocols. The Player object was created with ID = "Player".

// Test whether the HTTP proxy settings are manual.
if (Player.network.getProxySettings("HTTP") == 2)

 // Get the proxy server name for HTTP.
 var proxyNameHTTP = Player.network.getProxyName("HTTP");

// Test whether the MMS proxy settings are manual.
if (Player.network.getProxySettings("MMS") == 2)

 // Get the proxy server name for MMS.

Previous Next

Previous Next

 var proxyNameMMS = Player.network.getProxyName("MMS");

// Display the proxy server names in the browser client area.
// Unavailable proxy server names will display as "undefined".
document.write("The current HTTP proxy server name is: " + proxyNameHTTP);
document.write("
");
document.write("The current MMS proxy server name is: " + proxyNameMMS);

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object
Network.getProxySettings

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.getProxyPort
The getProxyPort method retrieves the proxy port being used.

Syntax

player.network.getProxyPort(protocol)

Parameters

 protocol

String specifying the protocol name. For a list of supported protocols, see Supported Protocols and File Types.

Return Values

This method returns a Number (long) containing the proxy port being used. The value returned is meaningful
only when getProxySettings returns a value of two (use manual settings).

Remarks

Previous Next

Previous Next

This method fails unless the calling application is running on the local computer or intranet.

Example Code

The following JScript example uses Network.getProxyPort to display the current Windows Media Player proxy
port numbers for the MMS and HTTP protocols. The Player object was created with ID = "Player".

// Test whether the HTTP proxy settings are manual.
if (Player.network.getProxySettings("HTTP") == 2)

 // Get the proxy port number for HTTP.
 var proxyPortHTTP = Player.network.getProxyPort("HTTP");

// Test whether the MMS proxy settings are manual.
if (Player.network.getProxySettings("MMS") == 2)

 // Get the proxy port number for MMS.
 var proxyPortMMS = Player.network.getProxyPort("MMS");

// Display the port numbers in the browser client area.
// Unavailable port numbers will display as "undefined".
document.write("The current HTTP proxy port is: " + proxyPortHTTP);
document.write("
");
document.write("The current MMS proxy port is: " + proxyPortMMS);

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object
Network.getProxySettings

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.getProxySettings
The getProxySettings method retrieves the proxy setting for a given protocol.

Previous Next

Previous Next

Syntax

player.network.getProxySettings(protocol)

Parameters

 protocol

String specifying the protocol name. For a list of supported protocols, see Supported Protocols and File Types.

Return Values

This method returns a Number (long) containing one of the following values.

Remarks

This method fails unless the calling application is running on the local computer or intranet.

Example Code

The following JScript example uses Network.getProxySettings to display a message, which gives information
about the current proxy settings of the Player, in the browser window. The Player object was created with ID =
"Player".

// Retrieve a number representing the current proxy settings.
var proxySetting = Player.network.getProxySettings("MMS");

// Display the message the corresponds to the current settings.
switch(proxySetting){

 case 0:
 document.write("A proxy server is not being used");
 break;

 case 1:
 document.write("The proxy settings for the current browser are being used.");
 break;

 case 2:
 document.write("The manually specified proxy settings are being used.");
 break;

case 3:
 document.write("The proxy settings are being auto-detected.");
 break;

Value Description

0 A proxy server is not being used.

1 The proxy settings for the current browser are being used (only valid for
HTTP).

2 The manually specified proxy settings are being used.

3 The proxy settings are being auto-detected.

 default:
 document.write("Unable to determine proxy setting, try again.");
}

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.lostPackets
The lostPackets property retrieves the number of packets lost.

Syntax

player.network.lostPackets

Possible Values

This property is a read-only Number (long).

Remarks

This property is only valid for streaming media, and will equal zero when using the HTTP protocol, which is
lossless.

Packets may be lost for a number of reasons, such as the type and quality of the network connection.

Each time playback is stopped and restarted, this property is set to zero. It is not reset if playback is paused and
restarted. This property returns valid information only during run time, and only if the Player.URL property is
set.

Example Code

Previous Next

Previous Next

The following JScript example uses Network.lostPackets to display the total number of packets lost during
playback when the user clicks a button. The information is displayed in an HTML DIV created with ID = "LP".
The Player object was created with ID = "Player".

<!-- Create an HTML BUTTON element. -->
<INPUT TYPE = "BUTTON" ID = "lostpkts" NAME = "lostpkts"
 VALUE = "Count lost packets"
 onClick = "LP.innerHTML = 'Packets lost: ' + Player.network.lostPackets;">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object
Player.URL

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.maxBandwidth
The maxBandwidth property specifies or retrieves the maximum allowed bandwidth.

Syntax

player.network.maxBandwidth

Possible Values

This property is a read/write Number (long).

Remarks

This property has no default value. Its value can be specified while the Player is playing, but the change will not
take effect until the current media item is released by opening another one or by calling Player.close. The
Player attempts to achieve the highest bandwidth possible. Only in the case of the value being set will any
throttling occur.

Previous Next

Previous Next

This setting is useful for throttling the amount of bandwidth used, particularly in the case of a multiple bit rate
(MBR) stream. An MBR stream contains multiple streams with different bit rates. In some cases, it may be
desirable to use a stream with a lower bit rate than the client requires. In this case, setting the maxBandwidth
property will select a lower bit-rate stream. For example, assume that an MBR stream includes streams encoded
at 20 kilobits per second (Kbps), 37 Kbps and 200 Kbps. The user's machine has a T1 connection. However, if
the desire is to use much less bandwidth than is available, setting the maxBandwidth property to 50,000 (50
Kbps) will select the 37 Kbps stream instead of the 200 Kbps stream.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object
Player.close

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.maxBitRate
The maxBitRate property retrieves the maximum possible video bit rate.

Syntax

player.network.maxBitRate

Possible Values

This property is a read-only Number (long).

Requirements

Version: Windows Media Player version 7.0 or later.

Previous Next

Previous Next

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.receivedPackets
The receivedPackets property retrieves the number of packets received.

Syntax

player.network.receivedPackets

Possible Values

This property is a read-only Number (long).

Remarks

Each time clip playback is stopped and restarted, this property is set to zero. It is not reset if file playback is
paused.

Example Code

The following JScript example uses Network.receivedPackets to display the number of packets received. The
information is displayed in an HTML DIV created with ID = "RP". The example uses a timer with a 1-second
interval to update the display. The Player object was created with ID = "Player".

<!-- Create an event handler for play state change. -->
<SCRIPT FOR = Player EVENT = PlayStateChange(NewState)>

 var idI; // Variable for the interval id.

 // Test whether packets may be arriving.
 switch (NewState){
 case 1, 2, 4, 5, 7, 8, 9:
 window.clearInterval(idI);
 break;

Previous Next

Previous Next

 default:
 idI = window.setInterval("UpdateRP()", 1000);

 }</SCRIPT>

<!-- Put the function to update the display in a separate code block. -->
<SCRIPT>
function UpdateRP(){
 RP.innerHTML = "";
 RP.innerHTML = "Packets received: " + Player.network.receivedPackets;
}

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.receptionQuality
The receptionQuality property retrieves the percentage of packets received in the last 30 seconds.

Syntax

player.network.receptionQuality

Possible Values

This property is a read-only Number (long).

Remarks

The number of packets received, lost, and recovered during streaming is monitored once every second.
receptionQuality is the percentage of packets not lost during the last 30 seconds.

Previous Next

Previous Next

Each time file playback is stopped and restarted, this property is set to zero. It is not reset if file playback is
paused.

This property returns valid information only during run time and only if the Player.URL property is also set.

Example Code

The following JScript example uses Network.receptionQuality to display the percentage of packets received.
The information is displayed in an HTML DIV created with ID = "RQ". The example uses a timer with a 30-
second interval to update the display. The Player object was created with ID = "Player".

<!-- Create an event handler for play state change. -->
<SCRIPT FOR = Player EVENT = PlayStateChange(NewState)>
 var idI; // Variable for the interval id.

 // Test whether content is playing.
 if (3 == NewState){
 // Start the timer. Update the display every 30 seconds.
 idI = window.setInterval("UpdateRQ()", 30000);
 }

 else{
 // Not playing; stop the timer.
 window.clearInterval(idI);
 }
</SCRIPT>

<!-- Put the function to update the display in a separate code block. -->
<SCRIPT>
function UpdateRQ(){
 RQ.innerHTML = "";
 RQ.innerHTML = "Reception quality: " + Player.network.receptionQuality;
 RQ.innerHTML += "%";
}
</SCRIPT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object
Player.URL

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Network.recoveredPackets
The recoveredPackets property retrieves the number of recovered packets.

Syntax

player.network.recoveredPackets

Possible Values

This property is a read-only Number (long).

Remarks

Each time file playback is stopped and restarted, this property is set to zero. It is not reset if file playback is
paused.

This property returns valid information only during run time and only if the Player.URL property is also set. It
will equal zero when using the HTTP protocol, which is lossless.

Example Code

The following JScript example uses Network.recoveredPackets to display the number of recovered packets.
The information is displayed in an HTML DIV created with ID = "PR". The example uses a timer with a 1-
second interval to update the display. The Player object was created with ID = "Player".

<!-- Create an event handler for play state change. -->
<SCRIPT FOR = Player EVENT = PlayStateChange(NewState)>
 var idI; // Variable for the interval id.

 // Test whether content is playing.
 if (3 == NewState){
 // Start the timer. Call the function to update the display every second.
 idI = window.setInterval("UpdatePR()", 1000);
 }
 else{
 // Not playing; stop the timer.
 window.clearInterval(idI);
 }
</SCRIPT>

<!-- Put the function to update the display in a separate code block. -->
<SCRIPT>
function UpdatePR(){
 PR.innerHTML = "";
 PR.innerHTML = "Packets recovered: " + Player.network.recoveredPackets;
}
</SCRIPT>

Previous Next

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object
Player.URL

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.setProxyBypassForLocal
The setProxyBypassForLocal method specifies a value indicating whether the proxy server is bypassed if the
origin server is on a local network.

Syntax

player.network.setProxyBypassForLocal(protocol, bypass)

Parameters

 protocol

String specifying the protocol name. For a list of supported protocols, see Supported Protocols and File Types.

 bypass

Boolean specifying whether the proxy server is bypassed.

Return Values

This method does not return a value.

Remarks

This method has no effect unless getProxySettings returns a value of 2 (use manual settings).

Previous Next

Previous Next

This method fails unless the calling application is running on the local computer or intranet.

Example Code

The following JScript example uses Network.setProxyBypassForLocal to specify whether the Windows Media
Player proxy server is bypassed, when using the MMS protocol, if the origin server is on a local network. The
Player object was created with ID = "Player".

// Test whether the proxy settings are manual.
if (Player.network.getProxySettings("MMS") == 2){

 // Prompt the user for a setting. Store the response in a variable.
 var proxybypass = confirm("Bypass proxy server for local addresses? \n OK = Yes \n Canc

 // Set the proxy bypass value using the user input.
 Player.network.setProxyBypassForLocal("MMS", proxybypass);
}

else

// Warn that proxy settings must be set to 2.
alert("Proxy settings must be manual!");

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.setProxyExceptionList
The setProxyExceptionList method specifies the proxy exception list.

Syntax

player.network.setProxyExceptionList(protocol, list)

Previous Next

Previous Next

Parameters

 protocol

String specifying the protocol name. For a list of supported protocols, see Supported Protocols and File Types.

 list

String specifying a semicolon-delimited list of hosts for which the proxy server is bypassed. Leading and
trailing spaces and semicolons should not be present.

Return Values

This method does not return a value.

Remarks

This is a list of computers, domains, and/or addresses that will bypass the proxy server when the host portion of
the target URL matches an entry in the list.

The * character can be used as a wildcard for listing entries. For example, *.com would match all hosts in the
com domain, while 67.* would match all hosts in the 67 class A subnet.

This method has no effect unless getProxySettings returns a value of 2 (use manual settings).

This method fails unless the calling application is running on the local computer or intranet.

Example Code

The following JScript example uses Network.setProxyExceptionList to specify a list of hosts for which the
proxy server is bypassed when using the MMS protocol. The new list is retrieved from an HTML TEXT
element with ID = "XLIST". The Player object was created with ID = "Player".

// Test whether proxy settings are manual.
if (Player.network.getProxySettings("MMS") == 2){

 // Store the user's new exception list.
 var proxyxlist = XLIST.value;

 // Set the exception list.
 Player.network.setProxyExceptionList("MMS", proxyxlist);
}

else

// Warn that the proxy settings must be set to 2.
alert("Proxy settings must be manual!");

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.setProxyName
The setProxyName method specifies the name of the proxy server to use.

Syntax

player.network.setProxyName(protocol, name)

Parameters

 protocol

String specifying the protocol name. For a list of supported protocols, see Supported Protocols and File Types.

 name

String specifying the name of the proxy server to use.

Return Values

This method does not return a value.

Remarks

This method has no effect unless getProxySettings returns a value of 2 (use manual settings).

This method fails unless the calling application is running on the local computer or intranet.

Example Code

The following JScript example uses Network.setProxyName to specify the name of the Windows Media Player
proxy server for the MMS protocol. The new name is retrieved from an HTML TEXT element with ID =
"NAME". The Player object was created with ID = "Player".

Previous Next

Previous Next

// Test whether proxy settings are manual.
if (Player.network.getProxySettings("MMS") == 2){

 // Store the new proxy server name specified by the user.
 var proxyname = NAME.value;

 // Set the proxy server name.
 Player.network.setProxyName("MMS", proxyname);
}

else

// Warn that proxy settings must be set to 2.
alert("Proxy settings must be manual!");

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.setProxyPort
The setProxyPort method specifies the proxy port to use.

Syntax

player.network.setProxyPort(protocol, port)

Parameters

 protocol

String specifying the protocol name. For a list of supported protocols, see Supported Protocols and File Types.

 port

Previous Next

Previous Next

Number (long) specifying the proxy port to use.

Return Values

This method does not return a value.

Remarks

This method has no effect unless getProxySettings returns a value of 2 (use manual settings).

This method fails unless the calling application is running on the local computer or intranet.

Example Code

The following JScript example uses Network.setProxyPort to specify the Windows Media Player proxy port
number for the MMS protocol. The port number is retrieved from an HTML INPUT element with ID =
"PORT". The Player object was created with ID = "Player".

// Test whether proxy settings are manual.
if (Player.network.getProxySettings("MMS") == 2){

 // Store the port number specified by the user.
 var portnumber = PORT.value;

 // Set the port number for the MMS protocol.
 Player.network.setProxyPort("MMS", portnumber);
}

else

// Warn that proxy settings must be set to 2.
alert("Proxy settings must be manual!");

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Network.setProxySettings
The setProxySettings method specifies the proxy setting for a given protocol.

Syntax

player.network.setProxySettings(protocol, setting)

Parameters

 protocol

String specifying the protocol name. For a list of supported protocols, see Supported Protocols and File Types.

 setting

Number (long) containing one of the following values.

Return Values

This method does not return a value.

Remarks

This method fails unless the calling application is running on the local computer or intranet.

Example Code

The following example uses JScript with an HTML SELECT element to allow the user to specify the Windows
Media Player proxy setting for the HTTP protocol. The Player object was created with ID = "Player".

<SELECT ID = HTTPsetproxy NAME = "HTTPsetproxy" LANGUAGE="JScript"
 onChange = "
 /* Store the current selection.*/
 var setting = this.value;

 /* Change the proxy setting. */

Previous Next

Value Description

0 Do not use a proxy server.

1 Use the proxy settings of the current browser (only valid for HTTP).

2 Use the manually specified proxy settings.

3 Auto-detect the proxy settings.

 Player.network.setProxySettings('HTTP', setting);
">

<OPTION VALUE=0>Do not use a proxy server
<OPTION VALUE=1>Use the browser settings
<OPTION VALUE=2>Use manual settings
<OPTION VALUE=3>Auto-detect settings

</SELECT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Network.sourceProtocol
The sourceProtocol property retrieves the source protocol used to receive data.

Syntax

player.network.sourceProtocol

Possible Values

This property is a read-only String.

Remarks

This property is set to "" (empty string) when playing media from a CD or DVD.

Example Code

The following JScript example uses Network.sourceProtocol to display the source protocol used to receive

Previous Next

Previous Next

data. The information is displayed in an HTML DIV created with ID = "SP". The Player object was created
with ID = "Player".

<!-- Create an event handler for play state change. -->
<SCRIPT FOR = Player EVENT = PlayStateChange(NewState)>
 if (3 == NewState){
 SP.innerHTML = "Source protocol: " + Player.network.sourceProtocol;
 }
</SCRIPT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player Object
The Player object is the root object for the Windows Media Player control. It supports the properties, methods,
and events listed in the following tables.

The Player object supports the following properties. Properties marked with an asterisk (*) are not accessible to
skins.

Previous Next

Previous Next

Property Description

cdromCollection Retrieves the CdromCollection object.

closedCaption Retrieves the ClosedCaption object.

controls Retrieves the Controls object.

currentMedia Specifies or retrieves the current Media object.

currentPlaylist Specifies or retrieves the current Playlist object.

* Not accessible to skins.

dvd Retrieves the DVD object.

enableContextMenu * Specifies or retrieves a value indicating whether to
enable the context menu, which appears when the
right mouse button is clicked.

enabled * Specifies or retrieves a value indicating whether the
Windows Media Player control is enabled.

error Retrieves the Error object.

fullScreen * Specifies or retrieves a value indicating whether
video content is played back in full-screen mode.

isOnline Retrieves a value indicating whether the user is
connected to a network.

isRemote * Retrieves a value indicating whether the Windows
Media Player control is running in remote mode.

mediaCollection Retrieves the MediaCollection object.

network Retrieves the Network object.

openState Retrieves a value indicating the state of the content
source.

playerApplication * Retrieves the PlayerApplication object when a
remoted Windows Media Player control is running.

playlistCollection Retrieves the PlaylistCollection object.

playState Retrieves a value indicating the state of the
Windows Media Player operation.

settings Retrieves the Settings object.

status Retrieves a value indicating the current status of
Windows Media Player.

stretchToFit * Specifies or retrieves a value indicating whether
video will stretch to fit size of the Windows Media
Player control video display.

uiMode * Specifies or retrieves a value indicating which
controls are shown in the user interface when
Windows Media Player is embedded in a Web page.

URL Specifies or retrieves the name of the clip to play.

versionInfo Retrieves a String value specifying the version of
the Windows Media Player.

windowlessVideo * Specifies or retrieves a value indicating whether the
Windows Media Player control renders video in
windowless mode.

The Player object supports the following methods.

The Player object supports the following events. Events marked with an asterisk (*) are not accessible to skins.
For information about handling mouse and keyboard events in skins, see External Events.

Method Description

close Releases Windows Media Player resources.

launchURL Sends a URL to the user's default browser to be
rendered.

newMedia Creates a new Media object.

newPlaylist Creates a new Playlist object.

openPlayer Opens Windows Media Player using the specified
URL.

Event Description

AudioLanguageChange Occurs when the current audio language changes.

Buffering Occurs when the Windows Media Player control
begins or ends buffering.

CdromMediaChange Occurs when a CD or DVD is inserted into or
ejected from a CD-ROM or DVD-ROM drive.

Click * Occurs when the user clicks a mouse button.

CurrentItemChange Occurs when Controls.currentItem changes.

CurrentMediaItemAvailable Occurs when a graphic metadata item in the current
media item becomes available.

CurrentPlaylistChange Occurs when something changes within the current
playlist.

CurrentPlaylistItemAvailable Occurs when the current playlist item becomes
available.

Disconnect Reserved for future use.

DomainChange Occurs when the DVD domain changes.

DoubleClick * Occurs when the user double-clicks a mouse button.

DurationUnitChange Reserved for future use.

EndOfStream Reserved for future use.

Error Occurs when the Windows Media Player control has
an error condition.

KeyDown * Occurs when a key is pressed.

KeyPress * Occurs when a key is pressed and then released.

KeyUp * Occurs when a key is released.

MarkerHit Occurs when a marker is reached.

MediaChange Occurs when a media item changes.

MediaCollectionAttributeStringAdded Occurs when an attribute value is added to Media
Library.

MediaCollectionAttributeStringChanged Occurs when an attribute value in Media Library is
changed.

MediaCollectionAttributeStringRemoved Occurs when an attribute value is removed from
Media Library.

MediaCollectionChange Occurs when the media collection changes.

MediaError Occurs when the Media object has an error
condition.

ModeChange Occurs when a mode of the player is changed.

MouseDown * Occurs when a mouse button is pressed.

MouseMove * Occurs when the mouse pointer is moved.

MouseUp * Occurs when a mouse button is released.

NewStream Reserved for future use.

OpenPlaylistSwitch Occurs when a title on a DVD begins playing.

OpenStateChange Occurs when the Windows Media Player control
changes state.

PlayerDockedStateChange Occurs when a remoted Windows Media Player
control docks or undocks.

PlayerReconnect Occurs when a remoted Windows Media Player
control reconnects to Windows Media Player.

PlaylistChange Occurs when a playlist changes.

PlaylistCollectionChange Occurs when something changes in the playlist
collection.

PlaylistCollectionPlaylistAdded Occurs when a playlist is added to the playlist
collection.

PlaylistCollectionPlaylistRemoved Occurs when a playlist is removed from the playlist
collection.

PlaylistCollectionPlaylistSetAsDeleted Reserved for future use.

PlayStateChange Occurs when the play state of the Windows Media
Player control changes.

PositionChange Occurs when the current position of the media item
has been changed.

ScriptCommand Occurs when a synchronized command or URL is

* Not accessible to skins. For information about handling mouse and keyboard events in skins, see Ambient
Event Handlers.

When embedded in a Web page, the Player object can be accessed by using the ID value specified in the
OBJECT tag. Within a skin definition file, it is accessed by using the player global attribute. For illustration
purposes, player will be used as the object ID in the reference syntax sections.

See Also

Object Model Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.AudioLanguageChange Event
The AudioLanguageChange event occurs when the current audio language changes.

Syntax

AudioLanguageChange(LangID)

Parameters

 LangID

Number (long) specifying the new locale identifier (LCID).

Remarks

An LCID uniquely identifies a particular language dialect, called a locale.

received.

StatusChange Occurs when the status property changes value.

SwitchedToControl Occurs when a remoted Windows Media Player
control switches to the docked state.

SwitchedToPlayerApplication Occurs when a remoted Windows Media Player
control switches to the full mode of the Player.

Warning Reserved for future use.

Previous Next

Previous Next

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported Microsoft JScript file by using the parameter name given. This parameter name must be typed exactly
as shown, including capitalization.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls.currentAudioLanguage
Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.Buffering Event
The Buffering event occurs when the Windows Media Player control begins or ends buffering or downloading.

Syntax

Buffering(Start)

Parameters

 Start

Boolean containing one of the following values.

Remarks

Previous Next

Previous Next

Value Description

true Buffering has started.

false Buffering has ended.

Use this event to determine when buffering or downloading starts or stops. You can use the same event block
for both cases and test Network.bufferingProgress and Network.downloadProgress to determine whether
Windows Media Player is currently buffering or downloading content.

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file by using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network.bufferingProgress
Network.downloadProgress
Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.cdromCollection
The cdromCollection property retrieves the CdromCollection object.

Syntax

player.cdromCollection

Possible Values

This property is a read-only CdromCollection object.

Remarks

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

Previous Next

Previous Next

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

CdromCollection Object
Player Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.CdromMediaChange Event
The CdromMediaChange event occurs when a CD or DVD is inserted into or ejected from a CD-ROM or
DVD-ROM drive.

Syntax

CdromMediaChange(CdromNum)

Parameters

 CdromNum

Number (long) specifying the index of the CD-ROM drive.

Remarks

The index of the CD-ROM drive corresponds to the index of a Cdrom object in the CdromCollection.

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Previous Next

Previous Next

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Cdrom Object
CdromCollection Object
Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.Click Event
The Click event occurs when the user clicks a mouse button.

Syntax

Click(nButton, nShiftState, fX, fY)

Parameters

 nButton

Number (int) specifying a bit field with bits corresponding to the left button (bit 0), right button (bit 1), and
middle button (bit 2). These bits correspond to the values 1, 2, and 4, respectively. Only one of the bits is set,
indicating the button that caused the event.

 nShiftState

Number (int) specifying a bit field with the least significant bits corresponding to the SHIFT key (bit 0), the
CTRL key (bit 1), and the ALT key (bit 2). These bits correspond to the values 1, 2, and 4, respectively. The
shift argument indicates the state of these keys. Some, all, or none of the bits can be set, indicating that some,
all, or none of the keys are pressed.

 fX

Number (long) specifying the x coordinate of the mouse pointer relative to the upper left-hand corner of the
control.

Previous Next

Previous Next

 fY

Number (long) specifying the y coordinate of the mouse pointer relative to the upper left-hand corner of the
control.

Remarks

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.close
The close method releases Windows Media Player resources.

Syntax

player.close()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Previous Next

Previous Next

Remarks

This method closes the current digital media file, not the Player itself.

Example Code

The following example creates an HTML BUTTON element that, when clicked, stops playback in Windows
Media Player and releases the resources in use. The Player object was created with ID = "Player".

<INPUT TYPE = "BUTTON" ID = "CLOSEIT" VALUE = "Close it" onClick = "

 /* Close the Player object. */
 Player.close();
">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.closedCaption
The closedCaption property retrieves the ClosedCaption object.

Syntax

player.closedCaption

Possible Values

This property is a read-only ClosedCaption object.

Requirements

Previous Next

Previous Next

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

ClosedCaption Object
Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.controls
The controls property retrieves the Controls object.

Syntax

player.controls

Possible Values

This property is a read-only Controls object.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls Object
Player Object

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.CurrentItemChange Event
The CurrentItemChange event occurs when Controls.currentItem changes.

Syntax

CurrentItemChange()

Example Code

The following JScript example demonstrates an event handler for the Player.currentItemChange event. The
player object was created with ID = "Player".

<!-- Create an HTML text box to display the media name. -->
<INPUT TYPE="TEXT" NAME="MEDIA">

<!-- Create an event handler. -->
<SCRIPT LANGUAGE = "JScript" FOR = Player EVENT = currentItemChange()>

 // Display the name of the new media item.
 MEDIA.value = Player.currentMedia.name;

</SCRIPT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls.currentItem
Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Player.currentMedia
The currentMedia property specifies or retrieves the current Media object.

Syntax

player.currentMedia

Possible Values

This property is a read/write Media object.

Remarks

If the Settings.autoStart property is true, file playback begins automatically whenever you set currentMedia.

This property takes a Media object, which can be acquired by using Playlist.item. To load a Media item using
a file name, set the URL property or use newMedia.

Example Code

The following JScript example retrieves the first media item in Media Library. It then uses currentMedia to
make the retrieved media item the current media item, and then to display the name of the current media item.
The Player object was created with ID = "Player".

// Retrieve the first media item from Media Library
var firstMedia = Player.mediaCollection.getAll().item(0);

// Make the retrieved media item the current media item.
Player.currentMedia = firstMedia;

// Display the name of the current media item.
document.write("Found first media item. Name = " + Player.currentMedia.name);

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Media Object
Player Object
Player.newMedia

Previous Next

Playlist.item
Settings.autoStart

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.CurrentMediaItemAvailable Event
The CurrentMediaItemAvailable event occurs when a graphic metadata item in the current media item
becomes available.

Syntax

CurrentMediaItemAvailable(bstrItemName)

Parameters

 bstrItemName

String containing the name of the current media item.

Remarks

Because playback can begin before a media item is fully downloaded, any metadata graphics contained in the
media item (such as album cover art) may not be available when it starts to play. This event alerts you when a
metadata graphic item is finished downloading. You can then retrieve the Media object by passing the value of
bstrItemName to the MediaCollection.getByName method, after which you can access the metadata graphic
item by using Media.getItemInfoByType and specifying WM/Picture for the attribute name.

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Previous Next

Previous Next

Media Object
Media.getItemInfoByType
MediaCollection.getByName
Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.currentPlaylist
The currentPlaylist property specifies or retrieves the current Playlist object.

Syntax

player.currentPlaylist

Possible Values

This property is a read/write Playlist object.

Remarks

If the Settings.autoStart property is true, file playback begins automatically whenever you set currentPlaylist.

This property takes a Playlist object, which can be acquired in several ways, such as by calling
PlaylistArray.item or PlaylistCollection.newPlaylist. To load a Playlist item using a file name, set the URL
property or use Player.newPlaylist.

Example Code

The following JScript example retrieves the first playlist in Media Library. It then uses currentPlaylist to
make the retrieved playlist the current playlist, and then to display the name of the current playlist. The Player
object was created with ID = "Player".

// Retrieve the first playlist from Media Library.
var firstPL = Player.playlistCollection.getAll().item(0);

// Make the retrieved playlist the current playlist.
Player.currentPlaylist = firstPL;

// Display the name of the current playlist.
document.write("Found first playlist. Name: " + Player.currentPlaylist.name);

Requirements

Previous Next

Previous Next

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object
Player.currentPlaylist
Player.newPlaylist
Playlist Object
PlaylistArray.item
PlaylistCollection.newPlaylist
Settings.autoStart

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.CurrentPlaylistChange Event
The CurrentPlaylistChange event occurs when something changes within the current playlist.

Syntax

CurrentPlaylistChange(change)

Parameters

 change

Number (long) indicating what type of change occurred to the playlist. See the Player.PlaylistChange event
for a table of possible values.

Remarks

This event does not occur when a different playlist becomes the current playlist. It only occurs when a change
happens within the current playlist, such as a media item being appended to the playlist.

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Previous Next

Previous Next

Example Code

The following JScript example updates the text in an HTML DIV element, named PlItems, to display the names
of the media items in the current playlist. The Player object was created with ID = "Player".

<!-- Create an event handler for current playlist change. -->
<SCRIPT FOR = "Player" EVENT = "currentPlaylistChange(change)">
 switch (change){
 // Only update for move, delete, insert, and append events.
 case 3, 4, 5, 6:

 // Clear the contents of the DIV.
 PlItems.innerHTML = "";

 // Loop through the playlist and display each item name.
 for (var i = 0; i < Player.currentPlaylist.count; i++){
 PlItems.innerHTML += Player.currentPlaylist.item(i).name;
 PlItems.innerHTML += "
";
 }
 break;

 default:
 }
</SCRIPT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object
Player.currentPlaylist
Player.PlaylistChange

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.CurrentPlaylistItemAvailable Event
The CurrentPlaylistItemAvailable event occurs when the current playlist becomes available.

Previous Next

Previous Next

Syntax

CurrentPlaylistItemAvailable(bstrItemName)

Parameters

 bstrItemName

String containing the name of the current playlist item.

Remarks

The name of the current playlist can be used to retrieve the corresponding Playlist object using the
PlaylistCollection.getByName method.

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object
Playlist Object
PlaylistCollection.getByName

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.DomainChange Event
The DomainChange event occurs when the DVD domain changes.

Syntax

DomainChange(strDomain)

Previous Next

Previous Next

Parameters

 strDomain

String indicating the new domain. Contains one of the following values.

Remarks

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player for Windows XP or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

Platform: Windows XP or later.

See Also

DVD Object
Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

String Description

firstPlay Performing default initialization of a DVD disc.

videoManagerMenu Displaying menus for whole disc. Also known as
Root Menu or topMenu.

videoTitleSetMenu Displaying menus for current title set. Also known as
titleMenu

title Displaying the current title.

stop The DVD Navigator is in the DVD Stop domain.

Previous Next

Previous Next

Player.DoubleClick Event
The DoubleClick event occurs when the user double-clicks a mouse button.

Syntax

DoubleClick(nButton, nShiftState, fX, fY)

Parameters

 nButton

Number (int) specifying a bit field with bits corresponding to the left button (bit 0), right button (bit 1), and
middle button (bit 2). These bits correspond to the values 1, 2, and 4, respectively. Only one of the bits is set,
indicating the button that caused the event.

nShiftState

Number (int) specifying a bit field with the least significant bits corresponding to the SHIFT key (bit 0), the
CTRL key (bit 1), and the ALT key (bit 2). These bits correspond to the values 1, 2, and 4, respectively. The
shift argument indicates the state of these keys. Some, all, or none of the bits can be set, indicating that some,
all, or none of the keys are pressed.

fX

Number (long) specifying the x coordinate of the mouse pointer relative to the upper left-hand corner of the
control.

fY

Number (long) specifying the y coordinate of the mouse pointer relative to the upper left-hand corner of the
control.

Remarks

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.dvd
The dvd property retrieves the DVD object.

Syntax

player.dvd

Possible Values

This property is a read-only DVD object.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

Platform: Windows XP or later.

See Also

DVD Object
Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

Player.enableContextMenu
The enableContextMenu property specifies or retrieves a value indicating whether to enable the context menu,
which appears when the right mouse button is clicked.

Syntax

player.enableContextMenu

Possible Values

This property is a read/write Boolean.

Remarks

During full-screen playback, Windows Media Player hides the mouse cursor when enableContextMenu equals
false and uiMode equals "none".

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.enabled

Value Description

true Default. Enable the context menu.

false Do not enable the context menu.

Previous Next

Previous Next

The enabled property specifies or retrieves a value indicating whether the Windows Media Player control is
enabled.

Syntax

player.enabled

Possible Values

This property is a read/write Boolean.

Remarks

If enabled equals false then during full-screen playback Windows Media Player hides the user controls.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.error
The error property retrieves the Error object.

Syntax

Value Description

true Default. The Windows Media Player control is enabled.

false The Windows Media Player control is disabled.

Previous Next

Previous Next

player.error

Possible Values

This property is a read-only Error object.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Error Object
Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.Error Event
The Error event occurs when there is an error condition.

Syntax

Error()

Example Code

The following JScript example creates an event handler to display the description text for the first error in the
error queue. The Player object was created with ID = "Player".

<SCRIPT LANGUAGE = "JScript" FOR = Player EVENT = error()>

// Get the description of the first error.
var errDesc = Player.error.item(0).errorDescription;

// Display the error description.
alert(errDesc);

</SCRIPT>

Previous Next

Previous Next

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

ErrorItem.errorDescription
Error.item
Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.fullScreen
The fullScreen property specifies or retrieves a value indicating whether video content is played back in full-
screen mode.

Syntax

player.fullScreen

Possible Values

This property is a read/write Boolean.

Remarks

For full-screen mode to work properly when embedding the Windows Media Player control, the video display
area must have a height and width of at least one pixel. If uiMode is set to "mini" or "full", the height of the
control itself must be 65 or greater to accommodate the video display area in addition to the user interface.

Previous Next

Previous Next

Value Description

true Video content is played back in full-screen mode.

false Default. Video content is not played back in full-screen mode.

If uiMode is set to "invisible", then setting this property to true raises an error and does not affect the behavior
of the control.

During full-screen playback, Windows Media Player hides the mouse cursor when enableContextMenu equals
false and uiMode equals "none".

If uiMode is set to "full" or "mini", the Player displays transport controls in full-screen mode when the mouse
cursor moves. After a brief interval of no mouse movement, the transport controls are hidden. If uiMode is set
to "none", no controls are displayed in full-screen mode.

Note Displaying transport controls in full-screen mode requires the Windows XP operating system.

If transport controls are not displayed in full-screen mode, then Windows Media Player automatically exits full-
screen mode when playback stops.

Example Code

The following example creates an HTML input button that uses Player.fullScreen to switch an embedded
player object to full-screen mode. The player object was created with ID = "Player".

<INPUT type = button
 value = "Full Screen"
 name = FSBUTTON
 onclick = "
 /* Check to be sure the player is playing. */
 if (Player.playState == 3)
 Player.fullScreen = 'true';
 ">

Note Always be sure to inform the user how to return from full-screen mode.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Player.isOnline
The isOnline property retrieves a value indicating whether the user is connected to a network.

Syntax

player.isOnline

Possible Values

This property is a read-only Boolean.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.isRemote
The isRemote property retrieves a value indicating whether the Windows Media Player control is running in
remote mode.

Syntax

Value Description

true The user is connected to a network.

false The user is not connected to a network.

Previous Next

Previous Next

player.isRemote

Possible Values

This property is a read-only Boolean.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object
Remoting the Windows Media Player Control

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.KeyDown Event
The KeyDown event occurs when a key is pressed.

Syntax

KeyDown(nKeyCode, nShiftState)

Parameters

 nKeyCode

Number (int) specifying which physical key is pressed. For possible values, see the Remarks section.

Value Description

true The Player control is running in remote mode.

false The Player control is running in local mode.

Previous Next

Previous Next

 nShiftState

Number (int) specifying a bit field with the least significant bits corresponding to the SHIFT key (bit 0), the
CTRL key (bit 1), and the ALT key (bit 2). These bits correspond to the values 1, 2, and 4, respectively. The
shift argument indicates the state of these keys. Some, all, or none of the bits can be set, indicating that some,
all, or none of the keys are pressed.

Remarks

The nKeyCode argument specifies a physical key. The following tables show the possible values for the major
keys on a standard keyboard.

Values for the main keys.

Values for the number pad keys.

Key Value

A-Z 65-90

0-9 48-56

F1-F12 112-123

ESC 27

TAB 9

CAPS LOCK 20

SHIFT (left or right) 16

CTRL (left or right) 17

ALT (left or right) 18

SPACE 32

BACKSPACE 8

ENTER 13

Windows logo key, left 91

Windows logo key, right 92

Application key 93

Key Value

0-9 96-105

NUM LOCK 144

DIVIDE (/) 111

MULTIPLY (*) 106

Values for the navigation keys.

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

SUBTRACT (-) 109

ADD (+) 107

SEPARATOR (Enter) 108

DECIMAL (.) 110

Key Value

INSERT 45

DELETE 46

HOME 36

END 35

PAGE UP 33

PAGE DOWN 34

UP ARROW 38

DOWN ARROW 40

LEFT ARROW 37

RIGHT ARROW 39

Previous Next

Player.KeyPress Event
The KeyPress event occurs when a key is pressed and released.

Syntax

KeyPress(nKeyAscii)

Parameter

nKeyAscii

Number (int) specifying the standard numeric ANSI code for the character.

Remarks

This event occurs when the keystroke results in any printable keyboard character, the CTRL key combined with
a character from the standard alphabet or one of a few special characters, and the ENTER or BACKSPACE key.

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Player.KeyUp Event
The KeyUp event occurs when a key is released.

Syntax

KeyUp(nKeyCode, nShiftState)

Parameters

 nKeyCode

Number (int) specifying which physical key is pressed. For possible values, see Player.KeyDown Event.

 nShiftState

Number (int) specifying a bit field with the least significant bits corresponding to the SHIFT key (bit 0), the
CTRL key (bit 1), and the ALT key (bit 2). These bits correspond to the values 1, 2, and 4, respectively. The
shift argument indicates the state of these keys. Some, all, or none of the bits can be set, indicating that some,
all, or none of the keys are pressed.

Remarks

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Player.launchURL
The launchURL method sends a URL to the user's default browser to be rendered.

Syntax

player.launchURL(URL)

Parameters

 URL

String value representing the URL to launch.

Return Values

This method does not return a value.

Remarks

This method only opens Web pages using the HTTP or HTTPS protocols.

Example Code

The following example creates an HTML BUTTON element that, when clicked, displays the Microsoft Web
site in a new browser window. The Player element was created with ID = "Player".

<INPUT TYPE = "BUTTON" ID = "GOTOMS" VALUE = "Microsoft.com" onClick = "

 /* Open the Microsoft Web site. */
 Player.launchURL('http://www.microsoft.com');
">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.MarkerHit Event
The MarkerHit event occurs when a marker is reached.

Syntax

MarkerHit(MarkerNum)

Parameters

 MarkerNum

Number (long) indicating the number of the marker that was hit.

Remarks

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Player.MediaChange Event
The MediaChange event occurs when a media item changes.

Syntax

MediaChange(Item)

Parameters

 Item

Media object representing the item that changed.

Remarks

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Example Code

The following JScript example uses an HTML DIV element, named MediaName, to display the name of the
current media item. The code updates the text in the DIV with each occurrence of the mediaChange event. The
Player object was created with ID = "Player".

<!-- Create an event handler for media change. -->
<SCRIPT FOR = "Player" EVENT = "mediaChange(Item)">
 // Test whether a valid currentMedia object exists.
 if (Player.currentMedia){
 // Display the name of the current media item.
 MediaName.innerHTML = Player.currentMedia.name;
 }
</SCRIPT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.mediaCollection
The mediaCollection property retrieves the MediaCollection object.

Syntax

player.mediaCollection

Possible Values

This property is a read-only MediaCollection object.

Remarks

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

MediaCollection Object
Player Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Player.MediaCollectionAttributeStringAdded Event
The MediaCollectionAttributeStringAdded event occurs when an attribute value is added to Media Library.

Syntax

MediaCollectionAttributeStringAdded(bstrAttribName, bstrAttribVal)

Parameters

 bstrAttribName

String specifying the name of the attribute. For information about the attributes supported by Windows Media
Player, see Available Attributes.

 bstrAttribVal

String specifying the value of the attribute.

Remarks

When a media item is added to Media Library its metadata is added to the MediaCollection object and this
event is fired for each attribute added.

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

MediaCollection Object
Player Object
Player.mediaCollection

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.MediaCollectionAttributeStringChanged
Event
The MediaCollectionAttributeStringChanged event occurs when an attribute value in Media Library is
changed.

Syntax

MediaCollectionAttributeStringChanged(bstrAttribName, bstrOldAttribVal, bstrNewAttribVal)

Parameters

 bstrAttribName

String specifying the name of the attribute. For information about the attributes supported by Windows Media
Player, see Available Attributes.

 bstrOldAttribVal

String specifying the old value of the attribute.

 bstrNewAttribVal

String specifying the new value of the attribute.

Remarks

When a user modifies Media Library metadata, the MediaCollection object is updated and this event fires for
each attribute changed.

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

Previous Next

See Also

MediaCollection Object
Player Object
Player.mediaCollection

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.MediaCollectionAttributeStringRemoved
Event
The MediaCollectionAttributeStringRemoved event occurs when an attribute value is removed from Media
Library.

Syntax

MediaCollectionAttributeStringRemoved(bstrAttribName, bstrAttribVal)

Parameters

 bstrAttribName

String specifying the name of the attribute. For information about the attributes supported by Windows Media
Player, see Available Attributes.

 bstrAttribVal

String specifying the value of the attribute.

Remarks

When a media item is removed from Media Library its metadata is removed from the MediaCollection object
and this event is fired for each attribute removed.

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player version 7.0 or later.

Previous Next

Previous Next

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

MediaCollection Object
Player Object
Player.mediaCollection

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.MediaCollectionChange Event
The MediaCollectionChange event occurs when the media collection changes.

Syntax

MediaCollectionChange()

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

MediaCollection Object
Player Object
Player.mediaCollection

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Player.MediaError Event
The MediaError event occurs when the Media object has an error condition.

Syntax

MediaError(pMediaObject)

Parameters

 pMediaObject

Media object that has an error condition.

Remarks

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player for Windows XP or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Player.ModeChange Event
The ModeChange event occurs when a mode of the player is changed.

Syntax

ModeChange(ModeName, NewValue)

Parameters

 ModeName

String indicating the mode that was changed. Contains one of the following values.

 NewValue

Boolean indicating the new state of the specified mode.

Remarks

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object
Settings.getMode
Settings.setMode

© 2000-2003 Microsoft Corporation. All rights reserved.

Value Description

shuffle Tracks are played in random order.

loop The entire sequence of tracks is played repeatedly.

Previous Next

Player.MouseDown Event
The MouseDown event occurs when the user presses a mouse button.

Syntax

MouseDown(nButton, nShiftState, fX, fY)

Parameters

 nButton

Number (int) specifying a bit field with bits corresponding to the left button (bit 0), right button (bit 1), and
middle button (bit 2). These bits correspond to the values 1, 2, and 4, respectively. Only one of the bits is set,
indicating the button that caused the event.

 nShiftState

Number (int) specifying a bit field with the least significant bits corresponding to the SHIFT key (bit 0), the
CTRL key (bit 1), and the ALT key (bit 2). These bits correspond to the values 1, 2, and 4, respectively. The
shift argument indicates the state of these keys. Some, all, or none of the bits can be set, indicating that some,
all, or none of the keys are pressed.

 fX

Number (long) specifying the x coordinate of the mouse pointer relative to the upper left-hand corner of the
control.

 fY

Number (long) specifying the y coordinate of the mouse pointer relative to the upper left-hand corner of the
control.

Remarks

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Previous Next

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.MouseMove Event
The MouseMove event occurs when the mouse pointer is moved.

Syntax

MouseMove(nButton, nShiftState, fX, fY)

Parameters

 nButton

Number (int) specifying a bit field with bits corresponding to the left button (bit 0), right button (bit 1), and
middle button (bit 2). These bits correspond to the values 1, 2, and 4, respectively. Some, all, or none of the bits
can be set, indicating that some, all, or none of the buttons are pressed.

 nShiftState

Number (int) specifying a bit field with the least significant bits corresponding to the SHIFT key (bit 0), the
CTRL key (bit 1), and the ALT key (bit 2). These bits correspond to the values 1, 2, and 4, respectively. The
shift argument indicates the state of these keys. Some, all, or none of the bits can be set, indicating that some,
all, or none of the keys are pressed.

 fX

Number (long) specifying the x coordinate of the mouse pointer relative to the upper left-hand corner of the
control.

 fY

Number (long) specifying the y coordinate of the mouse pointer relative to the upper left-hand corner of the
control.

Previous Next

Previous Next

Remarks

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.MouseUp Event
The MouseUp event occurs when the user releases a mouse button.

Syntax

MouseUp(nButton, nShiftState, fX, fY)

Parameters

 nButton

Number (int) specifying a bit field with bits corresponding to the left button (bit 0), right button (bit 1), and
middle button (bit 2). These bits correspond to the values 1, 2, and 4, respectively. Only one of the bits is set,
indicating the button that caused the event.

 nShiftState

Number (int) specifying a bit field with the least significant bits corresponding to the SHIFT key (bit 0), the
CTRL key (bit 1), and the ALT key (bit 2). These bits correspond to the values 1, 2, and 4, respectively. The
shift argument indicates the state of these keys. Some, all, or none of the bits can be set, indicating that some,

Previous Next

Previous Next

all, or none of the keys are pressed.

 fX

Number (long) specifying the x coordinate of the mouse pointer relative to the upper left-hand corner of the
control.

 fY

Number (long) specifying the y coordinate of the mouse pointer relative to the upper left-hand corner of the
control.

Remarks

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.network
The network property retrieves the Network object.

Syntax

player.network

Possible Values

Previous Next

Previous Next

This property is a read-only Network object.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Network Object
Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.newMedia
The newMedia method creates a new Media object.

Syntax

player.newMedia(URL)

Parameters

 URL

String containing the URL of the digital media file to create the Media object with.

Return Values

This method returns a Media object.

Remarks

The URL parameter must not be an empty string or null.

Requirements

Previous Next

Previous Next

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.newPlaylist
The newPlaylist method creates a new Playlist object.

Syntax

player.newPlaylist(name, URL)

Parameters

 name

String containing the name of the new playlist.

 URL

String containing the URL of the Windows Media metafile playlist to create the Playlist object with.

Return Values

This method returns a Playlist object.

Remarks

If the URL parameter is set to null or "" (empty string), an empty Playlist object will be created. If the name
parameter is set to "", the name in the metafile is used.

The new playlist created with this method is not added to Media Library. To add a new playlist to Media
Library, use PlaylistCollection.importPlaylist or PlaylistCollection.newPlaylist. Any leading or trailing

Previous Next

Previous Next

spaces in the playlist name are automatically removed when it is added to Media Library.

Because Media Library allows multiple playlists with the same name, you may want to check for the presence
of a playlist with a given name before adding a new one.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object
PlaylistCollection.importPlaylist
PlaylistCollection.newPlaylist
Windows Media Metafiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.openPlayer
The openPlayer method opens Windows Media Player using the specified URL.

Syntax

player.openPlayer(URL)

Parameters

 URL

String representing the URL of the media item to play.

Remarks

This method launches Windows Media Player with the specified URL set as the current media item. If the
Player was previously closed in skin mode it will open using the skin last chosen by the user. Otherwise, the
Player opens in full mode.

Previous Next

Previous Next

If this method is called from a Player ActiveX control embedded in remote mode, its behavior is identical to the
PlayerApplication.switchToPlayerApplication method.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object
PlayerApplication.switchToPlayerApplication

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.OpenPlaylistSwitch Event
The OpenPlaylistSwitch event occurs when a title on a DVD begins playing.

Syntax

OpenPlaylistSwitch(pItem)

Parameters

 pItem

Playlist object representing the title.

Remarks

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player for Windows XP or later.

Previous Next

Previous Next

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

Platform: Windows XP or later.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.openState
The openState property retrieves a value indicating the state of the content source.

Syntax

player.openState

Possible Values

This property is a read only Number (long).

Previous Next

Previous Next

Value State Description

0 Undefined Windows Media Player is in an undefined state.

1 PlaylistChanging New playlist is about to be loaded.

2 PlaylistLocating Windows Media Player is attempting to locate the playlist. The
playlist can be local (Media Library or metafile with a .asx file
name extension) or remote.

3 PlaylistConnecting Connecting to the playlist.

4 PlaylistLoading Playlist has been found and is now being retrieved.

5 PlaylistOpening Playlist has been retrieved and is now being parsed and loaded.

6 PlaylistOpenNoMedia Playlist is open.

7 PlaylistChanged A new playlist has been assigned to currentPlaylist.

Remarks

Windows Media Player states are not guaranteed to occur in any particular order. Furthermore, not every state
necessarily occurs during a sequence of events. You should not write code that relies upon state order.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object
Player.OpenStateChange Event

© 2000-2003 Microsoft Corporation. All rights reserved.

8 MediaChanging New media is about to be loaded.

9 MediaLocating Windows Media Player is locating the media file. The file can be
local or remote.

10 MediaConnecting Connecting to the server that holds the media.

11 MediaLoading Media has been located and is now being retrieved.

12 MediaOpening Media has been retrieved and is now being opened.

13 MediaOpen Media is now open.

14 BeginCodecAcquisition Starting codec acquisition.

15 EndCodecAcquisition Codec acquisition is complete.

16 BeginLicenseAcquisition Acquiring a license to play DRM protected content.

17 EndLicenseAcquisition License to play DRM protected content has been acquired.

18 BeginIndividualization Begin DRM Individualization.

19 EndIndividualization DRM individualization has been completed.

20 MediaWaiting Waiting for media.

21 OpeningUnknownURL Opening a URL with an unknown type.

Previous Next

Player.OpenStateChange Event
The OpenStateChange event occurs when the openState property changes value.

Syntax

OpenStateChange(NewState)

Parameters

 NewState

Number (long) specifying the new open state. See openState for a table of values.

Remarks

Windows Media Player can go through several open states while it attempts to open a network file, such as
locating the server, connecting to the server, and finally opening the file. This event will be fired each time the
open state changes.

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Windows Media Player states are not guaranteed to occur in any particular order. Furthermore, not every state
necessarily occurs during a sequence of events. You should not write code that relies upon state order.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object
Player.openState

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Player.playerApplication
The playerApplication property retrieves the PlayerApplication object when a remoted Windows Media
Player control is running.

Syntax

playerApplication

Possible Values

This property is a read-only PlayerApplication object or the null value.

Remarks

This property is used only when remoting the Player control. If the value is null, the Player control is not
embedded in remote mode.

This property is only accessible in C++ code or in script code in skins through the playerApplication global
variable.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Global Attributes
Player Object
PlayerApplication Object
Remoting the Windows Media Player Control

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Player.PlayerDockedStateChange Event
The PlayerDockedStateChange event occurs when a remoted Windows Media Player control docks or
undocks.

Syntax

PlayerDockedStateChange()

Remarks

This event occurs only when remoting the Player control.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object
Remoting the Windows Media Player Control

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.PlayerReconnect Event
The PlayerReconnect event occurs when a remoted Windows Media Player control loses its remote connection
to the standalone Player and attempts to reconnect.

Syntax

Previous Next

Previous Next

Previous Next

PlayerReconnect()

Remarks

This event occurs only when remoting the Player control.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object
Remoting the Windows Media Player Control

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.PlaylistChange Event
The PlaylistChange event occurs when a playlist changes.

Syntax

PlaylistChange(Playlist, change)

Parameters

 Playlist

Playlist object which changed.

 change

Number (long) indicating what type of change occurred to the playlist. Includes one of the following values.

Previous Next

Previous Next

Number Name

Remarks

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.playlistCollection

0 Unknown

1 Clear

2 InfoChange

3 Move

4 Delete

5 Insert

6 Append

7 not supported

8 NameChange

9 not supported

10 Sort

Previous Next

Previous Next

The playlistCollection property retrieves the PlaylistCollection object.

Syntax

player.playlistCollection

Possible Values

This property is a read-only PlaylistCollection object.

Remarks

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object
PlaylistCollection Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.PlaylistCollectionChange Event
The PlaylistCollectionChange event occurs when something changes in the playlist collection.

Syntax

PlaylistCollectionChange()

Requirements

Previous Next

Previous Next

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.PlaylistCollectionPlaylistAdded Event
The PlaylistCollectionPlaylistAdded event occurs when a playlist is added to the playlist collection.

Syntax

PlaylistCollectionPlaylistAdded(bstrPlaylistName)

Parameters

 bstrPlaylistName

String specifying the name of the playlist that was added.

Remarks

The name of the playlist that was added can be used to retrieve the corresponding Playlist object using the
PlaylistCollection.getByName method.

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Previous Next

Previous Next

Library: Use wmp.dll.

See Also

Player Object
PlaylistCollection.getByName

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.PlaylistCollectionPlaylistRemoved Event
The PlaylistCollectionPlaylistRemoved event occurs when a playlist is removed from the playlist collection.

Syntax

PlaylistCollectionPlaylistRemoved(bstrPlaylistName)

Parameters

 bstrPlaylistName

String specifying the name of the playlist that was removed.

Remarks

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object
PlaylistCollection.getByName

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.playState
The playState property retrieves a value indicating the state of the Windows Media Player operation.

Syntax

player.playState

Possible Values

This property is a read-only Number (long).

Remarks

Windows Media Player states are not guaranteed to occur in any particular order. Furthermore, not every state

Previous Next

Previous Next

Value State Description

0 Undefined Windows Media Player is in an undefined state.

1 Stopped Playback of the current media clip is stopped.

2 Paused Playback of the current media clip is paused. When media is
paused, resuming playback begins from the same location.

3 Playing The current media clip is playing.

4 ScanForward The current media clip is fast forwarding.

5 ScanReverse The current media clip is fast rewinding.

6 Buffering The current media clip is getting additional data from the server.

7 Waiting Connection is established, however the server is not sending
bits. Waiting for session to begin.

8 MediaEnded Media has completed playback and is at its end.

9 Transitioning Preparing new media.

10 Ready Ready to begin playing.

11 Reconnecting Reconnecting to stream.

necessarily occurs during a sequence of events. You should not write code that relies upon state order.

Example Code

The following JScript code shows the use of the player.playState property. An HTML text element, named
"myText", displays the current status. The player object was created with ID = "Player".

// Test whether Windows Media Player is in the playing state.
if (3 == Player.playState)
 myText.value = "Windows Media Player is playing!";
else
 myText.value = "Windows Media Player is NOT playing!";

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object
Player.PlayStateChange Event

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.PlayStateChange Event
The PlayStateChange event occurs when there is a change in the playState property.

Syntax

PlayStateChange(NewState)

Parameters

 NewState

Number (long) which specifies the new playState. See playState for a table of possible values.

Previous Next

Previous Next

Remarks

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Windows Media Player states are not guaranteed to occur in any particular order. Furthermore, not every state
necessarily occurs during a sequence of events. You should not write code that relies upon state order.

Example Code

The following example demonstrates an event handler for the Player.playStateChange event. An HTML text
element, named "myText", displays the new play state. The player object was created with ID = "Player".

<SCRIPT LANGUAGE = "JScript" FOR = Player EVENT = playStateChange(NewState)>

// Test for the player current state, display a message for each.
switch (NewState){
 case 1:
 myText.value = "Stopped";
 break;

 case 2:
 myText.value = "Paused";
 break;

 case 3:
 myText.value = "Playing";
 break;

 // Other cases go here.

 default:
 myText.value = "";
}
</SCRIPT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object
Player.playState

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Player.PositionChange Event
The PositionChange event occurs when the current position of the media has been changed.

Syntax

PositionChange(oldPosition, newPosition)

Parameters

 oldPosition

Number (double) specifying the old position.

 newPosition

Number (double) specifying the new position.

Remarks

This event is not raised routinely during playback. It only occurs when something actively changes the current
position of the playing media, such as the user moving the seek handle or code specifying a value for
Controls.currentPosition.

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Player.ScriptCommand Event
The ScriptCommand event occurs when a synchronized command or URL is received.

Syntax

ScriptCommand(scType, Param)

Parameters

 scType

String specifying the type of script command.

 Param

String specifying the script command.

Remarks

Commands can be embedded among the sounds and images of a Windows Media file. The commands are a pair
of Unicode strings associated with a designated time in the stream. When the stream reaches the time associated
with the command, the Windows Media Player control sends a ScriptCommand event with two parameters.
One parameter specifies the type of command being sent, and the other parameter specifies the command. The
type of parameter is used to determine how the command parameter is processed. Any type of command can be
embedded in a Windows Media stream to be handled by the ScriptCommand event.

One type of command is a URL (Uniform Resource Locator). URL-type commands received by the Player
control are invoked automatically in your default Internet browser if the Settings.invokeURLs property is set to
true. You can use the Settings.defaultFrame property to specify the target frame in which the Web page
appears.

The URL sent to Windows Media Player is processed relative to the base URL specified by the
Settings.baseURL property. The base URL is concatenated with the relatively specified URL, resulting in a
fully specified URL that is passed as the command parameter by the ScriptCommand event.

The Player control always processes incoming URL-type commands in the following manner:

1. A URL-type command is received.
2. Settings.baseURL is used to create a full URL from the relative URL specified in the script command.
3. ScriptCommand is called.
4. After ScriptCommand returns, Settings.invokeURLs is checked.
5. If Settings.invokeURLs is true and the command is a URL-type, the specified URL is invoked. If

Settings.invokeURLs is false or if the command is not a URL-type, the command is ignored.

Previous Next

When authoring a Windows Media file, you can specify which frame the new URL is displayed in by
concatenating two ampersands and the name of the frame in the parameter field. The example below illustrates
typical ScriptCommand parameters. It specifies that the URL mypage must be launched in the myframe frame.

scType = "URL"
Param = http://myweb/mypage.html&&myframe

The following table lists script command types that are automatically processed by Windows Media Player.

You can embed any other type of command as long as you provide reciprocal code to handle the command.
Though unknown commands are ignored by the Player control, they are still handed off to the ScriptCommand
event.

The ScriptCommand event is not called if the file is being scanned (fast-forwarded or fast-reversed).

The value of event parameters is specified by the player, and can be accessed or passed to a method in an
imported JScript file using the parameter name given. This parameter name must be typed exactly as shown,
including capitalization.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Type Description

CAPTION The control displays the associated text in the DIV
specified by ClosedCaption.captioningID.

EVENT Tells the control to execute instructions defined for
the specified event.

FILENAME The control resets its URL property, attempts to open
the specified file, and begins playing the new stream
immediately.

OPENEVENT Buffers the associated EVENT type command for
timely execution of the EVENT script.

SYNCHRONIZEDLYRICLYRIC The Param parameter contains the synchronized lyric
text. Windows Media Player displays the lyric text in
the closed caption area of the Now Playing feature.

TEXT The control displays the associated text in the DIV
specified by ClosedCaption.captioningID.

URL The control automatically opens the URL specified
using the default Internet browser if the
Settings.invokeURLs property is set to true.

Player Object
Player.URL
Settings.baseURL
Settings.defaultFrame
Settings.invokeURLs

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.settings
The settings property retrieves the Settings object.

Syntax

player.settings

Possible Values

This property is a read-only Settings object.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object
Settings Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Player.status
The status property retrieves a value indicating the status of Windows Media Player.

Syntax

player.status

Possible Values

This property is a read-only String.

Remarks

The values contained in this property are subject to change at any time, and should be used for display purposes
only.

The StatusChange event is fired whenever this property changes value.

Requirements

Version: Windows Media Player 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object
Player.StatusChange Event

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Player.StatusChange Event
The StatusChange event occurs when the status property changes value.

Syntax

StatusChange()

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object
Player.status

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.stretchToFit
The stretchToFit property specifies or retrieves a value indicating whether video displayed by the Windows
Media Player control automatically sizes to fit the video window, when the video window is larger than the
dimensions of the video image.

Syntax

player.stretchToFit

Possible Values

This property is a read/write Boolean.

Previous Next

Previous Next

Value Description

true The video will stretch to fit the window.

Remarks

When stretchToFit is set to true, the Windows Media Player control maintains the original aspect ratio of the
video. If the aspect ratio of the video does not match the aspect ratio of the video window, black mask areas
may appear on either the top and the bottom, or left and right, of the video image.

This property applies to the Windows Media Player control only when embedded in a Web page.

Requirements

Version: Windows Media Player version 7.1 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.SwitchedToControl Event
The SwitchedToControl event occurs when a remoted Windows Media Player control switches to the docked
state.

Syntax

SwitchedToControl()

Remarks

This event occurs only when remoting the Player control, and only occurs for the Player control instance being
switched to.

Requirements

Version: Windows Media Player 9 Series or later.

false Default. The video will not stretch to fit the window.

Previous Next

Previous Next

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object
Remoting the Windows Media Player Control

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.SwitchedToPlayerApplication Event
The SwitchedToPlayerApplication event occurs when a remoted Windows Media Player control switches to
the full mode of the Player.

Syntax

SwitchedToPlayerApplication()

Remarks

This event occurs only when remoting the Player control.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object
Remoting the Windows Media Player Control

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Player.uiMode
The uiMode property specifies or retrieves a value indicating which controls are shown in the user interface.

Syntax

player.uiMode

Possible Values

This property is a read/write String.

Remarks

This property specifies the appearance of the embedded Windows Media Player. When uiMode is set to "none",
"mini", or "full", a window is present for the display of video clips and audio visualizations. This window can

Previous Next

Value Description Audio example Video example

invisible Player is embedded without any visible
user interface (controls, video or
visualization window).

(Nothing is displayed) (Nothing is displayed)

none Player is embedded without controls, and
with only the video or visualization
window displayed.

mini Player is embedded with the status
window, play/pause, stop, mute, and
volume controls shown in addition to the
video or visualization window.

full Default. Player is embedded with the
status window, seek bar, play/pause, stop,
mute, next, previous, fast forward, fast
reverse, and volume controls in addition
to the video or visualization window.

custom Player is embedded with a custom user
interface. Can only be used in C++
programs.

(Custom user interface is
displayed.)

(Custom user interface
is displayed.)

be hidden in mini or full mode by setting the height attribute of the OBJECT tag to 40, which is measured
from the bottom, and leaves the controls portion of the user interface visible. If no embedded interface is
desired, set both the width and height attributes to zero.

If uiMode is set to "invisible", no user interface is displayed, but space is still reserved on the page as specified
by width and height. This is useful for retaining page layout when uiMode can change. Additionally, the
reserved space is transparent, so any elements layered behind the control will be visible.

If uiMode is set to "full" or "mini", the Player displays transport controls in full-screen mode. If uiMode is set
to "none", no controls are displayed in full-screen mode.

If the window is visible and audio content is being played, the visualization displayed will be the one most
recently used in Windows Media Player.

If uiMode is set to "custom" in a C++ program that implements IWMPRemoteMediaServices, the skin file
indicated by IWMPRemoteMediaServices::GetCustomUIMode is displayed.

During full-screen playback, Windows Media Player hides the mouse cursor when enableContextMenu equals
false and uiMode equals "none".

Example Code

The following example creates an HTML SELECT element that allows the user to change the user interface for
an embedded Player object. The Player object was created with ID = "Player".

<!-- Create an HTML SELECT element. -->
<SELECT ID = UI LANGUAGE="JScript"

 /* Specify the UI mode the user selects. */
 onChange = "Player.uiMode = UI.value">

/* These are the four UI mode options. */
<OPTION VALUE="invisible">Invisible
<OPTION VALUE="none">No Controls
<OPTION VALUE="mini">Mini Player
<OPTION VALUE="full">Full Player
</SELECT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

IWMPRemoteMediaServices Interface
IWMPRemoteMediaServices::GetCustomUIMode
Player Object

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.URL
The URL property specifies or retrieves the name of the clip to play.

Syntax

player.URL

Possible Values

This property is a read/write String with no default value.

Remarks

This property can only be set to a URL in a security zone that is the same or is less restrictive than the security
zone of the calling program or Web page.

Applications that open media from behind a firewall will have better performance when opening media if the
address is specified using the domain name server (DNS) name instead of the IP address.

Do not call this method from event handler code. Calling Player.URL from an event handler may yield
unexpected results.

Example Code

The following example creates an HTML TEXT input element and an HTML BUTTON input element. The
TEXT element allows the user to type a path to specify a digital media file to play. The BUTTON element
executes JScript that opens the file and starts the Player. The Player object was created with ID = "Player".

<!-- Create an INPUT control to get a file path from the user. -->
<INPUT Type = "TEXT" ID = "inputURL">

<!-- Create a BUTTON control to execute the script. -->
<INPUT Type = "BUTTON" ID = "openMedia" VALUE = "Open Media"
 onClick = "
 /* Specify the URL obtained from user input. */
 Player.URL = inputURL.value;

 /* Start the Player. */
 Player.controls.play();
">

Requirements

Previous Next

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.versionInfo
The versionInfo property retrieves a String value specifying the version of the Windows Media Player.

Syntax

player.versionInfo

Possible Values

This property is a read-only String in the following format: "X.0.0.YYYY" where X represents the major version
number and YYYY represents the build number.

Example Code

The following example creates an HTML BUTTON element that, when clicked, displays a message box
containing the version information for the Windows Media Player object. The Player object was created with ID
= "Player".

<INPUT TYPE = "BUTTON" ID = "VERSION" VALUE = "Show Version"
 onClick = "
 /* Build the message containing the version info. */
 var message = 'Windows Media Player Version: ';
 message += '\n';
 message += Player.versionInfo;

 /* Display the message box. */
 alert(message);
">

Requirements

Previous Next

Previous Next

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Player.windowlessVideo
The windowlessVideo property specifies or retrieves a value indicating whether the Windows Media Player
control renders video in windowless mode.

Syntax

player.windowlessVideo

Possible Values

This property is a Boolean that is specified at design time and is read-only thereafter.

Remarks

By default, an embedded Player object renders video in its own window within the client area. When
windowlessVideo is set to true, the Player object renders video directly in the client area, so you can apply
special effects or layer the video with text.

The windowlessVideo property is not supported for Netscape Navigator. Setting a value for this property in
Navigator may yield unexpected results.

Requirements

Previous Next

Previous Next

Value Description

true The video is rendered in windowless mode.

false Default. The video is rendered in windowed mode.

Version: Windows Media Player for Windows XP or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player Object

© 2000-2003 Microsoft Corporation. All rights reserved.

PlayerApplication Object
The PlayerApplication object provides a way to coordinate switching between a remoted Player control and
the full mode of the Player. This object is used only with C++ programs that implement the
IWMPRemoteMediaServices interface and embed the Player control in remote mode. Skin files used as
custom interfaces for the remoted control access this object in script code through the playerApplication global
attribute.

The PlayerApplication object supports the following properties.

The PlayerApplication object supports the following methods.

The PlayerApplication object is accessed through the following property.

Previous Next

Previous Next

Property Description

hasDisplay Retrieves a value indicating whether video can display through the
remoted Player control.

playerDocked Retrieves a value indicating whether the Player is in a docked state.

Method Description

switchToControl Switches a remoted Player control to the docked state.

switchToPlayerApplication Switches a remoted Player control to the full mode of the Player.

Object Property

See Also

Object Model Reference
Remoting the Windows Media Player Control

© 2000-2003 Microsoft Corporation. All rights reserved.

PlayerApplication.hasDisplay
The hasDisplay property retrieves a value indicating whether video can display through the remoted Player
control.

Syntax

playerApplication.hasDisplay

Possible Values

This property is a read-only Boolean.

Remarks

This property is used only when remoting the Player control.

Several Player controls can be running remotely at the same time, but video can only display in one location at a
time, either in the full mode of the Player or in one of the remoted controls. Use this property to determine
whether the current control is the one through which video can be displayed.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

PlayerApplication Object

Player playerApplication

Previous Next

Previous Next

Remoting the Windows Media Player Control

© 2000-2003 Microsoft Corporation. All rights reserved.

PlayerApplication.playerDocked
The playerDocked property retrieves a value indicating whether the Player is in a docked state.

Syntax

playerApplication.playerDocked

Possible Values

This property is a read-only Boolean.

Remarks

This property is used only when remoting the Player control.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

PlayerApplication Object
Remoting the Windows Media Player Control

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

PlayerApplication.switchToControl
The switchToControl method switches a remoted Player control to the docked state.

Syntax

playerApplication.switchToControl()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

This method is used only when remoting the Player control.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

PlayerApplication Object
Remoting the Windows Media Player Control

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

PlayerApplication.switchToPlayerApplication
The switchToPlayerApplication method switches a remoted Player control to the full mode of the Player.

Syntax

playerApplication.switchToPlayerApplication()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

This method is used only when remoting the Player control.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

PlayerApplication Object
Remoting the Windows Media Player Control

© 2000-2003 Microsoft Corporation. All rights reserved.

Playlist Object
The Playlist object provides a way to organize media items in a list for easy manipulation using the following
properties and methods.

Previous Next

Previous Next

The Playlist object supports the following properties.

The Playlist object supports the following methods.

The Playlist object is accessed through the following properties and methods.

Because it is the most common means of access, player.currentPlaylist is used for purposes of illustration in
the reference syntax sections.

See Also

Object Model Reference

Property Description

attributeCount Retrieves the number of attributes associated with the playlist.

attributeName Retrieves the name of an attribute specified by an index.

count Retrieves the number of items in the playlist.

name Specifies or retrieves the name of the playlist.

Method Description

appendItem Adds a media item to the end of the playlist.

clear Reserved for future use.

getItemInfo Retrieves the value of a playlist attribute.

insertItem Inserts a media item into the playlist at the specified location.

isIdentical Retrieves a value indicating whether the supplied Playlist object is
identical to the current one.

item Retrieves the media item at the specified index.

moveItem Changes the location of an item in the playlist.

removeItem Removes the specified item from the playlist.

setItemInfo Specifies the value of a playlist attribute.

Object Property or method

Cdrom playlist

MediaCollection getAll, getByAlbum, getByAttribute, getByAuthor, getByGenre,
getByName

Player currentPlaylist, newPlaylist

PlaylistArray item

PlaylistCollection newPlaylist

© 2000-2003 Microsoft Corporation. All rights reserved.

Playlist.appendItem
The appendItem method adds a media item to the end of the playlist.

Syntax

player.currentPlaylist.appendItem(item)

Parameters

 item

Media object to be added.

Return Values

This method does not return a value.

Remarks

To use this method, full access to Media Library is required. For more information, see Media Library Access.

Example Code

The following JScript example uses Playlist.appendItem to add the current media item to the playlist named
"ThreeList". The player object was created with ID="Player".

// Get the current media item.
var currMedia = Player.currentMedia;

// Get the playlist object by name.
var plThreeList = Player.playlistCollection.getByName("ThreeList").item(0);

// Append the media item to the playlist.
plThreeList.appendItem(currMedia);

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Previous Next

Previous Next

Library: Use wmp.dll.

See Also

Playlist Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Playlist.attributeCount
The attributeCount property retrieves the number of attributes associated with the playlist.

Syntax

player.currentPlaylist.attributeCount

Possible Values

This property is a read-only Number (long).

Remarks

Because playlists can come from many different sources, they can have several different sets of properties. This
method retrieves the total number of properties available so that the other methods of the Playlist object can
access them.

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

For information about the attributes supported by Windows Media Player, see Available Attributes.

Example

The following JScript example illustrates how various properties and methods of the Playlist and Media objects
are used.

function onLoad() {
 var display;
 var pl = player.currentPlaylist;

Previous Next

Previous Next

 pl.setItemInfo("custom playlist attribute", "changed");
 pl.item(0).setItemInfo("new custom attribute", "5");

 display = pl.attributeCount + " Playlist Attributes:\r\r";

 for (var i = 0; i < pl.attributeCount; ++i) {
 display = display + pl.attributeName(i) + ": ";
 display = display + pl.getItemInfo(pl.attributeName(i)) + "\r";
 }

 for (var j = 0; j < pl.count; ++j) {
 display = display + "\rTrack " + j + "\r"
 display = display + pl.item(j).attributeCount + " Attributes:\r\r";

 for (var k = 0; k < pl.item(j).attributeCount; ++k) {
 var it = pl.item(j); // Media object
 display = display + it.getAttributeName(k) + ": ";
 display = display + it.getItemInfo(it.getAttributeName(k)) + "\r";
 }
 }

 myText.value = display;
}

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Playlist Object
Playlist.attributeName
Playlist.getItemInfo
Playlist.setItemInfo
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Playlist.attributeName

Previous Next

Previous Next

The attributeName property retrieves the name of an attribute specified by an index.

Syntax

player.currentPlaylist.attributeName(index)

Parameters

 index

Number (long) containing the index.

Possible Values

This property is a read-only String.

Remarks

The number of attributes is retrieved with the attributeCount property. Given an index, attributeName returns
a String that can be used in conjunction with setItemInfo and getItemInfo to specify and retrieve the value for
an attribute.

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

For information about the attributes supported by Windows Media Player, see Available Attributes.

Example

See the attributeCount property for a sample illustrating the use of this property.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Playlist Object
Playlist.attributeCount
Playlist.getItemInfo
Playlist.setItemInfo
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Playlist.count
The count property retrieves the number of media items in the playlist.

Syntax

player.currentPlaylist.count

Possible Values

This property is a read-only Number (long).

Remarks

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

Example

See the attributeCount property for an example illustrating the use of this property.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Playlist Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Playlist.getItemInfo
The getItemInfo method retrieves the value of a playlist attribute.

Syntax

player.currentPlaylist.getItemInfo(name)

Parameters

 name

String containing the name of the attribute to be retrieved. For information about the attributes supported by
Windows Media Player, see Available Attributes.

Return Values

This method returns a String.

Remarks

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Example

See the attributeCount property for a sample illustrating the use of this property.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Playlist Object
Playlist.setItemInfo
Settings.mediaAccessRights
Settings.requestMediaAccessRights

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Playlist.insertItem
The insertItem method inserts a media item into the playlist at the specified location.

Syntax

player.currentPlaylist.insertItem(index, item)

Parameters

 index

Number (long) containing the index at which to add the item.

 item

Media object to insert.

Return Values

This method does not return a value.

Remarks

All items after the inserted item will have their index numbers increased by one.

To use this method, full access to Media Library is required. For more information, see Media Library Access.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Playlist Object
Playlist.item
Playlist.removeItem

Previous Next

Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Playlist.isIdentical
The isIdentical method retrieves a value indicating whether the supplied Playlist object is identical to the
current one.

Syntax

player.currentPlaylist.isIdentical(playlist)

Parameters

 playlist

Playlist object to compare to the current one.

Return Values

This method returns a Boolean.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Playlist Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Playlist.item
The item method retrieves the media item at the specified index.

Syntax

player.currentPlaylist.item(index)

Parameters

 index

Number (long) containing the index.

Return Values

This method returns a Media object.

Remarks

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Example Code

The following JScript example uses Playlist.item to retrieve a particular media item from the current playlist
based on a user selection. An HTML select element was created with name = "weblist", and filled with the titles
from the current playlist. The player object was created with ID = "Player".

// Store the value of the selected item in the list box
// using the selectedIndex property.
var index = weblist.selectedIndex;

// Store the corresponding media object from the current playlist.
var listItem = Player.currentPlaylist.item(index);

// Set the player URL using the listItem variable.
Player.URL = listItem.sourceURL;

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

Previous Next

See Also

Media Object
Playlist Object
Playlist.insertItem
Playlist.removeItem
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Playlist.moveItem
The moveItem method changes the location of an item in the playlist.

Syntax

player.currentPlaylist.moveItem(oldIndex, newIndex)

Parameters

 oldIndex

Number (long) containing the old index.

 newIndex

Number (long) containing the new index.

Return Values

This method does not return a value.

Remarks

Playlists stored in Media Library can change outside your control. Be sure to monitor and handle all
appropriate playlist-related events so that the order of items in the playlist does not change unexpectedly.

To use this method, full access to Media Library is required. For more information, see Media Library Access.

Requirements

Previous Next

Previous Next

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Playlist Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Playlist.name
The name property specifies or retrieves the name of the playlist.

Syntax

player.currentPlaylist.name

Possible Values

This property is a read/write String.

Remarks

To retrieve the value of this property, read access to Media Library is required. To specify the value, full
access is required. For more information, see Media Library Access.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Previous Next

Previous Next

Playlist Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Playlist.removeItem
The removeItem method removes the specified item from the playlist.

Syntax

player.currentPlaylist.removeItem(item)

Parameters

 item

Media object to be removed.

Return Values

This method does not return a value.

Remarks

If the item removed is the currently playing track (Player.currentMedia), playback stops and the next item in
the playlist becomes the current one. If there is no next item, the previous item is used, or if there are no other
items, then Player.currentMedia is set to NULL.

To use this method, full access to Media Library is required. For more information, see Media Library Access.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Previous Next

Previous Next

Player.currentMedia
Playlist Object
Playlist.insertItem
Playlist.item
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Playlist.setItemInfo
The setItemInfo method specifies the value of a playlist attribute.

Syntax

player.currentPlaylist.setItemInfo(name, value)

Parameters

 name

String containing the name of the attribute to be set. For information about the attributes supported by
Windows Media Player, see Available Attributes.

 value

String containing the new value for the attribute.

Return Values

This method does not return a value.

Remarks

A special use of the setItemInfo method is to sort the items in the playlist, using the SortAttribute attribute.
The following JScript example sorts a playlist by the values of the UserLastPlayedTime attribute. The variable
playlist is a reference to a Playlist object.

playlist.setItemInfo("SortAttribute", "UserLastPlayedTime")

To use this method, full access to Media Library is required. For more information, see Media Library Access.

Previous Next

Previous Next

Example

See the attributeCount property for a sample illustrating the use of this property.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Playlist Object
Playlist.getItemInfo
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

PlaylistArray Object
The PlaylistArray object provides a way to access playlists by index number.

The PlaylistArray object supports the following property.

The PlaylistArray object supports the following method.

The PlaylistArray object is accessed through the following methods.

Previous Next

Previous Next

Property Description

count Retrieves the number of playlists in the playlist array.

Method Description

item Retrieves the Playlist object at the given index.

Object Method

For purposes of illustration, player.playlistCollection.getAll() is used in the reference syntax sections.

See Also

Object Model Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

PlaylistArray.count
The count property retrieves the number of playlists in the playlist array.

Syntax

player.playlistCollection.getAll().count

Possible Values

This property is a read-only Number (long).

Remarks

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

PlaylistArray Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

PlaylistCollection getAll, getByName

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

PlaylistArray.item
The item method retrieves the playlist at the given index.

Syntax

player.playlistCollection.getAll().item(index)

Parameters

 index

Number (long) containing the index of the playlist to be retrieved.

Return Values

This method returns a Playlist object.

Remarks

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

PlaylistArray Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

PlaylistCollection Object
The PlaylistCollection object provides a way to organize your playlists.

The PlaylistCollection object supports the following methods.

The PlaylistCollection object is accessed through the following property.

See Also

Object Model Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Method Description

getAll Retrieves a PlaylistArray object containing all the playlists in Media
Library.

getByName Retrieves a PlaylistArray object containing playlists with the specified
name, if any exist.

importPlaylist Adds a static playlist to Media Library.

isDeleted Retrieves a value indicating whether the specified playlist is in the
deleted items folder.

newPlaylist Creates a new playlist in Media Library.

remove Removes a playlist from Media Library.

setDeleted Moves a playlist to the deleted items folder.

Object Property

Player playlistCollection

Previous Next

PlaylistCollection.getAll
The getAll method retrieves a PlaylistArray object containing all the playlists in Media Library.

Syntax

player.playlistCollection.getAll()

Parameters

This method takes no parameters.

Return Values

This method returns a PlaylistArray object.

Remarks

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

PlaylistArray Object
PlaylistCollection Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

PlaylistCollection.getByName
The getByName method retrieves a PlaylistArray object containing playlists with the specified name, if any
exist.

Syntax

player.playlistCollection.getByName(name)

Parameters

 name

String containing the name of the playlists to be retrieved.

Return Values

This method returns a PlaylistArray object.

Remarks

Use PlaylistArray.count to determine whether a playlist exists. If count is zero, a playlist does not exist.

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Example Code

The following JScript example uses playlistCollection.getByName to check the playlistCollection object for a
playlist named "ThreeList". If the "Threelist" playlist exists, getByName sets "ThreeList" as the current
playlist. The player object was created with the ID = "Player".

//Retrieve the count of the playlists named "ThreeList".
var Checkit = Player.playlistCollection.getByName("ThreeList").count;

//Since duplicate playlist names are allowed, the count returned
//will be either zero (no playlist) or greater than zero
//(playlist exists).
if (Checkit > 0){

 //Retrieve a playlistArray object containing "ThreeList". Assume that
 //there is only one playlist with that name, and assign it to the
 //current playlist.
 Player.currentPlaylist = Player.playlistCollection.getByName("ThreeList").item(0);
}

Requirements

Previous Next

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

PlaylistArray Object
PlaylistArray.count
PlaylistCollection Object
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

PlaylistCollection.importPlaylist
The importPlaylist method adds a static playlist to Media Library.

Syntax

player.playlistCollection.importPlaylist(playlist)

Parameters

 playlist

Playlist object to be added.

Return Values

This method returns the Playlist object that was added.

Remarks

Playlists that do not contain any media items cannot be added to Media Library by using this method. To
create an empty playlist in Media Library, use the newPlaylist method. You can then fill the resulting playlist
with media items by using Playlist.appendItem or Playlist.insertItem.

If you pass this method an auto playlist, the query is executed once and the result is added to Media Library as

Previous Next

Previous Next

a static playlist. To add an auto playlist to Media Library and preserve its automatic behavior, use
MediaCollection.add. For more information, see Static and Auto Playlists.

To use this method, full access to Media Library is required. For more information, see Media Library Access.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Managing Playlists
MediaCollection Object
MediaCollection.add
Playlist.appendItem
Playlist.insertItem
PlaylistCollection Object
PlaylistCollection.newPlaylist
PlaylistCollection.remove
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

PlaylistCollection.isDeleted
The isDeleted method retrieves a value indicating whether the specified playlist is in the deleted items folder.

Syntax

player.playlistCollection.isDeleted(playlist)

Parameters

 playlist

The Playlist object to be searched for.

Previous Next

Previous Next

Return Values

This method returns a Boolean.

Requirements

Version: Windows Media Player version 7.0, Windows Media Player version 7.1, or Windows Media Player
for Windows XP.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

This method is not supported for Windows Media Player 9 Series or later.

See Also

PlaylistCollection Object

© 2000-2003 Microsoft Corporation. All rights reserved.

PlaylistCollection.newPlaylist
The newPlaylist method creates a new playlist in Media Library.

Syntax

player.playlistCollection.newPlaylist(name)

Parameters

 name

String containing the name of the playlist to be created.

Return Values

This method returns a Playlist object.

Remarks

Previous Next

Previous Next

This method creates an empty playlist in Media Library. To fill the playlist with media items, use
Playlist.appendItem or Playlist.insertItem.

Multiple playlists having the same name are permitted in Media Library. To avoid creating a duplicate playlist
name with this method, use getByName and PlaylistArray.count to determine whether a playlist with a
particular name already exists.

Leading and trailing spaces are not permitted in playlist names, and are automatically removed from the value
specified for the name parameter.

To use this method, full access to Media Library is required. For more information, see Media Library Access.

Example Code

The following JScript example creates a new empty playlist called "ThreeList". The player object was created
with ID="Player".

//Add a new empty playlist, named ThreeList, to the playlist collection.
var NewList = Player.playlistCollection.newPlaylist("ThreeList");

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

MediaCollection.add
Playlist.appendItem
Playlist.insertItem
PlaylistArray.count
PlaylistCollection Object
PlaylistCollection.getByName
PlaylistCollection.importPlaylist
PlaylistCollection.remove
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

PlaylistCollection.remove
The remove method removes a playlist from Media Library.

Syntax

player.playlistCollection.remove(playlist)

Parameters

 playlist

The Playlist object to be removed.

Return Values

This method does not return a value.

Remarks

To use this method, full access to Media Library is required. For more information, see Media Library Access.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

PlaylistCollection Object
PlaylistCollection.importPlaylist
PlaylistCollection.newPlaylist
Settings.mediaAccessRights
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

PlaylistCollection.setDeleted
The setDeleted method moves a playlist to the deleted items folder.

Syntax

player.playlistCollection.setDeleted(playlist, true)

Parameters

 playlist

The Playlist object to be moved.

 true

Always specify this value.

Return Values

This method does not return a value.

Requirements

Version: Windows Media Player version 7.0, Windows Media Player version 7.1, or Windows Media Player
for Windows XP. This method is not supported for Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

PlaylistCollection Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Settings Object
The Settings object provides a way to modify various Media Player settings using the following properties and

Previous Next

Previous Next

methods.

The Settings object supports the following properties.

The Settings object supports the following methods.

The Settings object is accessed through the following property.

Property Description

autoStart Specifies or retrieves a value indicating whether the current media item
begins playing automatically.

balance Specifies or retrieves the current stereo balance.

baseURL Specifies or retrieves the base URL used for relative path resolution with
URL-type script commands that are embedded in media files.

defaultAudioLanguage Retrieves the locale identifier (LCID) of the default audio language
specified in Windows Media Player.

defaultFrame Specifies or retrieves the name of the frame used to display a URL that
is received in a ScriptCommand event.

enableErrorDialogs Specifies or retrieves a value indicating whether error dialog boxes are
shown automatically.

invokeURLs Specifies or retrieves a value indicating whether URL events should
launch a Web browser.

isAvailable Retrieves whether a specified type of information is available or a
specified action can be performed.

mediaAccessRights Retrieves a value indicating the rights currently granted for Media
Library access.

mute Specifies or retrieves a value indicating whether audio is muted.

playCount Specifies or retrieves the number of times a media item will play.

rate Specifies or retrieves the current playback rate.

volume Specifies or retrieves the current volume.

Method Description

getMode Determines whether the loop mode or shuffle mode is active.

requestMediaAccessRights Requests a specified level of access to Media Library.

setMode Sets the loop mode or shuffle mode to active or inactive.

Object Property

Player settings

See Also

Object Model Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Settings.autoStart
The autoStart property specifies or retrieves a value indicating whether the current media item begins playing
automatically.

Syntax

player.settings.autoStart

Possible Values

This property is a read/write Boolean.

Remarks

If autoStart is set to true, the media clip will begin playing as soon as Player.URL, Player.currentPlaylist, or
Player.currentMedia is set. Otherwise, it will not start playing until the Controls.play method is called.

Because the autoStart property for the full mode of the Player can be set globally by external events (such as
loading a CD), there is no reliable default value for skins and remoted Player controls. This is because the
playback engine of the full Player is used in both cases. You should set autoStart to false immediately before
you set Player.URL, Player.currentPlaylist, or Player.currentMedia in skins and remoted Player controls if
you wish to ensure that the media item does not start playing immediately. Also, unless you set autostart to
true immediately before specifying a media item, you should not rely on this setting as a substitute for using the
Controls.play method.

Example Code

The following example creates an HTML CHECKBOX element that allows the user to specify whether the
Player control plays the current media item automatically. The Player object was created with ID = "Player".

Previous Next

Previous Next

Value Description

true Default (see Remarks). The media item begins playing automatically.

false The media item does not begin playing automatically.

<!-- Create an HTML CHECKBOX control. -->
<INPUT TYPE = "CHECKBOX" ID = AS
 onClick = "
 /* Use the CHECKBOX state to specify the value
 of the autoStart property. */
 Player.settings.autoStart = AS.checked;
">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player.currentMedia
Player.URL
Settings Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Settings.balance
The balance property specifies or retrieves the current stereo balance.

Syntax

player.settings.balance

Possible Values

This property is a read/write Number (long) ranging from –100 to 100 with a default value of zero.

Remarks

The default value zero indicates that the sound is balanced equally between the left and right speakers. A value
of –100 indicates that all sound is going to the left speaker, while a value of 100 indicates that all sound is going
to the right speaker.

Requirements

Previous Next

Previous Next

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Settings Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Settings.baseURL
The baseURL property specifies or retrieves the base URL used for relative path resolution with URL-type
script commands that are embedded in media files.

Syntax

player.settings.baseURL

Possible Values

This property is a read/write String.

Remarks

This property specifies the base HTTP URL that is passed as the command parameter by the ScriptCommand
event. The base URL is concatenated with the relative URL as follows:

1. A trailing forward slash (/) is added to the value of the baseURL property.
2. A leading period, backward slash, or forward slash (., \, and /) are deleted from the relative URL.
3. The relative URL is added to the end of the base URL.
4. All slashes in the resulting fully qualified URL are pointed in the same direction (converted to forward or

backward slashes) based on the direction of the first slash character encountered in the new URL.

Note The player control does not support the use of two periods (..) in the relative URL to indicate the parent
of the current location.

Requirements

Previous Next

Previous Next

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player.ScriptCommand Event
Settings Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Settings.defaultAudioLanguage
The defaultAudioLanguage property retrieves the LCID of the default audio language specified in Windows
Media Player.

Syntax

player.settings.defaultAudioLanguage

Possible Values

This property is a read-only Number (long).

Remarks

An LCID uniquely identifies a particular language dialect, called a locale.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls.currentAudioLanguage

Previous Next

Previous Next

Settings Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Settings.defaultFrame
The defaultFrame property specifies or retrieves the name of the frame used to display a URL that is received
in a ScriptCommand event.

Syntax

player.settings.defaultFrame

Possible Values

This property is a read/write String corresponding to the value of the name attribute of the target FRAME
element.

Remarks

If a target frame is specified in the ScriptCommand event itself, this property is ignored.

This property is ignored when using the Netscape Navigator Java applet. In Navigator, each URL-type script
command received displays the URL in a new browser window, regardless of the value of
Settings.defaultFrame.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player.ScriptCommand Event
Settings Object
Using Windows Media Player with Netscape Navigator

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Settings.enableErrorDialogs
The enableErrorDialogs property specifies or retrieves a value indicating whether error dialog boxes are
shown automatically.

Syntax

player.settings.enableErrorDialogs

Possible Values

This property is a read/write Boolean.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

Remarks

This property exhibits specific behavior for remoted instances of the Player control. For more information, see
Remoting the Windows Media Player Control.

See Also

Settings Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Value Description

true Default. Error dialogs are shown automatically.

false Error dialogs are not shown automatically.

Previous Next

Settings.getMode
The getMode method determines whether the loop mode or shuffle mode is active.

Syntax

player.settings.getMode(modeName)

Parameters

 modeName

String specifying the name of the mode in question, containing one of the following values.

Return Values

This method returns a Boolean value indicating whether the specified mode is active.

Requirements

Version: For loop and shuffle modes, Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

For autoRewind and showFrame modes, Windows Media Player 9 Series or later.

See Also

Settings Object
Settings.setMode

Previous Next

String Description

autoRewind Mode indicating that the tracks are rewound to the beginning after playing to the
end.

loop Mode indicating that the sequence of tracks repeats itself.

showFrame Mode indicating that the nearest key frame is displayed at the current position
when not playing. This mode is not relevant for audio tracks.

shuffle Mode indicating that the tracks are played in random order.

© 2000-2003 Microsoft Corporation. All rights reserved.

Settings.invokeURLs
The invokeURLs property specifies or retrieves a value indicating whether URL events should launch a Web
browser.

Syntax

player.settings.invokeURLs

Possible Values

This property is a read/write Boolean.

Remarks

Media files can contain URLs. When a URL is sent to the Windows Media Player control, it is passed first to
the ScriptCommand event handler regardless of the value in invokeURLs. After ScriptCommand exits,
Windows Media Player checks invokeURLs to determine whether to launch the default Internet browser with
the URL. You can selectively display URLs by checking them in ScriptCommand and setting invokeURLs as
desired.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Player.ScriptCommand Event
Settings Object

Previous Next

Previous Next

Value Description

true Default. URL events should launch a browser.

false URL events should not launch a browser.

© 2000-2003 Microsoft Corporation. All rights reserved.

Settings.isAvailable
The isAvailable property indicates whether a specified type of information is available or a specified action can
be performed.

Syntax

player.settings.isAvailable(name)

Parameters

 name

String containing one of the following values.

Return Values

Previous Next

Previous Next

String Description

AutoStart Determines whether the autoStart property can be set.

Balance Determines whether the balance property can be set.

BaseURL Determines whether the baseURL property can be set.

DefaultFrame Determines whether the defaultFrame property can be set.

EnableErrorDialogs Determines whether the enableErrorDialogs property can be set.

GetMode Determines whether the getMode method can be called.

InvokeURLs Determines whether the invokeURLs property can be set.

Mute Determines whether the mute property can be set.

PlayCount Determines whether the playCount property can be set.

Rate Determines whether the rate property can be set.

SetMode Determines whether the setMode method can be called.

Volume Determines whether the volume property can be set.

This method returns a Boolean value.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Settings Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Settings.mediaAccessRights
The mediaAccessRights property retrieves a value indicating the rights currently granted for Media Library
access.

Syntax

player.settings.mediaAccessRights

Possible Values

This property is a read-only String.

Remarks

A Web page must first request permission from the user to read information from or write data to Media
Library. This means that certain methods, properties, and events will be inaccessible from code if the
appropriate access rights have not been granted. To obtain access rights, the application calls

Previous Next

Previous Next

Value Description

none Current item access rights only.

read Read access rights only.

full Read/Write access rights.

Settings.requestMediaAccessRights, passing a parameter that specifies the desired access rights level.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Settings Object
Settings.requestMediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

Settings.mute
The mute property specifies and retrieves a value indicating whether audio is muted.

Syntax

player.settings.mute

Possible Values

This property is a read/write Boolean.

Example Code

The following example creates an HTML CHECKBOX element that allows the user to mute and un-mute
audio. The Player object was created with ID = "Player".

<!-- Create an HTML CHECKBOX control. -->
<INPUT TYPE = "CHECKBOX" ID = MUTE

Previous Next

Previous Next

Value Description

true Audio is muted.

false Default. Audio is not muted.

 onClick = "
 /* Use the CHECKBOX state to set
 the mute property. */
 Player.settings.mute = MUTE.checked;
">

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Settings Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Settings.playCount
The playCount property specifies or retrieves the number of times a media item will play.

Syntax

player.settings.playCount

Possible Values

This property is a read/write Number (long) with a minimum value of one and a default value of one.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Previous Next

Previous Next

Settings Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Settings.rate
The rate property specifies or retrieves the current playback rate of video media.

Syntax

player.settings.rate

Possible Values

This property is a read/write Number (double) with a default value of 1.0.

Remarks

This property acts as a multiplier value that allows you to play a clip at a faster or slower rate. The default value
of 1.0 indicates the authored speed. Note that an audio track becomes difficult to understand at rates lower than
0.5 or higher than 1.5. A playback rate of 2 equates to twice the normal playback speed.

Windows Media Player will attempt to use the most effective of four different playback modes. These modes
are smooth video playback with audio pitch maintained, smooth video playback with audio pitch not
maintained, smooth video playback with no audio, and keyframe video playback with no audio. The mode
chosen by the Player depends on numerous factors including file type and location, operating system, network,
and server.

Other considerations apply as well, depending on media type:

Windows Media Format (WMV) and ASF files: Optimal values for this property are from 1 to 10, or
from –1 to –10 for reverse play. Values from 0.5 to 1.0 or from -0.5 to -1.0 may also work well in cases
where audio pitch can be maintained, for example, when playing files located on the local computer.
Values with an absolute magnitude greater than 10 are allowed, but are not very meaningful.
Other Video Media Types: This property can range from 0 to 9. Negative values are not allowed. Values
less than 1 represent slow motion. Values above 9 are allowed, but are not very meaningful.

The Controls.fastForward method changes the value of rate to 5.0, while the Controls.fastReverse method
changes rate to –5.0.

The playback rate of some media types cannot be altered. Use the Settings.isAvailable method to determine
whether this property can be specified for a particular media item.

Previous Next

Previous Next

Example Code

The following example creates an HTML SELECT element that allows the user to change the playback speed
of the current media. The SELECT options offer normal speed, half -speed and double-speed playback rates.
The Player object was created with ID = "Player".

<!-- Create the HTML SELECT element. -->
<SELECT ID = pbRATE NAME = "pbRATE" LANGUAGE="JScript"
 onChange="
 /* Test whether playback rate can be set. */
 if(Player.settings.IsAvailable('Rate'))

 /* Set the playback rate based on the current
 value of the SELECT element. */
 Player.settings.rate = this.value
">

/* Create the OPTION list. */
<OPTION VALUE = 1>NORMAL</OPTION>
<OPTION VALUE = .5>half speed</OPTION>
<OPTION VALUE = 2>2 speed</OPTION>
</SELECT>

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Controls.fastForward
Controls.fastReverse
Settings Object
Settings.isAvailable

© 2000-2003 Microsoft Corporation. All rights reserved.

Settings.requestMediaAccessRights
The requestMediaAccessRights method requests a specified level of access to Media Library.

Previous Next

Previous Next

Syntax

player.settings.requestMediaAccessRights(access)

Parameters

 access

String specifying the desired access rights level. Contains one of the following values.

Return Values

This method returns a Boolean value indicating whether the requested access rights were granted.

Remarks

A Web page must first request permission from the user to read information from or write data to Media
Library. Invoking this method prompts the user with a dialog box that requests the specified permission level.
This means that certain methods, properties, and events will be inaccessible from code if the appropriate access
rights have not been granted. The current access rights level can be retrieved using
Settings.mediaAccessRights.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Settings Object
Settings.mediaAccessRights

© 2000-2003 Microsoft Corporation. All rights reserved.

String Description

none Current item access rights only.

read Read access rights only.

full Read/Write access rights.

Previous Next

Settings.setMode
The setMode method sets various modes to active or inactive.

Syntax

player.settings.setMode(modeName, state)

Parameters

 modeName

String specifying the name of the mode being changed, containing one of the following values.

 state

Boolean specifying the new state of the specified mode.

Return Values

This method does not return a value.

Remarks

When the showFrame mode is active, the Player must access the track content to retrieve the video frame. Due
to bandwidth considerations, use this mode cautiously when playing non-local content.

Requirements

Version: For loop and shuffle modes, Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Previous Next

String Description

autoRewind Mode indicating whether the tracks are rewound to the beginning after playing to
the end. Default state is true.

loop Mode indicating whether the sequence of tracks repeats itself. Default state is
false.

showFrame Mode indicating whether the nearest video key frame is displayed at the current
position when not playing. Default state is false. Has no effect on audio tracks.

shuffle Mode indicating whether the tracks are played in random order. Default state is
false.

Library: Use wmp.dll.

For autoRewind and showFrame modes, Windows Media Player 9 Series or later.

See Also

Settings Object
Settings.getMode

© 2000-2003 Microsoft Corporation. All rights reserved.

Settings.volume
The volume property specifies or retrieves the current volume.

Syntax

player.settings.volume

Possible Values

This property is a read/write Number (long) ranging from 0 to 100.

Remarks

Zero specifies no volume and 100 specifies full volume. If no value is specified for this property, it defaults to
the last volume setting established for the player.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Settings Object

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

StringCollection Object
The StringCollection object provides a way to manipulate a collection of strings.

The StringCollection object supports the following property.

The StringCollection object supports the following method.

The StringCollection object is accessed through the following method.

For purposes of illustration, player.mediaCollection.getAttributeStringCollection(attribute, mediaType) is
used in the reference syntax sections.

See Also

Object Model Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Property Description

count Retrieves the number of items in the string collection.

Method Description

item Retrieves the string at the given index.

Object Method

MediaCollection getAttributeStringCollection

Previous Next

StringCollection.count
The count property retrieves the number of items in the string collection.

Syntax

player.mediaCollection.getAttributeStringCollection(attribute, mediaType).count

Possible Values

This property is a read-only Number (long).

Remarks

To retrieve the value of this property, read access to Media Library is required. For more information, see
Media Library Access.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Settings.mediaAccessRights
Settings.requestMediaAccessRights
StringCollection Object

© 2000-2003 Microsoft Corporation. All rights reserved.

StringCollection.item
The item method retrieves the string at the given index.

Syntax

Previous Next

Previous Next

Previous Next

player.mediaCollection.getAttributeStringCollection(attribute, mediaType).item(index)

Parameters

 index

Number (long) containing the index.

Return Values

This method returns a String.

Remarks

The StringCollection object is used to retrieve the set of values available for an attribute. For example, the
MediaCollection.getAttributeStringCollection method can be used to retrieve a StringCollection object
representing all the values for the Genre attribute within the Audio media type. The item property can then be
used to iterate through all of the possible values for the Genre attribute.

To use this method, read access to Media Library is required. For more information, see Media Library
Access.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

MediaCollection.getAttributeStringCollection
Settings.mediaAccessRights
Settings.requestMediaAccessRights
StringCollection Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Object Model Reference for C++

Previous Next

Previous Next

The Windows Media Player Object Model Reference is designed for use with script languages such as
Microsoft JScript, but if you are a programming in C++, you can translate the information it provides into C++
terms with minimal effort. Along with some basic translation rules, you'll need to learn the organization and
names of the interfaces that the scriptable objects are based on. If you want to use remoting or skins with the
Windows Media Player control, you'll also need to learn about the IWMPPlayerServices and
IWMPRemoteMediaServices interfaces, which can only be used with C++.

For a demonstration of embedding the Windows Media Player control in a C++ program, see the WMPHost
sample included with the Windows Media Player Software Development Kit (SDK).

C++ information is described in the following sections.

See Also

Object Model Reference
Embedding the Player Control in a C++ Program

© 2000-2003 Microsoft Corporation. All rights reserved.

C++ Translation Guide
This section contains the information you need to translate the script-oriented Object Model Reference into C++
terms. The script reference has almost all the information you need to use the Windows Media Player control in
a C++ program, but the syntax may be unfamiliar. Programming the control in C++ requires the use of
Component Object Model (COM) conventions, for example. The differences between script and C++ syntax are
described for the following areas:

Data Type Translation
Method Translation
Property Translation

Section Description

C++ Translation Guide This section provides the translation rules for reading the script reference
topics from a C++ perspective.

Interfaces This section provides reference tables that map C++ interface and method
names to the corresponding script reference topics. This section also
provides complete documentation for interfaces available only through
C++.

Enumeration Types This section documents the enumeration types available in C++ code.

Previous Next

Previous Next

Object Translation

See Also

Object Model Reference for C++

© 2000-2003 Microsoft Corporation. All rights reserved.

Data Type Translation
The script reference refers to three basic data types: Number, String, and Boolean. In the reference, the
Number keyword is always followed by a more specific type name in parentheses, such as long. This is the
type used in C++. String and Boolean values, on the other hand, always use the BSTR and VARIANT_BOOL
types in C++. In addition to the three basic types, Object values are also used. These become pointers to COM
interfaces in C++, and are described in more detail in a later section.

The following table summarizes these data type conversions.

A notable exception is the IWMPMedia3::getItemInfoByType method, documented as
Media.getItemInfoByType in the JScript reference. The C++ return value for this method is type VARIANT,
because in script it can return different types depending on the context. ErrorItem.errorContext also returns
type VARIANT in C++.

See Also

C++ Translation Guide
ErrorItem.errorContext
Media.getItemInfoByType

Previous Next

Previous Next

Script type C++ type

Number int, long, double, or float (specific type is indicated in
the script reference)

String BSTR

Boolean VARIANT_BOOL

Object Pointer to matching Interface

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Method Translation
Methods in script and methods in C++ differ in the way they return values. All Player methods return
HRESULT values in C++, following the COM convention. The return values listed in the script reference are
returned using "[out, retval]" parameters in C++. An out parameter is added to the end of the documented list of
regular (or "[in]") parameters. An out parameter is always a pointer to the return type. This pointer is declared
and allocated, then passed to a method when the method is called. The method assigns the return value to the
pointer. The calling routine accesses the value through the pointer, then frees the pointer resources when it is
finished.

For example, in Microsoft JScript, the following syntax block is for a method call that returns a String
containing the value of the attribute with the specified name (which is also a String value):

player.currentMedia.getItemInfo(name)

The C++ equivalent returns an HRESULT, and places the value of the requested attribute at the location
specified by the pbstrVal pointer:

HRESULT getItemInfo(BSTR bstrItemName, BSTR* pbstrVal);

For more information on Player method signatures for C++, see the wmp.idl file shipped with the Windows
Media Player Software Development Kit (SDK).

See Also

C++ Translation Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Property Translation

Previous Next

Previous Next

Previous Next

All the properties documented in the script reference are specified or retrieved using special methods in C++
called accessor methods. The names of these methods are obtained by adding get_ or put_ to the front of the
documented property names. If a property is read/write, there will be both get_ and put_ methods. If a property
is read-only, there will be a get_ method only.

Aside from their use to specify or retrieve property values, accessor methods are just like other methods. As
described earlier, the return value is always an HRESULT. The value that is specified or retrieved is an in or an
out parameter, respectively. For example, in JScript, the following syntax block is for a read-only property that
contains a String value representing the duration of the current media item:

player.currentMedia.durationString

The C++ equivalent is an accessor method that returns an HRESULT and places the durationString value at
the location specified by the pbstrDuration pointer:

HRESULT get_durationString(BSTR* pbstrDuration);

See Also

C++ Translation Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Object Translation
An Object in the script reference corresponds to an Interface pointer in C++. The Player interface names begin
with IWMP followed by the object name documented in the script reference. Some objects in the script
reference, however, correspond to multiple interfaces. If an interface has been updated, for example, it will have
multiple, sequentially numbered versions. Additionally, the Player object corresponds to the IWMPCore,
IWMPPlayer, and _WMPOCXEvents interfaces, the first two of which also have multiple versions.

When an interface is an update of another interface, its name ends with a number indicating the version, for
example IWMPMedia2, which supplements IWMPMedia. When you retrieve a pointer to a base interface (the
first version, which doesn't have a version number) you must call QueryInterface on it in order to retrieve a
pointer to the version that includes the method you want to call. For example, when you want to call
get_currentPositionTimecode, you must first retrieve an IWMPControls pointer by calling get_controls
through the IWMPCore interface. Next, retrieve an IWMPControls3 pointer by calling QueryInterface on
the IWMPControls pointer. If the IWMPControls3 pointer is retrieved successfully, it is then used to call
get_currentPositionTimecode.

This is illustrated in the following code, in which spCore is of type CComPtr<IWMPCore>.

Previous Next

Previous Next

 CComPtr<IWMPControls> spControls;
 CComPtr<IWMPControls3> spControls3;
 CComBSTR bstrTimecode;
 HRESULT hr = S_OK;
 if (SUCCEEDED(hr))
 {
 hr = spCore->get_controls(&spControls);
 }
 if (SUCCEEDED(hr))
 {
 hr = spControls->QueryInterface(&spControls3);
 }
 if (SUCCEEDED(hr))
 {
 hr = spControls3->get_currentPositionTimecode(&bstrTimecode);
 }
 if (SUCCEEDED(hr))
 {
 MessageBox(bstrTimecode);
 }

When the script reference refers to an Object without a specific type, the exact type can be found in the
wmp.idl file shipped with the SDK in the include folder.

See Also

C++ Translation Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Interfaces
This section lists the names of the COM interfaces exposed by the Windows Media Player control. The accessor
methods of the IWMPCore interface are used to retrieve specific interfaces. These interfaces, in turn, may have
accessor methods for retrieving further interfaces. Calling QueryInterface on one of these interfaces is only
necessary when you retrieve the base version of an interface and wish to call a method on a later version of the
same interface.

A scriptable object incorporates all versions of its corresponding interface, but in C++, you must have either a
pointer to the version that first includes the methods you need or a pointer to any later version.

Clicking the interface name will take you to a table listing the methods supported by that version. The
description of each method contains a link that will take you to the corresponding script reference section.

The Windows Media Player control supports the following interfaces.

Previous Next

Previous Next

Interface Description

_WMPOCXEvents Events originating from the Windows Media Player
control to which an embedding program can respond.

IWMPCdrom Methods for accessing a CD or DVD disc in its drive.

IWMPCdromCollection Methods for accessing a collection of CD-ROM or
DVD-ROM drives.

IWMPClosedCaption Methods for including captions with a media clip.

IWMPClosedCaption2 Additional closed-captioning methods.

IWMPControls Methods representing the transport controls of
Windows Media Player, such as Play, Stop, and Pause.

IWMPControls2 Additional control methods.

IWMPControls3 Additional control methods.

IWMPCore Methods used to retrieve pointers to other interfaces
and to access basic features of the control.

IWMPCore2 Additional core methods.

IWMPCore3 Additional core methods.

IWMPDVD Methods for working with DVDs.

IWMPError Methods providing access to a collection of
IWMPErrorItem pointers.

IWMPErrorItem Methods that provide information about errors.

IWMPErrorItem2 Additional error item methods.

IWMPEvents Events originating from the Windows Media Player
control to which an embedding program can respond.

IWMPMedia Methods relating to multimedia clips.

IWMPMedia2 Additional media methods.

IWMPMedia3 Additional media methods.

IWMPMediaCollection Methods for accessing a collection of IWMPMedia
pointers.

IWMPMetadataPicture Methods for retrieving information about the
WM/Picture metadata attribute.

IWMPMetadataText Methods for retrieving information about complex
textual metadata attributes.

IWMPNetwork Methods relating to the network connection of
Windows Media Player.

IWMPPlayer Methods for modifying the basic behavior of the
control user interface.

See Also

Object Model Reference for C++

© 2000-2003 Microsoft Corporation. All rights reserved.

_WMPOCXEvents Interface

IWMPPlayer2 Additional Player methods.

IWMPPlayer3 Additional Player methods.

IWMPPlayer4 Additional Player methods.

IWMPPlayerApplication Methods for switching between a remoted Player
control and the full mode of the Player. Can only be
used with C++ programs that embed the control in
remote mode.

IWMPPlayerServices Methods used by the host of a remoted control to
manipulate the full mode of the Player. Can only be
used with C++.

IWMPPlaylist Methods for manipulating lists of media clips.

IWMPPlaylistArray Methods for accessing a collection of IWMPPlaylist
pointers by index number.

IWMPPlaylistCollection Methods for manipulating IWMPPlaylist and
IWMPPlaylistArray pointers.

IWMPRemoteMediaServices Methods that provide services to the Player from a
program that hosts the Player control. Can only be
used with C++.

IWMPSettings Methods that allow the specification or retrieval of
Windows Media Player settings.

IWMPSettings2 Additional settings methods.

IWMPSkinManager A method for specifying the skin used with Windows
Media Player.

IWMPStringCollection Methods for accessing a collection of strings.

Previous Next

Previous Next

The _WMPOCXEvents interface provides events originating from the Windows Media Player control to
which an embedding program can respond.

In addition to the methods inherited from IDispatch, the _WMPOCXEvents interface exposes the following
events.

Event Description

AudioLanguageChange Occurs when the current audio language changes. See
Player.AudioLanguageChange Event.

Buffering Occurs when the Windows Media Player control
begins or ends buffering. See Player.Buffering Event.

CdromMediaChange Occurs when a CD or DVD is inserted into or ejected
from a CD-ROM or DVD-ROM drive. See
Player.CdromMediaChange Event.

Click Occurs when the user clicks a mouse button. See
Player.Click Event.

CurrentItemChange Occurs when the currentItem property of the
IWMPControls interface changes value. See
Player.CurrentItemChange Event.

CurrentMediaItemAvailable Occurs when the current media item becomes
available. See Player.CurrentMediaItemAvailable
Event.

CurrentPlaylistChange Occurs when something changes within the current
playlist. See Player.CurrentPlaylistChange Event.

CurrentPlaylistItemAvailable Occurs when the current playlist item becomes
available. See Player.CurrentPlaylistItemAvailable
Event.

Disconnect Reserved for future use.

DomainChange Occurs when the DVD domain changes. See
Player.DomainChange Event.

DoubleClick Occurs when the user double-clicks a mouse button.
See Player.DoubleClick Event.

DurationUnitChange Reserved for future use.

EndOfStream Reserved for future use.

Error Occurs when the Windows Media Player control has
an error condition. See Player.Error Event.

KeyDown Occurs when a key is pressed. See Player.KeyDown
Event.

KeyPress Occurs when a key is pressed and then released. See
Player.KeyPress Event.

KeyUp Occurs when a key is released. See Player.KeyUp

Event.

MarkerHit Occurs when a marker is reached. See
Player.MarkerHit Event.

MediaChange Occurs when a media item changes. See
Player.MediaChange Event.

MediaCollectionAttributeStringAdded Occurs when an attribute is added to Media Library.
See Player.MediaCollectionAttributeStringAdded
Event.

MediaCollectionAttributeStringChanged Occurs when an attribute in Media Library is
changed. See
Player.MediaCollectionAttributeStringChanged
Event.

MediaCollectionAttributeStringRemoved Occurs when an attribute is removed from Media
Library. See
Player.MediaCollectionAttributeStringRemoved
Event.

MediaCollectionChange Occurs when the media collection changes. See
Player.MediaCollectionChange Event.

MediaError Occurs when the media object has an error condition.
See Player.MediaError Event.

ModeChange Occurs when a mode of the player is changed. See
Player.ModeChange Event.

MouseDown Occurs when a mouse button is pressed. See
Player.MouseDown Event.

MouseMove Occurs when the mouse pointer is moved. See
Player.MouseMove Event.

MouseUp Occurs when a mouse button is released. See
Player.MouseUp Event.

NewStream Reserved for future use.

OpenPlaylistSwitch Occurs when a title on a DVD begins playing. See
Player.OpenPlaylistSwitch Event.

OpenStateChange Occurs when the Windows Media Player control
changes state. See Player.OpenStateChange Event.

PlayerDockedStateChange Occurs when a remoted Player control docks or
undocks. See Player.PlayerDockedStateChange
Event.

PlaylistChange Occurs when a playlist changes. See
Player.PlaylistChange Event.

PlaylistCollectionChange Occurs when something changes in the playlist
collection. See Player.PlaylistCollectionChange
Event.

See Also

C++ Translation Guide
Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPCdrom Interface
The IWMPCdrom interface provides methods that access a CD or DVD disc in its drive.

In addition to the methods inherited from IDispatch, the IWMPCdrom interface exposes the following

PlaylistCollectionPlaylistAdded Occurs when a playlist is added to the playlist
collection. See
Player.PlaylistCollectionPlaylistAdded Event.

PlaylistCollectionPlaylistRemoved Occurs when a playlist is removed from the playlist
collection. See
Player.PlaylistCollectionPlaylistRemoved Event.

PlaylistCollectionPlaylistSetAsDeleted Reserved for future use.

PlayStateChange Occurs when the play state of the Windows Media
Player control changes. See Player.PlayStateChange
Event.

PositionChange Occurs when the current position of the media has
been changed. See Player.PositionChange Event.

ScriptCommand Occurs when a synchronized command or URL is
received. See Player.ScriptCommand Event.

StatusChange Occurs when the status property changes value. See
Player.StatusChange Event.

SwitchedToControl Occurs when a remoted Player control switches to the
docked state. See Player.SwitchedToControl Event.

SwitchedToPlayerApplication Occurs when a remoted Player control switches to the
full mode of the Player. See
Player.SwitchedToPlayerApplication Event.

Warning Reserved for future use.

Previous Next

Previous Next

methods.

Retrieve a pointer to an IWMPCdrom interface with the following method.

The MFC AppWizards in Visual Studio automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPCdromCollection Interface
The IWMPCdromCollection interface provides methods for accessing a collection of CD-ROM or DVD-
ROM drives.

In addition to the methods inherited from IDispatch, the IWMPCdromCollection interface exposes the
following methods.

Method Description

eject Eject the disc from the drive. See Cdrom.eject.

get_driveSpecifier Retrieves the CD-ROM or DVD-ROM drive letter.
See Cdrom.driveSpecifier.

get_playlist Retrieves a pointer to an IWMPPlaylist interface
representing the tracks on the CD disc or the titles on
the DVD disc currently in the drive. See
Cdrom.playlist.

Interface Method

IWMPCdromCollection item - see CdromCollection.item

Previous Next

Previous Next

Method Description

item Retrieves a pointer to the IWMPCdrom interface
specified by index. See CdromCollection.item.

Retrieve a pointer to an IWMPCdromCollection interface with the following method.

The MFC AppWizards in Visual Studio automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPClosedCaption Interface
The IWMPClosedCaption interface provides a way to include captions with a media clip.

In addition to the methods inherited from IDispatch, the IWMPClosedCaption interface exposes the following
methods.

get_count Retrieves the number of CD-ROM and DVD-ROM
drives on the system. See CdromCollection.count.

getByDriveSpecifier Retrieves a pointer to the IWMPCdrom interface
associated with the specified drive letter. See
CdromCollection.getByDriveSpecifier.

Interface Method

IWMPCore get_cdromCollection - see Player.cdromCollection

Previous Next

Previous Next

Method Description

get_captioningID Retrieves the name of the frame or control displaying
the captioning. See ClosedCaption.captioningID.

get_SAMIFileName Retrieves the name of the file that contains information
needed for closed captioning. See
ClosedCaption.SAMIFileName.

get_SAMILang Retrieves the language displayed for closed
captioning. See ClosedCaption.SAMILang.

Retrieve a pointer to an IWMPClosedCaption interface with the following method.

The MFC AppWizards in Visual Studio automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces
IWMPClosedCaption2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPClosedCaption2 Interface
The IWMPClosedCaption2 interface provides closed captioning methods that supplement the
IWMPClosedCaption interface.

In addition to the methods inherited from IWMPClosedCaption, the IWMPClosedCaption2 interface exposes
the following methods.

get_SAMIStyle Retrieves the closed-captioning style. See
ClosedCaption.SAMIStyle.

put_captioningID Specifies the name of the frame or control displaying
the captioning. See ClosedCaption.captioningID.

put_SAMIFileName Specifies the name of the file that contains the
information needed for closed captioning. See
ClosedCaption.SAMIFileName.

put_SAMILang Specifies the language displayed for closed captioning.
See ClosedCaption.SAMILang.

put_SAMIStyle Specifies the closed-captioning style. See
ClosedCaption.SAMIStyle.

Interface Method

IWMPCore get_closedCaption. See Player.closedCaption.

Previous Next

Previous Next

Method Description

Retrieve a pointer to an IWMPClosedCaption2 interface by calling the QueryInterface method of an
IWMPClosedCaption interface.

The MFC AppWizards in Visual Studio do not automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces
IWMPClosedCaption Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPControls Interface
The IWMPControls interface provides a way to manipulate the playback of media.

In addition to the methods inherited from IDispatch, the IWMPControls interface exposes the following
methods.

get_SAMILangCount Retrieves the number of languages supported by the
current SAMI file. See
ClosedCaption.SAMILangCount.

getSAMILangID Retrieves the locale identifier (LCID) of a language
supported by the current SAMI file. See
ClosedCaption.getSAMILangID.

getSAMILangName Retrieves the name of a language supported by the
current SAMI file. See
ClosedCaption.getSAMILangName.

get_SAMIStyleCount Retrieves the number of styles supported by the
current SAMI file. See
ClosedCaption.SAMIStyleCount.

getSAMIStyleName Retrieves the name of a style supported by the current
SAMI file. See ClosedCaption.getSAMIStyleName.

Previous Next

Previous Next

Method Description

fastForward Starts fast play of the media item in the forward

Retrieve a pointer to an IWMPControls interface with the following method.

The MFC AppWizards in Visual Studio automatically generate a wrapper class for this interface.

direction. See Controls.fastForward.

fastReverse Starts fast play of the media item in the reverse
direction. See Controls.fastReverse.

get_currentItem Retrieves the current media item. See
Controls.currentItem.

get_currentMarker Retrieves the current marker number. See
Controls.currentMarker.

get_currentPosition Retrieves the current position in the media item in
seconds from the beginning. See
Controls.currentPosition.

get_currentPositionString Retrieves the current position in the media item as a
String. See Controls.currentPositionString.

isAvailable Retrieves a value indicating whether a specified type
of information is available or a given action can be
performed. See Controls.isAvailable.

next Sets the current item to the next item in the playlist.
See Controls.next.

pause Pauses playback of the media item. See
Controls.pause.

play Begins playback of the media item. See
Controls.play.

playItem Begins playback of the current media item, or resumes
playback of a paused item. See Controls.playItem.

previous Sets the current item to the previous item in the
playlist. See Controls.previous.

put_currentItem Specifies the current media item. See
Controls.currentItem.

put_currentMarker Specifies the current marker number. See
Controls.currentMarker.

put_currentPosition Specifies the current position in the media item in
seconds from the beginning. See
Controls.currentPosition.

stop Stops the playing of the media item. See
Controls.stop.

Interface Method

IWMPCore get_controls. See Player.controls.

See Also

C++ Translation Guide
Interfaces
IWMPControls2 Interface
IWMPControls3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPControls2 Interface
The IWMPControls2 interface provides a method that supplements the IWMPControls interface.

In addition to the methods inherited from IWMPControls, the IWMPControls2 interface exposes the
following method.

Retrieve a pointer to an IWMPControls2 interface by calling the QueryInterface method of an
IWMPControls interface.

The MFC AppWizards in Visual Studio do not automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces
IWMPControls Interface
IWMPControls3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Method Description

step Stops playback of the current DVD media item on the
next frame. See Controls.step.

Previous Next

IWMPControls3 Interface
The IWMPControls3 interface provides methods that supplement the IWMPControls2 interface.

In addition to the methods inherited from IWMPControls2, the IWMPControls3 interface exposes the
following methods.

Retrieve a pointer to an IWMPControls3 interface by calling the QueryInterface method of an
IWMPControls interface.

Previous Next

Method Description

get_audioLanguageCount Retrieves the count of supported audio languages. See
Controls.audioLanguageCount

get_currentAudioLanguage Retrieves the locale identifier (LCID) of the audio
language for playback. See
Controls.currentAudioLanguage

get_currentAudioLanguageIndex Retrieves the index that corresponds to the audio
language for playback. See
Controls.currentAudioLanguageIndex.

get_currentPositionTimecode Retrieves the current position in the current media
using a time code format. This property supports
SMPTE time code. See
Controls.currentPositionTimecode.

getAudioLanguageDescription Retrieves the description for the audio language
corresponding to the specified index. See
Controls.getAudioLanguageDescription.

getAudioLanguageID Retrieves the LCID for a specified audio language
index. See Controls.getAudioLanguageID.

getLanguageName Retrieves the name of the audio language with the
specified LCID. See Controls.getLanguageName.

put_currentAudioLanguage Specifies the LCID of the audio language for playback.
See Controls.currentAudioLanguage.

put_currentAudioLanguageIndex Specifies the index that corresponds to the audio
language for playback. See
Controls.currentAudioLanguageIndex.

put_currentPositionTimecode Specifies the current position in the current media
using SMPTE time code format. See
Controls.currentPositionTimecode.

The MFC AppWizards in Visual Studio do not automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces
IWMPControls Interface
IWMPControls2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPCore Interface
The IWMPCore interface is the root interface for the Windows Media Player control. It can be used to retrieve
pointers to other interfaces supported by the control and to access some basic features.

In addition to the methods inherited from IDispatch, the IWMPCore interface exposes the following methods.

Previous Next

Previous Next

Method Description

close Closes Windows Media Player. See Player.close.

get_cdromCollection Retrieves an IWMPCdromCollection pointer. See
Player.cdromCollection.

get_closedCaption Retrieves an IWMPClosedCaption pointer. See
Player.closedCaption.

get_controls Retrieves an IWMPControls pointer. See
Player.controls.

get_currentMedia Retrieves an IWMPMedia pointer corresponding to
the current media item. See Player.currentMedia.

get_currentPlaylist Retrieves an IWMPPlaylist pointer corresponding to
the current playlist. See Player.currentPlaylist.

get_error Retrieves an IWMPError pointer. See Player.error.

get_isOnline Retrieves a value indicating whether the user is
connected to a network. See Player.isOnline.

get_mediaCollection Retrieves an IWMPMediaCollection pointer. See
Player.mediaCollection.

The MFC AppWizards in Visual Studio do not automatically generate a separate wrapper class for this
interface. They do automatically generate a wrapper class for IWMPPlayer4, which inherits from this
interface.

See Also

C++ Translation Guide
Interfaces
IWMPCore2 Interface
IWMPCore3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

get_network Retrieves an IWMPNetwork pointer. See
Player.network.

get_openState Retrieves a value indicating the state of the content
source. See Player.openState.

get_playlistCollection Retrieves an IWMPPlaylistCollection pointer. See
Player.playlistCollection.

get_playState Retrieves a value indicating the operating state of
Windows Media Player. See Player.playState.

get_settings Retrieves an IWMPSettings pointer. See
Player.settings.

get_status Retrieves a value indicating the current status of
Windows Media Player. See Player.status.

get_URL Retrieves the name of the clip to play. See
Player.URL.

get_versionInfo Retrieves a String value specifying the version of
Windows Media Player. See Player.versionInfo.

launchURL Sends a URL to the user's default browser. See
Player.launchURL.

put_currentMedia Specifies the IWMPMedia pointer that corresponds to
the current media item. See Player.currentMedia.

put_currentPlaylist Specifies the IWMPPlaylist pointer that corresponds
to the current playlist. See Player.currentPlaylist.

put_URL Specifies the name of the clip to play. See
Player.URL.

Previous Next

IWMPCore2 Interface
The IWMPCore2 interface provides a method that supplements the IWMPCore interface.

In addition to the methods inherited from IWMPCore, the IWMPCore2 interface exposes the following
method.

Retrieve a pointer to an IWMPCore2 interface by calling the QueryInterface method of the IWMPCore
interface.

The MFC AppWizards in Visual Studio do not automatically generate a separate wrapper class for this
interface. They do automatically generate a wrapper class for IWMPPlayer4, which inherits from this
interface.

See Also

C++ Translation Guide
Interfaces
IWMPCore Interface
IWMPCore3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPCore3 Interface
The IWMPCore3 interface provides methods that supplement the IWMPCore2 interface.

In addition to the methods inherited from IWMPCore2, the IWMPCore3 interface exposes the following
methods.

Previous Next

Method Description

get_dvd Retrieves an IWMPDVD pointer. See Player.dvd.

Previous Next

Previous Next

Retrieve a pointer to an IWMPCore3 interface by calling the QueryInterface method of the IWMPCore or
IWMPCore2 interfaces.

The MFC AppWizards in Visual Studio do not automatically generate a separate wrapper class for this
interface. They do automatically generate a wrapper class for IWMPPlayer4, which inherits from this
interface.

See Also

C++ Translation Guide
Interfaces
IWMPCore Interface
IWMPCore2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPDVD Interface
The IWMPDVD interface provides methods for working with DVDs.

In addition to the methods inherited from IDispatch, the IWMPDVD interface exposes the following methods.

Method Description

newMedia Retrieves an IWMPMedia pointer for a new media
item. See Player.newMedia.

newPlaylist Retrieves an IWMPPlaylist pointer for a new playlist.
See Player.newPlaylist.

Previous Next

Previous Next

Method Description

back Changes the display from a submenu to its parent
menu. See DVD.back.

get_domain Retrieves the current domain of the DVD. See
DVD.domain.

get_isAvailable Retrieves whether a specified type of information is
available or a given action can be performed. See
DVD.isAvailable.

Retrieve a pointer to an IWMPDVD interface with the following method.

The MFC AppWizards in Visual Studio automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPError Interface
The IWMPError interface provides methods for accessing a collection of IWMPErrorItem pointers.

In addition to the methods inherited from IDispatch, the IWMPError interface exposes the following
methods.

resume Changes to playback mode from menu mode,
resuming at the same position as when the menu was
invoked. See DVD.resume.

titleMenu Stops playback and displays the title menu. See
DVD.titleMenu.

topMenu Stops playback and displays the root menu. See
DVD.topMenu.

Interface Method

IWMPCore2 get_dvd - see Player.dvd

Previous Next

Previous Next

Method Description

clearErrorQueue Clears the errors from the error queue. See
Error.clearErrorQueue.

get_errorCount Retrieves the number of errors in the error queue. See
Error.errorCount.

item Retrieves a pointer to an IWMPErrorItem interface

Retrieve a pointer to an IWMPError interface with the following method.

The MFC AppWizards in Visual Studio automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPErrorItem Interface
The IWMPErrorItem interface provides a way to access error information.

In addition to the methods inherited from IDispatch, the IWMPErrorItem interface exposes the following
methods.

at the given index. See Error.item.

webHelp Launches the Microsoft Windows Media Player Web
Help page to display further information about the
error. See Error.webHelp.

Interface Method

IWMPCore get_error. See Player.error.

Previous Next

Previous Next

Method Description

get_customURL Reserved for future use.

get_errorCode Retrieves the current error code. See
ErrorItem.errorCode.

get_errorContext Reserved for future use.

get_errorDescription Retrieves a description of the error. See
ErrorItem.errorDescription.

get_remedy Reserved for future use.

Retrieve a pointer to an IWMPErrorItem interface with the following method.

The MFC AppWizards in Visual Studio automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces
IWMPErrorItem2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPErrorItem2 Interface
The IWMPErrorItem2 interface provides a method that supplements the IWMPErrorItem interface.

In addition to the methods inherited from IWMPErrorItem, the IWMPErrorItem2 interface exposes the
following method.

Retrieve a pointer to an IWMPErrorItem2 interface by calling the QueryInterface method of the
IWMPErrorItem interface.

The MFC AppWizards in Visual Studio do not automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces
IWMPErrorItem Interface

Interface Method

IWMPError get_item. See Error.item.

Previous Next

Previous Next

Method Description

get_condition Retrieves a value indicating the condition for the error.
See ErrorItem.condition.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPEvents Interface
The IWMPEvents interface provides the same events as the _WMPOCXEvents interface, but inherits from
IUnknown rather than IDispatch. This allows you to receive Windows Media Player event notifications
directly.

The Windows Media Player Plug-in Wizard can create a sample project that demonstrates how to implement the
IWMPEvents interface. For details about how to create a sample UI plug-in project that includes event
handling, see Building a UI Plug-in.

See Also

_WMPOCXEvents Interface
C++ Translation Guide
Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPMedia Interface
The IWMPMedia interface provides methods for specifying and retrieving properties of a multimedia clip.

In addition to the methods inherited from IDispatch, the IWMPMedia interface exposes the following
methods.

Previous Next

Previous Next

Previous Next

Method Description

get_attributeCount Retrieves the number of attributes that can be queried
and/or set for the media item. See
Media.attributeCount.

Retrieve a pointer to an IWMPMedia interface with the following methods.

get_duration Retrieves the duration (in seconds) of the current
media item. See Media.duration.

get_durationString Retrieves a String value indicating the duration of the
current media item in HH:MM:SS format. See
Media.durationString.

get_imageSourceHeight Retrieves the height of the current media item in
pixels. See Media.imageSourceHeight

get_imageSourceWidth Retrieves the width of the current media item in pixels.
See Media.imageSourceWidth.

get_isIdentical Retrieves a value indicating whether the supplied
object is the same as the current one. See
Media.isIdentical.

get_markerCount Retrieves the number of markers in the media item.
See Media.markerCount.

get_name Retrieves the name of the media item. See
Media.name.

get_sourceURL Returns the URL of the media item. See
Media.sourceURL.

getAttributeName Returns the name of the attribute corresponding to the
specified index. See Media.getAttributeName

getItemInfo Returns the value of the specified attribute for the
media item. See Media.getItemInfo.

getItemInfoByAtom Returns the value of the attribute with the specified
index number. See Media.getItemInfoByAtom.

getMarkerName Returns the name of the marker at the specified index.
See Media.getMarkerName.

getMarkerTime Returns the time of the marker at the specified index.
See Media.getMarkerTime.

isMemberOf Returns a value indicating whether the specified media
item is a member of the specified playlist. See
Media.isMemberOf.

isReadOnlyItem Returns a value indicating whether the attributes of the
specified media item can be edited. See
Media.isReadOnlyItem.

put_name Specifies the name of the media item. See
Media.name.

setItemInfo Sets the value of the specified attribute for the media
item. See Media.setItemInfo.

The MFC AppWizards in Visual Studio automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces
IWMPMedia2 Interface
IWMPMedia3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPMedia2 Interface
The IWMPMedia2 interface provides a method that supplements the IWMPMedia interface.

In addition to the methods inherited from IWMPMedia, the IWMPMedia2 interface exposes the following
method.

Retrieve a pointer to an IWMPMedia2 interface by calling the QueryInterface method of an IWMPMedia
interface.

The MFC AppWizards in Visual Studio do not automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces

Interface Method

IWMPControls get_currentItem. See Controls.currentItem.

IWMPCore get_currentMedia. See Player.currentMedia.

IWMPCore3 newMedia. See Player.newMedia.

IWMPPlaylist get_item. See Playlist.item.

Previous Next

Previous Next

Method Description

get_error Retrieves an IWMPErrorItem pointer if the media
item has an error condition. See Media.error.

IWMPMedia Interface
IWMPMedia3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPMedia3 Interface
The IWMPMedia3 interface provides methods that supplement the IWMPMedia2 interfaces.

In addition to the methods inherited from IWMPMedia2, the IWMPMedia3 interface exposes the following
methods.

Retrieve a pointer to an IWMPMedia3 interface by calling the QueryInterface method of the IWMPMedia
interface.

The MFC AppWizards in Visual Studio do not automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces
IWMPMedia Interface
IWMPMedia2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Method Description

getAttributeCountByType Retrieves the number of attributes associated with the
specified attribute type. See
Media.getAttributeCountByType.

getItemInfoByType Retrieves the value of the attribute corresponding to
the specified attribute type and index. See
Media.getItemInfoByType.

Previous Next

IWMPMediaCollection Interface
The IWMPMediaCollection interface provides methods that do something.

In addition to the methods inherited from IDispatch, the IWMPMediaCollection interface exposes the
following methods.

Previous Next

Method Description

add Adds a new media item to Media Library. See
MediaCollection.add.

getAll Retrieves a pointer to an IWMPPlaylist interface to an
object containing all media items in Media Library.
See MediaCollection.getAll.

getAttributeStringCollection Retrieves a pointer to an IWMPStringCollection
interface representing the set of all values for a given
attribute within a given media type. See
MediaCollection.getAttributeStringCollection.

getByAlbum Retries a pointer to an IWMPPlaylist interface to an
object containing media items from the specified
album. See MediaCollection.getByAlbum.

getByAttribute Retrieves a pointer to an IWMPPlaylist interface to an
object containing media items with the specified
attribute having the specified value. See
MediaCollection.getByAttribute.

getByAuthor Retrieves a pointer to an IWMPPlaylist interface to an
object containing media items by the specified author.
See MediaCollection.getByAuthor.

getByGenre Retrieves a pointer to an IWMPPlaylist interface to an
object containing media items with the specified genre.
See MediaCollection.getByGenre.

getByName Retrieves a pointer to an IWMPPlaylist interface to an
object containing media items with the specified name.
See MediaCollection.getByName.

getMediaAtom Retrieves the atom associated with the given property
name. See MediaCollection.getMediaAtom.

isDeleted Retrieves a value indicating whether the specified
media item is in the deleted items folder. See
MediaCollection.isDeleted.

Retrieve a pointer to an IWMPMediaCollection interface with the following method.

The MFC AppWizards in Visual Studio automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPMetadataPicture Interface
The IWMPMetadataPicture interface provides methods for retrieving information about the WM/Picture
metadata attribute.

In addition to the methods inherited from IDispatch, the IWMPMetadataPicture interface exposes the
following methods.

remove Removes the specified media item from the media
collection. See MediaCollection.remove.

setDeleted Moves the specified media item to the deleted items
folder. See MediaCollection.setDeleted.

Interface Method

IWMPCore get_mediaCollection. See Player.mediaCollection.

Previous Next

Previous Next

Method Description

get_description Retrieves a description of the metadata image. See
MetadataPicture.description.

get_mimeType Retrieves the MIME type of the metadata image. See
MetadataPicture.mimeType.

get_pictureType Retrieves the picture type of the metadata image. See
MetadataPicture.pictureType.

get_URL Retrieves the URL of the metadata image. See

Retrieve a pointer to an IWMPMetadataPicture interface with the following method.

The MFC AppWizards in Visual Studio do not automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPMetadataText Interface
The IWMPMetadataText interface provides methods for retrieving information about complex textual
metadata attributes.

In addition to the methods inherited from IDispatch, the IWMPMetadataText interface exposes the following
methods.

Retrieve a pointer to an IWMPMetadataText interface with the following method.

MetadataPicture.URL.

Interface Method

IWMPMedia3 getItemInfoByType. See
Media.getItemInfoByType.

Previous Next

Previous Next

Method Description

get_description Retrieves a description of the metadata text. See
MetadataText.description.

get_text Retrieves the metadata text. See MetadataText.text.

Interface Method

IWMPMedia3 getItemInfoByType. See
Media.getItemInfoByType.

The MFC AppWizards in Visual Studio do not automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPNetwork Interface
The IWMPNetwork interface provides methods relating to the network connection of Windows Media Player.

In addition to the methods inherited from IDispatch, the IWMPNetwork interface exposes the following
methods.

Previous Next

Previous Next

Method Description

get_bandWidth Retrieves the current bandwidth of the clip. See
Network.bandWidth.

get_bitRate Retrieves the current bit rate being received. See
Network.bitRate.

get_bufferingCount Retrieves the number of times buffering occurred
during clip playback. See Network.bufferingCount.

get_bufferingProgress Retrieves the percentage of buffering completed. See
Network.bufferingProgress.

get_bufferingTime Retrieves the amount of buffering time in milliseconds
before playing begins. See Network.bufferingTime.

get_downloadProgress Retrieves the percentage of download completed.
Network.downloadProgress.

get_encodedFrameRate Retrieves the video frame rate specified by the content
author. See Network.encodedFrameRate.

get_frameRate Retrieves the current video frame rate. See
Network.frameRate.

get_framesSkipped Retrieves the total number of frames skipped during
playback. See Network.framesSkipped.

Retrieve a pointer to an IWMPNetwork interface with the following method.

get_lostPackets Retrieves the number of packets lost. See
Network.lostPackets.

get_maxBandwidth Retrieves the maximum allowed bandwidth. See
Network.maxBandwidth.

get_maxBitRate Retrieves the maximum possible video bit rate. See
Network.maxBitRate.

get_receivedPackets Retrieves the number of packets received. See
Network.receivedPackets.

get_receptionQuality Retrieves the percentage of packets received in the last
30 seconds. See Network.receptionQuality.

get_recoveredPackets Retrieves the number of recovered packets. See
Network.recoveredPackets.

get_sourceProtocol Retrieves the source protocol used to receive the data.
See Network.sourceProtocol.

getProxyBypassForLocal Retrieves a value indicatingwhether the proxy server
should be bypassed if the origin server is on a local
network. See Network.getProxyBypassForLocal.

getProxyExceptionList Retrieves the proxy exception list. See
Network.getProxyExceptionList.

getProxyName Retrieves the name of a proxy server to use. See
Network.getProxyName.

getProxyPort Retrieves the proxy port to use. See
Network.getProxyPort.

getProxySettings Retrieves the proxy settings for a given protocol. See
Network.getProxySettings.

put_bufferingTime Specifies the amount of buffering time in milliseconds
before playing begins. See Network.bufferingTime.

put_maxBandwidth Specifies the maximum allowed bandwidth. See
Network.maxBandwidth.

setProxyExceptionList Specifies the proxy exception list. See
Network.setProxyExceptionList.

setProxyName Specifies the name of a proxy server to use. See
Network.setProxyName.

setProxyPort Specifies the proxy port to use. See
Network.setProxyPort.

setProxySettings Specifies the proxy settings for a given protocol. See
Network.setProxySettings.

The MFC AppWizards in Visual Studio automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlayer Interface
The IWMPPlayer interface provides methods for modifying the basic behavior of the control user interface.
These methods supplement the IWMPCore interface.

In addition to the methods inherited from IWMPCore, the IWMPPlayer interface exposes the following
methods.

Interface Method

IWMPCore network. See Player.network.

Previous Next

Previous Next

Method Description

get_enableContextMenu Retrieves a value indicating whether to enable the
context menu, which appears when the right mouse
button is clicked. See Player.enableContextMenu.

get_enabled Retrieves a value indicating whether the Windows
Media Player control is enabled. See Player.enabled.

get_fullScreen Retrieves a value indicating whether video content is
played back in full-screen mode. See
Player.fullScreen

get_uiMode Retrieves a value indicating which controls are shown
in the user interface when Windows Media Player is
embedded in a Web page. See Player.uiMode.

put_enableContextMenu Specifies a value indicating whether to enable the
context menu, which appears when the right mouse
button is clicked. See Player.enableContextMenu.

put_enabled Specifies a value indicating whether the Windows

Retrieve a pointer to an IWMPPlayer interface by calling the COM CoCreateInstance method.

The MFC AppWizards in Visual Studio do not automatically generate a separate wrapper class for this
interface. They do automatically generate a wrapper class for IWMPPlayer4, which inherits from this
interface.

See Also

C++ Translation Guide
Interfaces
IWMPCore Interface
IWMPCore2 Interface
IWMPCore3 Interface
IWMPPlayer2 Interface
IWMPPlayer3 Interface
IWMPPlayer4 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlayer2 Interface
The IWMPPlayer2 interface provides additional methods for modifying the basic behavior of the control user
interface. These methods also supplement the IWMPCore interface.

The IWMPPlayer2 interface duplicates the methods of IWMPPlayer, inherits the methods of IWMPCore,
and exposes the following additional methods.

Media Player control is enabled. See Player.enabled.

put_fullScreen Specifies a value indicating whether video content is
played back in full-screen mode. See
Player.fullScreen.

put_uiMode Specifies a value indicating which controls are shown
in the user interface when Windows Media Player is
embedded in a Web page. See Player.uiMode.

Previous Next

Previous Next

Method Description

get_stretchToFit Retrieves a value indicating whether video will stretch
to fit size of the Windows Media Player control video

Retrieve a pointer to an IWMPPlayer2 interface either by calling the QueryInterface method the
IWMPPlayer interface or by calling the COM CoCreateInstance method.

The MFC AppWizards in Visual Studio do not automatically generate a separate wrapper class for this
interface. They do automatically generate a wrapper class for IWMPPlayer4, which inherits from this
interface.

See Also

C++ Translation Guide
Interfaces
IWMPCore Interface
IWMPCore2 Interface
IWMPCore3 Interface
IWMPPlayer Interface
IWMPPlayer3 Interface
IWMPPlayer4 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlayer3 Interface
The IWMPPlayer3 interface provides methods for modifying the basic behavior of the control user interface.
These methods supplement the IWMPCore2 interface.

The IWMPPlayer3 interface duplicates the methods of IWMPPlayer and IWMPPlayer2 and inherits the
methods of IWMPCore2. It is identical to IWMPPlayer2 except for the inherited interface.

display. See Player.stretchToFit.

get_windowlessVideo Retrieves a value indicating whether the Windows
Media Player control renders video in windowless
mode. See Player.windowlessVideo.

put_stretchToFit Specifies a value indicating whether video will stretch
to fit size of the Windows Media Player control video
display. See Player.stretchToFit.

put_windowlessVideo Specifies a value indicating whether the Windows
Media Player control renders video in windowless
mode. See Player.windowlessVideo.

Previous Next

Previous Next

Retrieve a pointer to an IWMPPlayer3 interface either by calling the QueryInterface method the
IWMPPlayer or IWMPPlayer2 interfaces or by calling the COM CoCreateInstance method.

The MFC AppWizards in Visual Studio do not automatically generate a separate wrapper class for this
interface. They do automatically generate a wrapper class for IWMPPlayer4, which inherits from this
interface.

See Also

C++ Translation Guide
Interfaces
IWMPCore Interface
IWMPCore2 Interface
IWMPCore3 Interface
IWMPPlayer Interface
IWMPPlayer2 Interface
IWMPPlayer4 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlayer4 Interface
The IWMPPlayer4 interface provides methods for modifying the basic behavior of the control user interface.
These methods supplement the IWMPCore3 interface.

The IWMPPlayer4 interface duplicates the methods of IWMPPlayer, IWMPPlayer2, and IWMPPlayer3,
inherits the methods of IWMPCore3, and exposes the following additional methods.

Retrieve a pointer to an IWMPPlayer4 interface either by calling the QueryInterface method of an

Previous Next

Previous Next

Method Description

get_isRemote Retrieves a value indicating whether the Windows
Media Player control is running in remote mode. See
Player.isRemote.

get_playerApplication Retrieves an IWMPPlayerApplication pointer when
a remoted Windows Media Player control is running.
See Player.playerApplication.

openPlayer Opens Windows Media Player using the specified
URL. See Player.openPlayer.

IWMPPlayer interface or by calling the COM CoCreateInstance method.

The MFC AppWizards in Visual Studio automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces
IWMPCore Interface
IWMPCore2 Interface
IWMPCore3 Interface
IWMPPlayer Interface
IWMPPlayer2 Interface
IWMPPlayer3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlayerApplication Interface
The IWMPPlayerApplication interface provides methods for switching between a remoted Windows Media
Player control and the full mode of the Player. These methods can only be used with C++ programs that embed
the control in remote mode.

In addition to the methods inherited from IDispatch, the IWMPPlayerApplication interface exposes the
following methods.

Previous Next

Previous Next

Method Description

get_hasDisplay Retrieves a value indicating whether video can display
through the remoted Player control. See
PlayerApplication.hasDisplay.

get_playerDocked Retrieves a value indicating whether the Player is in a
docked state. See PlayerApplication.playerDocked.

switchToControl Switches a remoted Player control to the docked state.
See PlayerApplication.switchToControl.

switchToPlayerApplication Switches a remoted Player control to the full mode of
the Player. See
PlayerApplication.switchToPlayerApplication.

Retrieve a pointer to an IWMPPlayerApplication interface with the following method.

The MFC AppWizards in Visual Studio automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlayerServices Interface
The IWMPPlayerServices interface provides methods used by the host of a remoted control to manipulate the
full mode of the Player. These methods can only be used with C++.

In addition to the methods inherited from IUnknown, the IWMPPlayerServices interface exposes the
following methods.

Retrieve a pointer to an IWMPPlayerServices interface by calling the COM CoCreateInstance method.

The MFC AppWizards in Visual Studio do not automatically generate a wrapper class for this interface.

See Also

Interface Method

IWMPPlayer4 get_playerApplication. See
Player.playerApplication.

Previous Next

Previous Next

Method Description

activateUIPlugin Activates the specified user interface plug-in in the full
mode of the Player.

setTaskPane Displays the specified task pane in the full mode of the
Player.

setTaskPaneURL Displays the specified URL in the specified task pane
of the full mode of the Player.

Interfaces
Remoting the Windows Media Player Control

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlayerServices::activateUIPlugin

The activateUIPlugin method activates the specified UI plug-in in the full mode of the Player.

Syntax

HRESULT activateUIPlugin(
 BSTR bstrPlugin
);

Parameters

bstrPlugin

[in] BSTR containing the name of the plug-in to activate.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

This method is used only when remoting the Player control.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Previous Next

Previous Next

Value Description

S_OK The method succeeded.

IWMPPlayerServices Interface
Remoting the Windows Media Player Control

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlayerServices::setTaskPane

The setTaskPane method displays the specified task pane in the full mode of the Player.

Syntax

HRESULT setTaskPane(
 BSTR bstrTaskPane
);

Parameters

bstrTaskPane

[in] BSTR containing one of the following values.

Previous Next

Previous Next

Value Description

NowPlaying Opens the Player in the Now Playing feature.

MediaGuide Opens the Player in the Media Guide feature.

CopyFromCD Opens the Player in the Copy From CD feature.

CopyFromCD?AutoCopy:id Opens the Player in the Copy From CD feature and
automatically invokes the Copy Music functionality
after switching.

To specify a particular drive identifier, append a
colon character (:) followed by the CD-ROM drive
identifier number. If you omit the colon and the id,
the first CD-ROM drive is will be used.

If the user has selected Eject CD when copying is
completed in Windows Media Player, the CD will be
ejected when copying is completed.

MediaLibrary Opens the Player in the Media Library feature.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

This method is used only when remoting the Player control.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

IWMPPlayerServices Interface
Remoting the Windows Media Player Control
setTaskPaneURL

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlayerServices::setTaskPaneURL

The setTaskPaneURL method displays the specified URL in the specified task pane of the full mode of the
Player.

RadioTuner Opens the Player in the Radio Tuner feature.

CopyToCDOrDevice Opens the Player in the Copy to CD or Device
feature.

Services Opens the Player in the Premium Services feature.

SkinChooser Opens the Player in the Skin Chooser feature.

Value Description

S_OK The method succeeded.

Previous Next

Previous Next

Syntax

HRESULT setTaskPaneURL(
 BSTR bstrTaskPane,
 BSTR bstrURL,
 BSTR bstrFriendlyName
);

Parameters

bstrTaskPane

[in] BSTR containing one of the following values.

bstrURL

[in] BSTR containing the URL to display in the task pane.

bstrFriendlyName

[in] BSTR containing the friendly name of the content at the specified URL.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

This method is used only when remoting the Player control. This method must be called when the control is in
the docked state. Once set, the specified task pane is opened the next time the remoted control transitions to the
Player application.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Value Description

MediaGuide Opens the Player in the MediaGuide feature.

RadioTuner Opens the Player in the RadioTuner feature.

Services Opens the Player in the Premium Services feature.

Value Description

S_OK The method succeeded.

IWMPPlayerServices Interface
Remoting the Windows Media Player Control
setTaskPane

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlaylist Interface
The IWMPPlaylist interface provides methods for manipulating lists of media clips.

In addition to the methods inherited from IDispatch, the IWMPPlaylist interface exposes the following
methods.

Previous Next

Previous Next

Method Description

appendItem Adds a media item to the end of the playlist. See
Playlist.appendItem.

clear Reserved for future use.

get_attributeCount Retrieves the number of attributes associated with the
playlist. See Playlist.attributeCount.

get_attributeName Retrieves the name of an attribute specified by an
index. See Playlist.attributeName.

get_count Retrieves the number of items in the playlist. See
Playlist.count.

get_name Retrieves the name of the playlist. See Playlist.name.

getItemInfo Retrieves the value of a playlist attribute specified by
name. See Playlist.getItemInfo.

insertItem Adds a media item at the specified location in the
playlist. See Playlist.insertItem.

isIdentical Retrieves a value indicating whether the specified
playlist is identical to the current playlist. See
Playlist.isIdentical.

item Retrieves the media item at the specified index. See
Playlist.item.

moveItem Changes the location of a media item in the playlist.

Retrieve a pointer to an IWMPPlaylist interface with the following methods.

The MFC AppWizards in Visual Studio automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlaylistArray Interface

See Playlist.moveItem.

put_name Specifies the name of the playlist. See Playlist.name.

removeItem Removes the specified media item from the playlist.
See Playlist.removeItem.

setItemInfo Specifies the value of an attribute of the current
playlist. See Playlist.setItemInfo.

Interface Method

IWMPCdrom get_playlist. See Cdrom.playlist.

IWMPCore get_currentPlaylist. See Player.currentPlaylist.

IWMPMediaCollection getAll. See MediaCollection.getAll.

IWMPMediaCollection getByAlbum. See MediaCollection.getByAlbum.

IWMPMediaCollection getByAttribute. See
MediaCollection.getByAttribute.

IWMPMediaCollection getByAuthor. See MediaCollection.getByAuthor.

IWMPMediaCollection getByGenre. See MediaCollection.getByGenre.

IWMPMediaCollection getByName. See MediaCollection.getByName.

IWMPPlaylistArray item. See PlaylistArray.item.

IWMPPlaylistCollection newPlaylist. See PlaylistCollection.newPlaylist.

Previous Next

Previous Next

The IWMPPlaylistArray interface provides methods for accessing a collection of IWMPPlaylist pointers by
index number.

In addition to the methods inherited from IDispatch, the IWMPPlaylistArray interface exposes the following
methods.

Retrieve a pointer to an IWMPPlaylistArray interface with the following method.

The MFC AppWizards in Visual Studio automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlaylistCollection Interface
The IWMPPlaylistCollection interface provides methods for manipulating IWMPPlaylist and
IWMPPlaylistArray pointers.

In addition to the methods inherited from IDispatch, the IWMPPlaylistCollection interface exposes the
following methods.

Method Description

get_count Retrieves the number of playlists in the playlist array.
See PlaylistArray.count.

item Retrieves a pointer to the IWMPPlaylist interface
representing the playlist at the specified index. See
PlaylistArray.item.

Interface Method

IWMPPlaylistCollection getAll. See PlaylistCollection.getAll.

IWMPPlaylistCollection getByName. See PlaylistCollection.getByName.

Previous Next

Previous Next

Method Description

Retrieve a pointer to an IWMPPlaylistCollection interface with the following method.

The MFC AppWizards in Visual Studio automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces
Managing Playlists

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPRemoteMediaServices Interface

getAll Retrieves an IWMPPaylistArray pointer on an object
containing all of the playlists in Media Library. See
PlaylistCollection.getAll.

getByName Retrieves an IWMPPaylistArray pointer on an object
containing playlists with the specified name, if any
exist. See PlaylistCollection.getByName.

importPlaylist Adds a static playlist to Media Library. See
PlaylistCollection.importPlaylist.

isDeleted Retrieves a value indicating whether the specified
playlist is in the deleted items folder. See
PlaylistCollection.isDeleted.

newPlaylist Creates a new, empty playlist in Media Library. See
PlaylistCollection.newPlaylist.

remove Removes a playlist from Media Library. See
PlaylistCollection.remove.

setDeleted Moves the specified playlist to the deleted items
folder. See PlaylistCollection.setDeleted.

Interface Method

IWMPCore get_playlistCollection. See
Player.playlistCollection.

Previous Next

Previous Next

The IWMPRemoteMediaServices interface includes methods that provide services to the Player from a
program that hosts the Player control. These methods can only be used with C++, and some can only be used
with remoting.

In addition to the methods inherited from IUnknown, the IWMPRemoteMediaServices interface exposes the
following methods.

A pointer to an IWMPRemoteMediaServices interface is retrieved by calling the COM CoCreateInstance
method.

The MFC AppWizards in Visual Studio do not automatically generate a separate wrapper class for this
interface.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

See Also

Interfaces
Remoting the Windows Media Player Control

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPRemoteMediaServices::GetApplicationName

Method Description

GetApplicationName Called by Windows Media Player to retrieve the name
of the program that is hosting the remoted control.

GetCustomUIMode Called by Windows Media Player to retrieve the
location of a skin file to apply to the Player control.

GetScriptableObject Called by Windows Media Player to retrieve a name
and interface pointer for an object that can be called
from the script code within a skin.

GetServiceType Called by Windows Media Player to determine
whether a host program wants to run its embedded
control remotely.

Previous Next

Previous Next

The GetApplicationName method is called by Windows Media Player to retrieve the name of the program that
is hosting the remoted control.

Syntax

HRESULT GetApplicationName(
 BSTR* pbstrName
);

Parameters

pbstrName

[out] Pointer to a BSTR containing the name of the host program.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

This method is used only when remoting the Player control.

The full mode of the Player displays the program name on the View menu under Switch to Other Program.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

See Also

IWMPRemoteMediaServices Interface
Remoting the Windows Media Player Control

© 2000-2003 Microsoft Corporation. All rights reserved.

Value Description

S_OK The method succeeded.

Previous Next

Previous Next

IWMPRemoteMediaServices::GetCustomUIMode

The GetCustomUIMode method is called by Windows Media Player to retrieve the location of a skin file to
apply to the Player control.

Syntax

HRESULT GetCustomUIMode(
 BSTR* pbstrFile
);

Parameters

pbstrFile

[out] Pointer to a BSTR containing the location of the skin file.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

This method allows you to customize the user interface of the embedded control using Windows Media Player
skin technology. Skins used in this way can communicate with the host of the control through a scriptable
object retrieved automatically by Windows Media Player using the
IWMPRemoteMediaServices::GetScriptableObject method.

To apply a skin file to the embedded control, you must call IWMPPlayer.put_uiMode with a value of
"custom". Your implementation of GetCustomUIMode must also return a value of "file://" followed by the
path and file name of a skin definition file located on the local computer.

The embedded Player control does not have to be remoted to use this method.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

See Also

IWMPRemoteMediaServices Interface
IWMPRemoteMediaServices::GetScriptableObject
Using Skins with the Windows Media Player Control

Value Description

S_OK The method succeeded.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPRemoteMediaServices::GetScriptableObject

The GetScriptableObject method is called by Windows Media Player to retrieve a name and interface pointer
for an object that can be called from the script code within a skin.

Syntax

HRESULT GetScriptableObject(
 BSTR* pbstrName,
 IDispatch** ppDispatch
);

Parameters

pbstrName

[out] Pointer to a BSTR containing the name of the scriptable object.

ppDispatch

[out] Pointer to a pointer to the IDispatch interface of the scriptable object.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

The user interface of an embedded control can be customized by using Windows Media Player skin technology.
You must specify a skin file location by using the IWMPRemoteMediaServices::GetCustomUIMode
method. Skins used in this way can communicate with the host of the control through a scriptable object
retrieved automatically by Windows Media Player by using the
IWMPRemoteMediaServices::GetScriptableObject method.

The embedded Player control does not have to be remoted to use this method.

Requirements

Version: Windows Media Player 9 Series or later.

Previous Next

Value Description

S_OK The method succeeded.

Header: Defined in wmp.idl; include wmp.h.

See Also

IWMPRemoteMediaServices Interface
IWMPRemoteMediaServices::GetCustomUIMode
Using Skins with the Windows Media Player Control

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPRemoteMediaServices::GetServiceType

The GetServiceType method is called by Windows Media Player to determine whether a host program wants to
run its embedded control remotely.

Syntax

HRESULT GetServiceType(
 BSTR* pbstrType
);

Parameters

pbstrType

[out] Pointer to a BSTR containing one of the following values.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Previous Next

Previous Next

Value Description

Local The Player control is embedded in local mode.

Remote The Player control is embedded in remote mode.

RemoteNoDialogs The Player control is embedded in remote mode and does not
display dialog boxes. Use of this value requires Windows Media
Player 9 Series update 819756 or later.

Value Description

Requirements

Version: Windows Media Player 9 Series or later. Update 819756 or later when using RemoteNoDialogs.

Header: Defined in wmp.idl; include wmp.h.

See Also

IWMPRemoteMediaServices Interface
Remoting the Windows Media Player Control

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPSettings Interface
The IWMPSettings interface provides a way to modify various settings of Windows Media Player.

In addition to the methods inherited from IDispatch, the IWMPSettings interface exposes the following
methods.

S_OK The method succeeded.

Previous Next

Previous Next

Method Description

get_autoStart Retrieves a value indicating whether the current media
item begins playing automatically. See
Settings.autoStart.

get_balance Retrieves the current stereo balance. See
Settings.balance.

get_baseURL Retrieves the base URL used for relative path
resolution with URL-type script commands embedded
in media files. See Settings.baseURL.

get_defaultFrame Retrieves the name of the frame used to display a URL
received in a scriptCommand event. See
Settings.defaultFrame.

get_enableErrorDialogs Retrieves a value indicating whether error dialog boxes
are shown automatically. See
Settings.enableErrorDialogs.

Retrieve a pointer to an IWMPSettings interface with the following method.

get_invokeURLs Retrieves a value indicating whether URL events
should launch a Web browser. See
Settings.invokeURLs.

get_isAvailable Retrieves a value indicating whether a specified type
of information is available or a given action can be
performed. See Settings.isAvailable.

get_mute Retrieves a value indicating whether audio is muted.
See Settings.mute.

get_playCount Retrieves the number of times a media item will play.
See Settings.playCount.

get_rate Retrieves the current playback rate. See Settings.rate.

get_volume Retrieves the current volume. See Settings.volume.

getMode Returns a value indicating whether loop mode or
shuffle mode is active. See Settings.getMode.

put_autoStart Specifies a value indicating whether the current media
item begins playing automatically. See
Settings.autoStart.

put_balance Specifies the current stereo balance. See
Settings.balance.

put_baseURL Specifies the base URL used for relative path
resolution with URL-type script commands embedded
in media files. See Settings.baseURL.

put_defaultFrame Specifies the name of the frame used to display a URL
received in a scriptCommand event. See
Settings.defaultFrame.

put_enableErrorDialogs Specifies a value indicating whether error dialog boxes
are shown automatically. See
Settings.enableErrorDialogs.

put_invokeURLs Specifies a value indicating whether URL events
should launch a Web browser. See
Settings.invokeURLs.

put_mute Specifies a value indicating whether audio is muted.
See Settings.mute.

put_playCount Specifies the number of times a media item will play.
See Settings.playCount.

put_rate Specifies the current playback rate. See Settings.rate.

put_volume Specifies the current volume. See Settings.volume.

setMode Sets the loop mode or shuffle mode to active or
inactive. See Settings.setMode.

The MFC AppWizards in Visual Studio automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPSettings2 Interface
The IWMPSettings2 interface provides methods that supplement the IWMPSettings interface.

In addition to the methods inherited from IWMPSettings, the IWMPSettings2 interface exposes the following
methods.

Retrieve a pointer to an IWMPSettings2 interface by calling the QueryInterface method of the
IWMPSettings interface.

The MFC AppWizards in Visual Studio do not automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces

Interface Method

IWMPCore get_settings. See Player.settings.

Previous Next

Previous Next

Method Description

get_defaultAudioLanguage Retrieves the locale identifier (LCID) of the default
audio language. See Settings.defaultAudioLanguage.

get_mediaAccessRights Retrieves a value indicating the rights currently
granted for Media Library access. See
Settings.mediaAccessRights.

requestMediaAccessRights Requests a specified level of access to Media
Library. See Settings.requestMediaAccessRights.

IWMPSettings Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPSkinManager Interface
The IWMPSkinManager interface provides a method used to synchronize the current skin with the current
desktop theme in Microsoft Windows XP. This method can only be used with C++.

In addition to the methods inherited from IDispatch, the IWMPSkinManager interface exposes the following
method.

Retrieve a pointer to an IWMPSkinManager interface by calling the COM CoCreateInstance method.

The MFC AppWizards in Visual Studio do not automatically generate a wrapper class for this interface.

See Also

Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPSkinManager::SetVisualStyle

The SetVisualStyle method specifies the path to a theme file in Windows XP to which Windows Media Player
synchronizes the skin.

Previous Next

Previous Next

Method Description

SetVisualStyle Specifies the path to a theme file in Windows XP to
which Windows Media Player synchronizes the skin.

Previous Next

Previous Next

Syntax

HRESULT SetVisualStyle(
 BSTR bstrStyle
);

Parameters

bstrStyle

[in] BSTR containing the path to the theme file.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

Windows XP calls this method when the user changes the current theme. The current skin selection will change
to match the theme, or will change to the Windows Classic skin if there is no skin that matches the current
theme. If the Player is in skin mode, the skin will change immediately. Otherwise, the new skin selection will be
applied the next time skin mode is entered.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

IWMPSkinManager Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Value Description

S_OK The method succeeded.

Previous Next

Previous Next

IWMPStringCollection Interface
The IWMPStringCollection interface provides methods that work with a collection of strings.

In addition to the methods inherited from IDispatch, the IWMPStringCollection interface exposes the
following methods.

Retrieve a pointer to an IWMPStringCollection interface with the following method.

The MFC AppWizards in Visual Studio automatically generate a wrapper class for this interface.

See Also

C++ Translation Guide
Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

Enumeration Types
The following enumeration types are available in C++ code.

Method Description

get_count Retrives the number of items in the string collection.
See StringCollection.count.

item Retrieves the string at the specified index. See
StringCollection.item.

Interface Method

IWMPMediaCollection getAttributeStringCollection. See
MediaCollection.getAttributeStringCollection.

Previous Next

Previous Next

Enumeration type Description

WMPOpenState Defines the possible operational states of Windows
Media Player as it opens a digital media file.

See Also

Object Model Reference for C++

© 2000-2003 Microsoft Corporation. All rights reserved.

WMPOpenState
The WMPOpenState enumeration type defines the possible operational states of Windows Media Player as it
opens a digital media file.

Syntax

typedef enum WMPOpenState{
 wmposUndefined = 0,
 wmposPlaylistChanging = 1,
 wmposPlaylistLocating = 2,
 wmposPlaylistConnecting = 3,
 wmposPlaylistLoading = 4,
 wmposPlaylistOpening = 5,
 wmposPlaylistOpenNoMedia = 6,
 wmposPlaylistChanged = 7,
 wmposMediaChanging = 8,
 wmposMediaLocating = 9,
 wmposMediaConnecting = 10,
 wmposMediaLoading = 11,
 wmposMediaOpening = 12,
 wmposMediaOpen = 13,
 wmposBeginCodecAcquisition = 14,
 wmposEndCodecAcquisition = 15,
 wmposBeginLicenseAcquisition = 16,
 wmposEndLicenseAcquisition = 17,
 wmposBeginIndividualization = 18,
 wmposEndIndividualization = 19,
 wmposMediaWaiting = 20,
 wmposOpeningUnknownURL = 21
} WMPOpenState;

Members

WMPPlaylistChangeEventType Defines the types of changes that can be made to a
playlist.

WMPPlayState Defines the possible operational states of Windows
Media Player as it plays a digital media file.

Previous Next

Previous Next

wmposUndefined

The content source is in an undefined state.

wmposPlaylistChanging

A new playlist is about to be loaded.

wmposPlaylistLocating

Locating the playlist.

wmposPlaylistConnecting

Connecting to the server that is hosting the playlist.

wmposPlaylistLoading

Loading a playlist.

wmposPlaylistOpening

Opening a playlist.

wmposPlaylistOpenNoMedia

Playlist is open.

wmposPlaylistChanged

Playlist has changed.

wmposMediaChanging

New media is about to be loaded.

wmposMediaLocating

Locating the media.

wmposMediaConnecting

Connecting to the server that is hosting the media.

wmposMediaLoading

Loading the media.

wmposMediaOpening

Opening the media.

wmposMediaOpen

Media is open.

wmposBeginCodecAcquisition

Starting codec acquisition.

wmposEndCodecAcquisition

Ending codec acquisition.

wmposBeginLicenseAcquisition

Starting license acquisition.

wmposEndLicenseAcquisition

Ending license acquisition.

wmposBeginIndividualization

Starting individualization.

wmposEndIndividualization

Individualization has ended.

wmposMediaWaiting

Waiting for media.

wmposOpeningUnknownURL

Opening an URL whose type is unknown.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

WMPPlaylistChangeEventType
The WMPPlaylistChangeEventType enumeration type defines the types of changes that can be made to a
playlist.

Syntax

typedef enum WMPPlaylistChangeEventType{
 wmplcUnknown = 0,
 wmplcClear = 1,
 wmplcInfoChange = 2,
 wmplcMove = 3,
 wmplcDelete = 4,
 wmplcInsert = 5,
 wmplcAppend = 6,
 wmplcPrivate = 7,
 wmplcNameChange = 8,
 wmplcMorph = 9,
 wmplcSort = 10
} WMPPlaylistChangeEventType;

Members

wmplcUnknown

An unknown change has occurred.

wmplcClear

The playlist has been cleared.

wmplcInfoChange

A playlist attribute has changed value.

wmplcMove

A media item within the playlist has been moved to a new position.

wmplcDelete

A media item has been deleted from the playlist.

wmplcInsert

A media item has been inserted into the playlist.

Previous Next

wmplcAppend

A media item has been appended to the playlist.

wmplcPrivate

Not supported.

wmplcNameChange

The name of the playlist has changed.

wmplcMorph

Not supported.

wmplcSort

The playlist has been sorted.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

WMPPlayState
The WMPPlayState enumeration type defines the possible operational states of Windows Media Player as it
plays a digital media file.

Syntax

Previous Next

Previous Next

typedef enum WMPPlayState{
 wmppsUndefined = 0,
 wmppsStopped = 1,
 wmppsPaused = 2,
 wmppsPlaying = 3,
 wmppsScanForward = 4,
 wmppsScanReverse = 5,
 wmppsBuffering = 6,
 wmppsWaiting = 7,
 wmppsMediaEnded = 8,
 wmppsTransitioning = 9,
 wmppsReady = 10,
 wmppsReconnecting = 11
} WMPPlayState;

Members

wmppsUndefined

Windows Media Player is in an undefined state.

wmppsStopped

Playback is stopped.

wmppsPaused

Playback is paused.

wmppsPlaying

Stream is playing.

wmppsScanForward

Stream is scanning forward.

wmppsScanReverse

Stream is scanning in reverse.

wmppsBuffering

Media is being buffered.

wmppsWaiting

Waiting for streaming data.

wmppsMediaEnded

The end of the media has been reached.

wmppsTransitioning

Preparing new media.

wmppsReady

Ready to begin playing.

wmppsReconnecting

Trying to reconnect for streaming data.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in wmp.idl; include wmp.h.

Library: Use wmp.dll.

See Also

Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

Windows Media Player Skins
Microsoft Windows Media Player provides a programming platform to create custom skins. Skins are sets of
scripts, art, media, and text files that can be combined to create a new appearance for Windows Media Player.
Using skins, you can change not only the way Windows Media Player looks, but how it functions. Not just
where the knobs are and what they look like, but what they do, given the limits of the underlying Windows
Media Player core technology.

Skin technology is very different from other kinds of programming: essentially you will be mixing
programming and art in equal parts. You do not need to be an expert programmer (not much more than you
already know if you have created Web pages and done some simple scripting), and neither do you need to be an
artist (as long as you can use an art manipulation program such as Adobe Photoshop). You'll be using XML
(similar to HTML), Microsoft JScript (similar to Microsoft Visual Basic and other high-level languages), and
whatever art programs you choose.

The skins documentation contains the following three sections.

Previous Next

Previous Next

See Also

Windows Media Player 9 Series SDK

© 2000-2003 Microsoft Corporation. All rights reserved.

About Skins
Microsoft Windows Media Player lets the user choose from a variety of standard skins, each one providing an
additional visual experience that enhances listening and viewing pleasure. Windows Media Player comes with
several skins to choose from, but it is relatively easy to create and distribute custom skins.

Skins are simply collections of one or more files of computer art, organized by a text file, that tells Windows
Media Player how to use these files to display a skin. You can use a variety of programs to modify existing art
or create simple art of your own. For example, using the drawing tools and clip art supplied with Microsoft
PowerPoint, you can create artwork by just dragging and dropping. Similarly, you do not need to be a
programmer to create the text file used to define an individual skin.

One of the reasons that skins are relatively easy to create is that you can look at the individual pieces of art and
the source code for any skin, and see how each skin is put together. Several simple example skins will be
provided with this SDK, as well as a reference for skin elements and attributes.

The following sections provide overview information about Windows Media Player skins.

Section Description

About Skins Discusses the theory of skins in abstract terms. You are advised to at
least browse this section because skin technology is so different from
other kinds of programming. This section tells you why and how things
work, but only skims over the details.

Skin Creation Guide Explains what you need to do to create a skin. You will probably want to
read this section because it covers the details of creating simple skins,
and then more complicated skins that use particular skin elements. This
section also includes tutorials on creating the art needed to create skins.

Skin Programming Reference Contains reference entries for every element and attribute supported by
skins. Read the topics that explain the functionality that you want to use.

Previous Next

Previous Next

Section Description

Why Make Skins? Describes the some of the uses for skin technology.

See Also

Windows Media Player Skins

© 2000-2003 Microsoft Corporation. All rights reserved.

Why Make Skins?
When someone uses a program in a graphical computer environment such as Microsoft Windows, the visual
options open to them are called a user interface. One of the purposes of Microsoft Windows is to provide a
standard user interface so that all programs will operate the same way. For example, Microsoft recommends, in
the Windows User Interface Guidelines, that every program provide a Close button in the upper right-hand
corner of the main window of the program.

Windows Media Player provides the capabilities for creating your own user interface. If you want to put the
Close button in the middle of the screen, you can do that. Perhaps you do not like the way the Close button
looks (it looks like an X inside a box); if you want it to look like a skull and crossbones, you can make a user
interface where the Close button is just that! Windows Media Player gives you all the tools you need to make a
custom user interface for playing music and video: buttons, slider bars, video windows, visualization windows,
equalization bars, and so on.

There are several good reasons why you might want to create your own user interface for Windows Media
Player. One reason is that you might want to add functionality that is not already in Windows Media Player. For
example, you might want to create a player that plays music from playlists that are based on the time of day, so
that you have upbeat rock in the morning and slow jazz in the evening. Or perhaps you want to make a skin

Skin Files Details the file types for skins and their uses.

Writing Code Provides an overview of how to use Microsoft JScript
in skins.

Debugging Code Describes techniques for finding bugs in skin code.

Submitting Your Skin Provides information about how to publicly distribute
your skins.

Referencing Skins in URLs Explains how to author URLs that prompt Windows
Media Player to display a particular skin.

New for Windows Media Player 9 Series Lists the new items available for creating skins.

Borders for Windows Media Player Describes using skins in Windows Media Download
(WMD) packages.

Previous Next

Previous Next

with a big red button that will stop the music quickly. Windows Media Player does not come with a "play the
same song over and over again until my roommate goes crazy" button, but if you want one, you can create it.

Another reason for creating a skin is to make a branded look for Windows Media Player. If you are distributing
music from your Web site and use a particular logo, you might want to design a skin that uses your logo to
remind people about your site. If you have a rock band, you can make a skin with pictures of your band on it.

And another reason to make skins is to make something unique that can dress up your desktop. When your
friends come over and ask you what that cool program on your screen is, you can say you made it yourself. You
can even take a picture of your dog, scan it into your computer, add some buttons, and click on your dog's nose
to start music and the tail to stop it. You can create different skins for different kinds of music or have a
different skin for every day of the week.

See Also

About Skins

© 2000-2003 Microsoft Corporation. All rights reserved.

Skin Files
When you see a skin, you are seeing only the surface. Behind the surface are several files that make up the
complete skin. Technically speaking, a skin is a group of files, with each file containing a specific kind of
information. Here are the types of files you can use to make up a complete skin:

See Also

About Skins

Previous Next

Previous Next

File type Description

Skin Definition File The master file that defines how the other files will be used. This is a text file
and has a .wms file name extension.

Art Files Art files that contain the graphic elements of your skin. These include BMP,
GIF, JPEG, and PNG files.

JScript Files If you want to create more complicated responses to events, you can create
script files using Microsoft JScript. These are text files and have a .js file
name extension.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Skin Definition File
Skin definition files contain the basic instructions for what the skin does and where other files used by the skin
can be found. There can only be one skin definition file for a skin, and it has a .wms file name extension.

The instructions in the skin definition file are written in eXtensible Markup Language (XML), which is similar
to HTML. If you have used HTML to create Web pages, you will find that XML looks familiar.

The XML in the skin definition file uses a set of special element tags to define parts of the skin user interface.
For example, the BUTTON element defines how a button will behave, where it will go, and what it will look
like.

Each element tag has specific attributes. For example, the BUTTON element has an Image attribute that
defines where the picture of the button can be found. This is similar to HTML, where the BODY element will
have a BgColor attribute that defines the background color of the HTML page. Detailed information about all
skin elements and their attributes is included in the Skin Programming Reference section.

XML has a few simple rules that you need to know to create skins. Unlike HTML, XML requires you to follow
the rules exactly.

Enclose Elements with Angle Brackets

All elements are enclosed by angle brackets; for example, the Button element is typed like this:

<BUTTON>

You do not need to type the word "Button" in all uppercase letters, but the convention of typing element names
in all uppercase is used in the example code of this SDK.

Put Attributes Before the Closing Bracket

All attributes for a particular element must be included before the closing angle bracket. An attribute consists of
the attribute name followed by an equal sign (=) and the value of the attribute in quotes.

<BUTTON image="mysong.wma">

You do not need to type the word "image" in lowercase, but the convention of typing attribute names in
lowercase is used in the example code of this SDK. Also note that the value of the attribute is enclosed in
quotation marks.

Opening and Closing Elements

Previous Next

Some elements are grouped together inside another element. For example, the BUTTONGROUP element does
not make a lot of sense unless you use one or more BUTTONELEMENT elements with it. To make the
grouping clear, you need to have an opening and closing tag for each element. The opening tag is just the
element name and any related attributes, surrounded by angle brackets. The closing tag is the element name,
preceded by a forward slash, (/) and then enclosed by angle brackets. For example, the BUTTONGROUP
element opening tag looks like this:

<BUTTONGROUP>

The closing BUTTONGROUP tag looks like this:

</BUTTONGROUP>

You would put the BUTTONELEMENT tags between the opening and closing BUTTONGROUP element
tags. For example:

<BUTTONGROUP>
 <BUTTONELEMENT/>
 <BUTTONELEMENT/>
 <BUTTONELEMENT/>
</BUTTONGROUP>

Closing Off Elements

If an element has no other elements inside it, you must put a forward slash at the end of the element name just
before the closing angle bracket. For example, in the code above, each BUTTONELEMENT element has a
forward slash to indicate that there are no other elements nested within it.

In other words, you must either have a closing element tag or close off your element with a forward slash.

This is correct:

<BUTTONGROUP>
 <BUTTONELEMENT/>
 <BUTTONELEMENT/>
</BUTTONGROUP>

This is not correct:

<BUTTONGROUP/>
 <BUTTONELEMENT/>
 <BUTTONELEMENT/>
</BUTTONGROUP>

This is also not correct:

<BUTTONGROUP>
 <BUTTONELEMENT>
 <BUTTONELEMENT>
</BUTTONGROUP>

The following section provides more information about skin definition files:

Skin Definition File Structure

See Also

Skin Files

© 2000-2003 Microsoft Corporation. All rights reserved.

Skin Definition File Structure

The skin definition file must follow a specific structure. You start with a Theme, create one or more Views, and
then define each View with the user interface elements appropriate for the type of View you want to use.

Theme

At the top level, you must start the skin definition file with the THEME element and close with it.

<THEME>
 ...
</THEME>

The THEME element is the root element for your skin. There can be only one THEME element in a skin
definition file, and it must be at the top level. THEME elements have specific and ambient attributes, though
most of the time you will not need to use them. For more information about these attributes, see the Skin
Programming Reference.

View

Each Theme must have at least one View. The View governs the particular image you see on the screen. You
may want to have more than one View, so you can switch back and forth. For example, you might want to have
a large view for working with playlists, a medium view for watching visualizations, and a tiny view that fits in a
corner of the screen.

If you are creating multiple views, you will want to make sure that each view has a unique ID attribute value
that will be used to identify the view. You must define the backgroundImage attribute or your view will have
no starting image. If you do not want to display a rectangular image, you will probably want to use the
clippingColor attribute to define the areas of your skin that will not display, and you will probably want to set
the titleBar attribute of the VIEW element.

Each VIEW element can also have one or more SUBVIEW elements. A SUBVIEW element is similar to a
VIEW and can be used for parts of your skin that you want to move around, hide, or show. For example, a
SUBVIEW element might be used to create a sliding tray that pops out of your skin to display a graphic
equalizer. SUBVIEWs can be aligned with the VIEW and have other special relationships to the VIEW.

Initializing the Player

Previous Next

Previous Next

You can set certain initial properties of Windows Media Player by using the PLAYER, SETTINGS, and
CONTROLS elements. For example, you could set the volume to an initial level or give a default value for a
file name.

The following code shows how to set the URL value in a skin:

<PLAYER
 URL = "http://proseware.com/mellow.wma">
</PLAYER>

Note that file URL is used and that the slashes are escaped by another slash. If you wanted to set the autoStart
attribute of SETTINGS to False, you would use the following code:

<PLAYER>
 <SETTINGS
 autoStart = "False">
 </SETTINGS>
</PLAYER>

Note that the SETTINGS element is nested inside the PLAYER element.

Using these elements, the following attributes and events can be specified at design time:

PLAYER

url
Buffering
Currentitemchange
Currentplaylistchange
Error
Markerhit
Mediachange
Mediacollectionchange
Modechange
Mpenstatechange
Mlaylistchange
Mlaystatechange
Mositionchange
Mcriptcommand
Mtatuschange

SETTINGS

autoStart
balance
baseURL
defaultFrame
enableErrorDialogs
invokeURLs
mute
playCount
rate
volume

CONTROLS

currentMarker
currentPosition

Other UI Elements

Once you have defined your THEME and VIEW elements, you must populate your VIEW with specific user
interface elements. You do not have to use all the available elements in a skin, just the ones you need.

If an element can be seen by the user, it is called a control. The following controls are available for skins:

Buttons
Sliders, custom sliders, and progress bars
Text boxes
Video windows
Visualization windows
Playlist windows
SubView windows

In addition, several elements can be used to further define Windows Media Player actions, but they require
visual elements such as buttons or sliders:

Video settings
Equalizer Settings
Visualization settings

Buttons

Buttons are the most popular part of a skin. You can use buttons to trigger actions such as play, stop, quit,
minimize, and switch to different view. Windows Media Player provides the skin creator with two types of
button elements: the BUTTON element and the BUTTONGROUP element. In addition, there are several
predefined types of buttons.

BUTTON element

The BUTTON element is used for stand-alone buttons. If you use the BUTTON element, you must supply an
image for each button and define the exact location,in pixels, where you want the button to appear, relative to
the background image. One of the advantages of the BUTTON element is that you can change the button image
dynamically.

BUTTONGROUP element

The BUTTONGROUP element is used for groups of buttons. In fact, you must enclose each
BUTTONGROUP element with a set of BUTTONGROUP tags. Using button groups is easier than using
individual buttons because you do not have to specify the exact location for each button. Instead, you supply a
separate image map that defines the actions that will take place when the mouse hovers over or clicks an area on
your background. Using image maps is easy because you can take the art you created for your background and
copy it to a mapping layer in your art program. Using your art program is faster and more precise than trying to
define exactly where a non-group button should be placed on your background.

Predefined buttons

There are several predefined buttons. For example, you can use a PLAYELEMENT button to play media files
and a STOPELEMENT to stop. See BUTTONGROUP Element and BUTTON Element in the Skin
Programming Reference. The IMAGEBUTTON can be used to display images that can change in response to
specific events.

Sliders

Sliders are useful for working with information that changes over time. For example, you might use a slider to
indicate the amount of music that has already played for a given media. They can be horizontal or vertical,
linear or circular, or any shape you can think of. Sliders come in three varieties: sliders, progress bars, and
custom sliders.

Sliders

You can use the SLIDER element for volume controls or to allow the user to move to a different part of the
media content.

Progress bars

Progress bars are similar to sliders. Progress bars are designed for displaying information that changes, but not
data that the user will want to interact with. For example, you might want to use a progress bar to indicate
buffering progress.

Custom sliders

A custom slider is provided so you can create controls such as knobs, or do unusual control mechanisms. For
example, if you want to create a volume control that wraps around your skin, you can do it with a custom slider.
To set up the custom slider, you must create an image map that contains grayscale images to define the
locations of the values on the slider. This is relatively easy to do with an art program that has layers.

Text

You can use the TEXT element to display text on your skin, such as song titles.

Video

You can display video in your skin. The VIDEO element allows you to set the size and position of the video
window.

You can also allow the user to change the video settings with the VIDEOSETTINGS element. For example,
you can create controls to adjust the brightness of the video.

If you do not supply a video element and the content contains video, Windows Media Player will return to Full
Mode and your skin will not be displayed.

Equalizer Settings

You can set the filtering for specific audio frequency bands by using the EQUALIZERSETTINGS element.
Essentially this means you can boost the bass, tweak the treble, and set up your sounds to match your ears or
your living room.

Visualizations

You can display visualizations in your skin. Visualizations are visual effects that change over time as audio is
playing through Windows Media Player. The EFFECTS element determines where the visualizations will play,
what size the window will be, and which visualizations will be played.

Playlists

You can use the PLAYLIST element to allow the user to select an item from a specific playlist.

SubViews

You can use SubView to display secondary sets of interface controls, such as a playlist or video controls.

See Also

Skin Files

© 2000-2003 Microsoft Corporation. All rights reserved.

Art Files
You must create one or more art files for your skin. Without art, the user will have nothing to look at. You
could create an invisible skin, but no one would see it! And even then, you would still have to create art files to
hold your invisible images, because the skin definition file requires art files for specific elements.

There are three uses of art in skins:

Primary Images

You must create a primary image for your skin. This is what the users will see when they install your skin. The
primary image is composed of one or more images that are created by specific skin controls. If you have more
than one control, you must specify the z-order. It defines which controls are displayed "in front" of other ones.
Each View control will have a background image that you can add other element images to, allowing you to
create a primary composite image. You also may have secondary images, such as a sliding tray, that do not
display when your skin first appears, but that show up when the user takes some action. These follow the same
rules as primary images, in that they are created with a set of controls.

Mapping Images

One of the most powerful features of Windows Media Player skins is that you can use image mapping to trigger
events for your skin. Image maps are files that contain special images. The images in an image map file,
however, are not meant to be viewed by the user, but are used by Windows Media Player to take action when
the user clicks on your skin. In essence, the user cannot see them, but the mouse can. Different controls need

Previous Next

Previous Next

different kinds of image maps. For example, if you color part of an image map a specific red value, and the user
clicks on the corresponding area of your primary image, a button will fire an event. Color is used to define
which events are triggered by clicks in what areas of the skin. This may sound odd, but it allows a great deal of
artistic control over the actions that your skin can process.

Alternate Images

You can also set up alternate images to display when a user does something. For example, you can create an
alternate image of a button that will be displayed only when the mouse hovers over the button. This is a good
way to let users know what they can do, and also allows for a highly discoverable user interface. By using
ToolTips and hover images carefully, you can create unusual user interfaces that still give the user feedback on
what options are available.

The following sections provide more information about art files:

Primary Images
Mapping Images
Alternate Images
Art File Formats
Simple Art Example

See Also

Skin Files

© 2000-2003 Microsoft Corporation. All rights reserved.

Primary Images

You will want to create primary images for your skin. The primary image is composed of one background
image defined by the VIEW element, and any other images that go with specific elements. For example, if you
create a BUTTON element, you must include the art for that button, and be sure that it has a higher z-order than
the background image.

Creating Art

There are numerous computer applications that will help you create artistic masterpieces, and more are
appearing every day. Many people will create skins as part of a team. There are three areas of skin creation that
relate to art. You may be one or more of the following creators:

Illustrator

You are an illustrator, fine artist, or painter, and you use programs focused on creating art from scratch, such as

Previous Next

Previous Next

Adobe Illustrator and Metacreations Painter. You can draw and paint original images. These images can be used
to create original skin art.

Designer

You are a commercial artist, designer, or art director, and you take advantage of programs that will do a lot of
the art modification for you, such as Adobe Photoshop or Jasc PaintShopPro. If you are on a team, someone
else may do the original art or you may modify existing art that you obtained through a scanner, clip art
collection, or digital camera.

Programmer

You do not create or modify art, but you create the code that uses the art. You may help the illustrator or
designer understand the requirements for the art.

The creation process is fluid and the work will probably go back and forth between team members as the skin
evolves. You might start out with an image created by an illustrator, the programmer may request image maps,
and the art director may make modifications to the art based on technical suggestions from the programmer.

Similar types of teams have evolved for games and Web pages. It is unusual to have someone with all three
skills, since each skill requires experience and training. All that matters is that you identify the skills needed and
find the person to do the job, even if it turns out to be you for everything!

© 2000-2003 Microsoft Corporation. All rights reserved.

Mapping Images

Mapping images are used for specific controls to specify which regions will respond to mouse clicks and to
determine which controls receive which events. The mapping image must be the same height and width as the
primary image and should be registered exactly so that the images in both files are lined up exactly. For this
reason, an art program such as Adobe Photoshop is recommended because you can work in layers to be certain
your images are perfectly aligned.

Different controls require different types of mapping. A ButtonElement control needs a map that has a
different color for each button. The colored areas in the mapping file must correspond to the areas of the buttons
you want to map.

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Alternate Images

Alternate images are images that are not seen when the skin is initially displayed, but become visible in
response to mouse events. For example, you can set up the skin so that when a mouse hovers over a specific
area, the art in that area will change. This can inform users visually that they can click on an area to do
something. You might also use an alternate image when the user clicks on an area to give them visual feedback
that the click was received by Windows Media Player.

© 2000-2003 Microsoft Corporation. All rights reserved.

Art File Formats

The following art file formats are recognized by Windows Media Player for skins:

BMP

Microsoft Windows Bitmap images are recommended because they offer the most control over the exact image
and colors.

JPEG

Compressed image format used for Web pages. JPEG format files usually have .jpg file name extensions.

GIF

Compressed image format used for Web pages. Animated GIFs are supported.

PNG

Compressed image format used for Web pages.

Note If you use one of the compressed file formats that defines a color as transparent to a Web browser, do not
define a color as transparent in the image file. Use a visible color to represent transparent areas in your image,
and then define that color as transparent in the skin definition file. For example, if you create a gif file with
some areas transparent, they will not be transparent in your final image and you will not be able to use the color
you set as transparent in your gif file for the transparency color in your skin.

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Simple Art Example

Three art files are needed to create a simple skin with two buttons. A primary image and a mapping image are
required, and an alternate image provides a visual cue to the user that a button is clickable.

These art files were created in Adobe Photoshop but any art program could be used. An art program that uses
layers is easier to work with because you will want to make sure that your primary, mapping, and alternate
images all are the same size and line up with each other.

The detailed instructions on creating the art are in the Skin Creation Guide.

Primary Image

The primary image is a simple yellow oval with two buttons, a pink one to start Windows Media Player and
purple button to stop it. The background is a slightly darker yellow than the oval.

The primary image was created in Adobe Photoshop from the following images, each in a separate layer. First
an oval was created with a layer bevel and emboss effect.

Then the two buttons were created, also with layer bevel and emboss effects.

Previous Next

Previous Next

Next the image background was created. A slightly darker yellow was chosen so that any anti-aliasing between
the oval and the background will not be noticed. The color value is #CCCC00. This number is shown in the
Photoshop Color Picker dialog box.

The layers that contained these images were made visible and saved as a copy in the BMP format, creating the
primary image. The primary composite image will be used by the backgroundImage attribute of the VIEW
element.

Mapping Image

A mapping image is needed to specify when and where a skin is clicked. A mapping image was created with a
red area and a green area.

The green area will be used to identify the area on the skin that will start Windows Media Player and the red
area will be used to stop it. The mapping image is the same size as the primary image.

The mapping image was created by copying the button layer to a new layer and turning off the bevel and
emboss effect. Flat images are needed for mapping because Windows Media Player will be looking for single
color values in each area. It can only search for a color you define, for instance red (#FF0000), and if your
image has a bevel or other effect, not all of it will be the exact red you need. To make the mapping buttons an
easy color to remember, the images were filled with pure red and pure green, but any color can be used. You
will need to remember the color numbers in your map so that they can be entered in the XML skin definition
file. In this case, red is #FF0000 and green is #00FF00.

Then, with only the new layer visible, the image was saved as a copy to a BMP file. It will be called by the
mappingImage attribute of the BUTTONGROUP element.

Alternate Image

Alternate images are not required but are very useful to give visual cues to the user. In this case, a hover image
is recommended so that the user knows what areas can be clicked on.

An alternate image was created with two yellow buttons.

The alternate image was created by copying the original button layer to a new layer and then changing the fill
color to yellow. The bevel and emboss effect was kept. Then a new layer was created and images were added:
the arrow indicates "play" and the square indicates "stop". Then, with only the new yellow button and type
layers visible, the image was saved as a copy to a bitmap file.

The result is that when the mouse hovers over an area defined by the mapping image, the hover image will be
displayed, alerting the reader that if they click on that spot, they can play or stop Windows Media Player.

Final Image

Here is the final image of the skin:

And this is the image you will see if you hover over the pink button on the right:

XML Code for the Art Example

The details of how to write XML code are given in the Skin Creation Guide, but to show how little code is
needed to create a working skin, here is the code for the artwork in this example. Predefined buttons are used
for the play and stop functions. You must load a file or playlist from the Windows Media anchor . When
Windows Media Player view shifts to skin mode, a small box appears in the lower right hand corner of the
screen. This box is called the anchor and clicking on it gives you the minimum functionality needed, in case a
skin does not provide a way to return to full mode. The user can switch between modes using the View menu if
in full mode or the anchor if in skin mode.

<THEME>
 <VIEW
 clippingColor = "#CCCC00"
 backgroundImage = "background.bmp"
 titleBar = "false">

 <BUTTONGROUP
 mappingImage = "map.bmp"
 hoverImage = "hover.bmp">

 <PLAYELEMENT
 mappingColor = "#00FF00"/>

 <STOPELEMENT
 mappingColor = "#FF0000"/>

 </BUTTONGROUP>
 </VIEW>
</THEME>

© 2000-2003 Microsoft Corporation. All rights reserved.

JScript Files
JScript files are loaded with the scriptFile attribute of the VIEW element. They must be text files and should
use the file extension .js. If you have a JScript file that has the same name as the skin definition file, the JScript
file will be loaded at the same time as the skin definition file. For example, if you have a skin definition file
named laure.wms, and you have a JScript file called laure.js, the laure.js file will be automatically loaded.

You can use Microsoft JScript to create elaborate functionality behind your skin. By creating functions in
JScript, you can do almost anything imaginable with skins. For example, you could use a different playlist for
every day of the week, but always have the same one on Friday. See Using JScript for more information about
using JScript with skins. Note that VBScript, which can be used when embedding the Windows Media Player
control in a Web page, is not supported for use with skins.

See Also

Skin Files

© 2000-2003 Microsoft Corporation. All rights reserved.

Writing Code
If you create a skin using only elements and attributes, all you will have is a pretty picture. The real power of
skins comes from being able to respond to events. You want your skin to be able to do something when the user
clicks on a button, and you will also want to respond to changes that happen to Windows Media Player, such as
the progress of the media file that is playing.

The following sections discuss writing code for skins:

Previous Next

Previous Next

Previous Next

Previous Next

See Also

About Skins

© 2000-2003 Microsoft Corporation. All rights reserved.

Handling Events
Aside from the XML code that you write to initialize attributes for your skin, the primary code you write is
JScript code to handle events. Events are either external or internal; that is, they come from the user or from
Windows Media Player.

The following sections provide details about handling events:

External Events
Internal Events
Writing Event Code
Secondary Events

See Also

Writing Code

© 2000-2003 Microsoft Corporation. All rights reserved.

Section Description

Handling Events Explains how to handle events in skin code.

Using JScript Explains how to write script code in skins.

Previous Next

Previous Next

Previous Next

Previous Next

External Events

When users click a button or press a key, you can respond to their input with event handlers. An event handler
is a section of code that runs whenever the event is triggered.

The following events are supported by skin elements:

load
close
resize
timer
click
dblclick
error
mousedown
mouseup
mousemove
mouseover
mouseout
keypress
keydown
keyup

See the Skin Programming Reference for more details about specific events.

A typical external event handler would name the event and define the code that will run. For example, if you
want to create code to start Windows Media Player when the user clicks on a button, you would put the
following line in your button code.

onclick = "JScript: player.URL = 'http://proseware.com/laure.wma' ; "

This will play the file named laure.wma. Note that you add the word "on" to specific events.

See Also

Handling Events

© 2000-2003 Microsoft Corporation. All rights reserved.

Internal Events

You can detect changes that occur in Windows Media Player or changes in your own skin. These can be
changes in Windows Media Player object properties or methods, changes in skin attributes, and so on.

Previous Next

Previous Next

Player Property Changes

You can process changes in Windows Media Player by using the wmpprop listener. You must set up the listener
as a value of an attribute. Put the value in double quotes, and start with the word "wmpprop" followed by a
colon. Then you include the property you want to listen to. When the property changes, the value of the
attribute will change also. For example, to have a slider element value change whenever the value of the
currentPosition attribute changes, type the following:

<SLIDER id="mySlider" value="wmpprop:player.Controls.currentPosition" />

Important Do not use wmpprop on Windows Media Player methods. Unexpected results may occur.

Windows Media Player Method Changes

You can make your skin respond to the availability of methods on Windows Media Player using wmpenabled
and wmpdisabled. These are used similarly to the wmpprop listener except that you can only use these on
methods of the Control object that are supported by the isAvailable method.

For example, you could enable a button only when the Play method is enabled, using code like this:

<BUTTON ... enabled="wmpenabled:player.Controls.Play();" />

Important Do not use wmpenabled or wmpdisabled on Windows Media Player properties. Unexpected results
may occur.

Skin Attribute Changes

You can respond to changes in your skin attributes in one of two ways, by using wmpprop or the _onchange
event.

You can use wmpprop to listen for changes in your own skin. For example to show the Slider value in a text
box, you could type the following:

<TEXT ... value="wmpprop:mySlider.value">

You can use the _onchange event to process events inside an element. You must attach the name of the
attribute you want to track to _onchange. For example if you want to track the value of a text box, you would
type:

value_onchange

and then assign a JScript string that you want to run when the value changes. For example, to respond to a
change in the value of a text box that can be used to adjust the volume of Windows Media Player, type the
following inside your Text control as an attribute:

value_onchange = "JScript: player.Settings.Volume = myText.value"

See Also

Handling Events

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Writing Event Code

Events are treated similarly to attributes. You must give the event a value, and the value is the code you want to
run when the event happens. The word "on" is added to the front of the event name; for example, the click event
will become onclick.

The event value is in double quotes and starts with the word JScript followed by a colon. The code you want to
run comes next, followed by a semicolon and the closing double quotes. For example, to stop playing when the
user clicks on a button, type the following as an attribute in your BUTTON element code:

onclick = "JScript: player.Controls.Stop() ; "

If you have a code that requires quotes, use single quotes. Care must be taken when using quotation marks so
that they are balanced properly. Here is an example of using both types:

onclick = "JScript: player.URL = 'http://proseware.com/laure.wma' ; "

You can also change attributes of your skin when handling an external event. For example, to close a view
named myView, you could type:

onclick = "JScript: myView.close() ;"

See Also

Handling Events

© 2000-2003 Microsoft Corporation. All rights reserved.

Secondary Events

You can determine what other events are taking place when a specific event is triggered. For example, when a
mouse button is clicked, you may want to know whether the ALT key was down at the same time.

Previous Next

Previous Next

Previous Next

Event Attributes

The following event attributes are supported for skins:

altKey
button
clientX
clientY
ctrlKey
fromElement
offsetX
offsetY
screenX
screenY
shiftKey
srcElement
toElement
x
y
keyCode

For more information about these attributes, see the Skin Programming Reference.

Using Secondary Events

You can only process event attributes in JScript code. You must use the following syntax:

event.eventattributename

where eventattributename is the name of the event attribute. For example, to determine whether the ALT key
was pressed during a click event, you could use the following lines in your JScript code:

wasAlt = event.altKey ;
if (wasAlt = true)
{
 // Do something here.
}

See Also

Handling Events

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Using JScript
Windows Media Player requires Microsoft Internet Explorer version 4 or later. When writing code, do not
assume that the user's machine will contain a version of Microsoft JScript later than 4.0.

The following sections provide details about using JScript in skins:

Working with the Player
Event Handlers
Calling Functions

See Also

Writing Code

© 2000-2003 Microsoft Corporation. All rights reserved.

Working with the Player

When using Microsoft JScript to access methods and properties of Windows Media Player, you must use the
name "player" for the name of the control. For example, to reference the Stop method, you must type:

player.Controls.Stop()

The player global attribute is the key to accessing the Windows Media Player control through skin scripting.
Through this attribute, all the objects of the Windows Media Player control become accessible for run time
modification through their properties and methods. Additionally, the PLAYER element is available in order to
specify event handlers and the url attribute at design time.

See Also

Using JScript

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Event Handlers

Microsoft JScript is used to process events in the skin definition file. See Handling Events for more information
about event handlers.

You can have more than one line of code in an event handler, but care must be taken not to exceed the line
length that JScript permits. Separate the lines by semicolons.

onclick = "JScript: player.URL = 'http://proseware.com/cool.wma' ; myText.value = 'Playing

See Also

Using JScript

© 2000-2003 Microsoft Corporation. All rights reserved.

Calling Functions

If you need to call more than a few lines of code, you can load a script file using the scriptFile attribute of the
VIEW element, and call the functions in the script. You can load more than one file per view; for example:

scriptFile = "myfile1.js;myfile2.js;myfile3.js"

After the script files are loaded, you can call functions in them from inside your View section. For example, to
call a function called myfunction when something is clicked, type:

onclick = "JScript: myfunction()"

Note If you have more than one view, only the functions in files loaded into the current view are available to
the XML and JScript code running with the current view. Files loaded in other views are not in scope with the
current view.

See Also

Using JScript

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Debugging Code
You often will want to see what is happening inside your skin. You can do this through a text control or through
a log file.

You can create a TEXT element and place it on a part of your skin temporarily. For example, you could use the
following code to create your TEXT element:

 <!-- debugging control -- remove later -->
 <TEXT
 id = "debug"
 foregroundColor = "white"
 backgroundColor = "black"
 value = "debug"
 top = "100"
 left = "50"
 height = "15"
 width = "100"
 z-order = "5" />
 <!-- end debugging control -->

Then, for example, if you want to see the current position of the media content in Windows Media Player, you
could use code similar to the following to display the current position in the text box.

<PLAYER
 id = "myplayer">
 <CONTROLS
 id = "mycontrols"
 currentPosition_onchange="value=player.controls.currentPosition"/>
</PLAYER>

See Also

About Skins

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Submitting Your Skin
Once you've created and tested your skin, you may want to distribute it to the world. Make sure that you are not
violating any copyrights and use only original art or art that does not have a copyright. Before you distribute
your skin, ask everyone you know to try out your skin first. Think of all the different ways people can interact
with your skin. You want to find and fix any problems before you send it out to the world.

Consult the Windows Media Web Gallery for more information on how to distribute your skin.

See Also

About Skins

© 2000-2003 Microsoft Corporation. All rights reserved.

Referencing Skins in URLs
If you use a URL to load a media file that will be played by Windows Media Player, you can request that a
particular skin be used with that file. If the skin is already installed on the user's machine, it will be used;
otherwise the previous skin will be used.

To request a skin, add the following to the end of the URL:

?WMPSkin=skinname

where skinname is the name of the skin you want to request. Do not use quotes around the name of the skin.

For example, to request the headspace skin be used, type the following http URL:

http://www.proseware.com/mymedia.wma?WMPSkin=headspace

See Also

About Skins

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

New for Windows Media Player 9 Series
Windows Media Player 7.0 introduced skin technology. The available elements and attributes remained
unchanged for Windows Media Player 7.1 and Windows Media Player for Windows XP. Windows Media
Player 9 Series introduces new elements and attributes you can use. Each topic in the Skin Programming
Reference section includes a Requirements section that lists the minimum requirement for the individual
element, method, event handler, or attribute. The following list also details the new items for particular versions
of Windows Media Player.

Added for Windows Media Player for Windows XP

EFFECTS.effectCanGoFullScreen
EFFECTS.effectCount

Added for Windows Media Player 9 Series

AmbientAttributes.accDescription Attribute
AmbientAttributes.accKeyboardShortcut Attribute
AmbientAttributes.accName Attribute
AmbientAttributes.alphaBlend Attribute
AmbientAttributes.alphaBlendTo Method
AUTOMENU Element
BALANCESLIDER Predefined Element
BUTTONELEMENT.click Method
BUTTONELEMENT.index Attribute
BUTTONGROUP.buttonCount Attribute
BUTTONGROUP.click Method
BUTTONGROUP.getButton Method
BUTTONGROUP.hueShift Attribute
BUTTONGROUP.saturation Attribute
CLOSEBUTTON Predefined Element
COLUMN Element
CURRENTPOSITIONTEXT Predefined Element
DROPDOWNPLAYLIST Predefined Element
DURATIONTEXT Predefined Element
EDITBOX Element
EFFECTS.effectTitle Method
EFFECTS.effectType Method
EQUALIZERSETTINGS.crossFade Attribute
EQUALIZERSETTINGS.crossFadeWindow Attribute

Previous Next

Previous Next

EQUALIZERSETTINGS.currentSpeakerName Attribute
EQUALIZERSETTINGS.enableSplineTension Attribute
EQUALIZERSETTINGS.enhancedAudio Attribute
EQUALIZERSETTINGS.normalization Attribute
EQUALIZERSETTINGS.normalizationAverage Attribute
EQUALIZERSETTINGS.normalizationPeak Attribute
EQUALIZERSETTINGS.presetTitle Method
EQUALIZERSETTINGS.speakerSize Attribute
EQUALIZERSETTINGS.splineTension Attribute
EQUALIZERSETTINGS.truBassLevel Attribute
EQUALIZERSETTINGS.wowLevel Attribute
ITEM Element
ITEMSPLAYLIST Predefined Element
LISTBOX Element
MINIMIZEBUTTON Predefined Element
MUTEBUTTON Predefined Element
onendalphablend Event Handler
PLAYLIST.dropDownBackgroundImage Attribute
PLAYLIST.dropDownImage Attribute
PLAYLIST.editButtonVisible Attribute
PLAYLIST.getNextCheckedItem2 Method
PLAYLIST.getNextSelectedItem2 Method
PLAYLIST.hueShift Attribute
PLAYLIST.itemCount Attribute
PLAYLIST.itemErrorColor Attribute
PLAYLIST.itemMedia Attribute
PLAYLIST.itemPlaylist Attribute
PLAYLIST.leftStatus Attribute
PLAYLIST.rightStatus Attribute
PLAYLIST.saturation Attribute
PLAYLIST.setCheckedState2 Method
PLAYLIST.setSelectedState2 Method
PLAYLIST.statusColor Attribute
REPEATBUTTON Predefined Element
RETURNBUTTON Predefined Element
SEEKSLIDER Predefined Element
SHUFFLEBUTTON Predefined Element
STATUSTEXT Predefined Element
THEME.playSound Method
TRACKNAMETEXT Predefined Element
VIEW.backgroundImageHueShift Attribute
VIEW.backgroundImageSaturation Attribute
VIEW.resizeBackgroundImage Attribute
VOLUMESLIDER Predefined Element
WMPEFFECTS Predefined Element
WMPVIDEO Predefined Element

See Also

About Skins
Skin Programming Reference
What's New for Windows Media Player Skins

© 2000-2003 Microsoft Corporation. All rights reserved.

Borders for Windows Media Player
A border is similar to a skin, but instead of replacing the user interface for the compact mode of Windows
Media Player, a border is embedded in the Now Playing pane of the full mode Windows Media Player.

By using the Windows Media Download file format (WMD), you can include content with a border, paving the
way to multimedia applications.

A sample WMD file that includes a border and embedded content is included in the samples directory of this
SDK.

Creating a Border

A border is created the same way as a skin. The only difference is that the skin is embedded inside the Now
Playing pane. This means that the skin size cannot be calculated and that all skin elements must be relative. If
the end user resizes Windows Media Player, portions of the border may be clipped off and not seen.

Loading a Border

A border is loaded when a Windows Media metafile that uses the SKIN element is loaded. The HREF attribute
of the SKIN element must reference a skin. A typical SKIN element would look like this:

<SKIN HREF="myborder.wmz">

For more information, see SKIN Element.

Including Content with a Border

You can include content with a border by using a Windows Media Download file (with a .wmd file name
extension). Follow these steps:

1. Create the border. Take care to create it in such a way that resizing will not ruin the composition of the
border. For example, do not include a background file; make the background transparent so that a
visualization could run behind it.

2. Compress the skin contents (art, JScript files, and skin definition file) into a file with a .wmz file name
extension.

3. Create a Windows Media metafile (with a .asx file name extension) that references the compressed border
file (with a .wmz file name extension). The metafile can include playlist information with metadata for art
and URLs for specific content.

4. Assemble the digital media content.

Previous Next

Previous Next

5. Compress the border, metafile, and content into one file and give it a .wmd file name extension.

Using a Border

After you have created the Windows Media Download file, all that the end user has to do is double-click on it.
The file will be downloaded to the end user's computer. The files inside the package will be unpacked, the
playlist will be added to the playlists, the border will appear in the Now Playing pane of the full mode
Windows Media Player, and the first item on the new playlist will begin playing.

See Also

About Skins
Samples
Windows Media Download Packages

© 2000-2003 Microsoft Corporation. All rights reserved.

Skin Creation Guide
This guide is a series of detailed explanations of how to create different kinds of skins. For more general
information on skins, see About Skins. For specific details about every attribute, method, and event used in
skins, see the Skin Programming Reference. As you get more involved in the programming of your skin, you
may want to read the part of this SDK covering the Windows Media Player Object Model.

In this guide, instructions for creating the art will be given for Adobe Photoshop 5.5, a popular art manipulation
program. The specific instructions may be different if you have a similar art program such as Jasc Paint Shop
Pro or Sonic Foundry Viscosity, but the concepts will be the same. Photoshop was chosen for two reasons: it is
a popular art program for commercial artists, and it works with layers. As you will see in the tutorials, layers are
very useful for skin creation.

This guide will cover the following tasks.

Previous Next

Previous Next

Task Description

Building Your First Skin A walk-through of a simple skin that starts and stops Windows
Media Player.

Adding a Playlist How to use a simple playlist.

Choosing Files How to pick files with an open file dialog box.

Adding Video How to put a video window into your skin.

See Also

Windows Media Player Skins

© 2000-2003 Microsoft Corporation. All rights reserved.

Building Your First Skin
As explained in greater detail in About Skins, a skin is defined in a skin definition file, and requires one or more
supporting art files, Microsoft JScript files, and digital media files. This tutorial for a very simple skin requires
only the skin definition file and three art files. You will go through four steps described in the following topics:

Creating the Primary Art File
Creating the Mapping File
Creating the Hover Image
Creating the Skin Definition File

See Also

Skin Creation Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Adding Visualizations How to add visualizations.

Adding a Slider How to use a slider to track the progress of your media
content ... and let the user change it!

Creating Custom Sliders How to control the volume with a custom slider.

Other Skin Samples See the samples section of the SDK.

Previous Next

Previous Next

Previous Next

Previous Next

Creating the Primary Art File
The primary art file will contain the art that the user of your skin first sees. In this case, you will be creating
images in different layers of your art program. The reason for using layers is that you will copy specific layers
later to create map files and alternate art files.

To create the primary art file, you will create the following layers in the following order:

Skin background layer

This is the color that will be transparent when the skin is displayed. Create a layer for this first, but choose the
final color of this layer after you chose a color for the skin container layer. This color should be similar to, but
not the same as, the skin container layer, to hide any anti-aliasing effects.

Skin container layer

This is the image that will form the outline of your skin and will be what the user sees. It also will be the
container for the two buttons in this example. Think of your skin as a container for user interface controls such
as buttons, sliders, and so on. In this example, the container is a yellow oval.

Play and Close button layers

These are the two user interface controls that this example uses. You will put them in separate layers so that you
can easily adjust them or copy them later.

Before you create your layers, you must create the file that will hold your layers. Start up Photoshop and create
a new file that is 100 pixels high and 200 pixels wide. The file used to create the art for this sample is called
tiny.psd and is included with the SDK.

All instructions are given in terms of Photoshop, but any other art program can be used to create skins as long
as you can save to one of the file formats supported by the Windows Media Player (BMP, GIF, JPG, and PNG).
You will find skin creation easier if you use an art program that has layers, such as Adobe Photoshop, Jasc Paint
Shop Pro, or Jedor Viscosity. Layers are extremely useful because images must be properly aligned for image
mapping and display of alternative images.

Skin Background Layer

Create a new layer and name it Skin background. This will become the transparency color you will define in the
skin definition file. Wait until the color for the skin container is chosen before filling the skin background layer
with a specific color.

Skin Container Layer

Next create a new layer and call it Skin container. This will define the edges of your skin and will be the
container for the buttons.

Choose a foreground color for the shape, using the Web color sliders. In this example, the color "#DBDD11"
was chosen.

Next create an oval shape. The easiest way is to use the Eliptical Marquee tool and create an oval selection.
When you have created an oval selection that is the size and shape you want, fill the selection with the
foreground color and cancel the selection.

Finally, to make this look a bit more interesting, apply the layer effect of Bevel and Emboss with the default
values.

Your skin container layer should look like this:

Background Skin Color

Now that you have chosen a foreground color for your skin container shape, you can choose a similar color for
your skin background layer. You do not want the exact same color, or your skin container will be transparent
also. In fact, be sure you do not use this exact color anywhere else in your skin, even in photographs, because
wherever this color appears, the desktop image will appear instead.

You want a color close to the skin container color to avoid anti-aliasing effects. For example, if you have a
black background, some bits of black may show up around the edge of your skin. By choosing a color close to
the color of the skin container, any stray pixels that show up in the anti-aliasing process will be unnoticed.

Anti-aliasing is the process of smoothing the edges of slanted or curved shapes. Anti-aliasing creates new
colors, for pixels along the edges of a shape, that are a blend of the foreground color and the background color.
Some of these in-between colors can cause pixels to be missed when the background color is made transparent.

Your skin background layer should look like this:

Play and Close Button Layers

Create a new layer and name it Close button. Using the Eliptical Marquee selection tool again, create a circle
and position it on the left side of the overall image. Turn on the visibility of the skin container file to help place
the selection.

When you are satisfied with the placement, fill the selection with any color (except the color of the skin
container or the skin background). In this example, a purple color was chosen. You do not need to remember the
number of the color. Then cancel the selection and apply another default Bevel and Emboss layer effect. If you
want to apply non-layer effects to your button, make a copy of the original for later use in mapping.

Your Close button should look like this:

Create a new layer and name it Play button. Use the same techniques you did for the Close button, but give it a
different color. In this case, a pink button color was chosen, but any color can be used as long as it is not the
same color as the skin container (because it would blend into the container) or the skin background color
(because it would become transparent).

Your Play button should look like this:

Combine Layers and Save

You are now ready to create the primary art file. Hide all layers and then show only the following layers, in this
order (top to bottom):

Play button

Close button

Skin container

Skin background

Save to a new file using the Save a Copy command from the File menu. Select the BMP option in the Save As
portion of the Save a Copy dialog box and type a file name that you will refer to later in your skin definition
file. Ideally you should save this in the same directory as your skin definition file. For example, you could call
this background.bmp. Choose the default settings and save the file.

Your primary art file should look like this:

You will use this file name as the value for the backgroundImage attribute of the VIEW element in your skin
definition file.

See Also

Building Your First Skin

© 2000-2003 Microsoft Corporation. All rights reserved.

Creating the Mapping File
Once you have created the pieces of your primary art file, it is relatively easy to create a mapping file. You will
create the new mapping file by combining the art from the two button layers you already created.

1. You will need to take the two buttons you created for the primary art file and copy them to a new layer.
Use the following steps: Copy the Close button layer, remove any Layer effects, and rename it Close
map. The art should look flat, with no bevels.

2. Use the Color Picker to create a foreground color of pure red. Be sure the color number value is
"#FF0000". Then use the Paint Bucket tool to fill the inside of the circle of the Close map layer.

3. Copy the Play button layer, remove any Layer effects, and rename it Play map. Again, the art should look
flat. You do not want any effects in the mapping layer because you are just defining regions of the bitmap
that Windows Media Player will use to determine where the mouse performs an action and what you want
to do with it.

4. Use the Color Picker to create a foreground color of pure green. Be sure the color number value is
"#00FF00". Then use the Paint Bucket tool to fill the inside of the circle of the Play map layer.

You are now ready to create the mapping art file. Hide all layers, and then show only the following layers, in
this order (top to bottom):

Play map

Close map

Save to a new file using the Save a Copy command from the File menu. Select the BMP option in the Save As
portion of the Save a Copy dialog box and type a file name that you will refer to later in your skin definition
file. Ideally it should be in the same directory as your skin definition file. For example, you could call this file
map.bmp. Choose the default settings and save the file.

Your mapping file should look like this:

As you might guess, the green area will be used to determine when to make Windows Media Player start and
the red area is for telling it to stop. Any two colors can be used, as long as you use the color numbers when you

Previous Next

Previous Next

set up the skin definition file. Be sure the colors in the map are pure colors for the region you want to use and
have distinct edges. A pure color would be one where every single pixel in the area has the same color value.
Using an effect may blur or distort the edge, thereby slightly modifying the colors of some of the pixels. The
mapping file is only seen by the mouse, not a human, so do not bother decorating it, and remove any layer
effects you may have carried over from other layers.

When you save your file, the file name you choose will later be used as the value for the mappingImage
attribute of the BUTTONGROUP element in your skin definition file.

See Also

Building Your First Skin

© 2000-2003 Microsoft Corporation. All rights reserved.

Creating the Hover Image
The primary image of this skin is two buttons sitting on an oval. To give the user a clue on what to do, you can
add hover images. These are alternate images that are displayed when the user hovers a mouse over a button.
The hover buttons will also contain the play and stop VCR control symbols so that users will know exactly what
they can do. Using hover images allows you to create complex, self-documenting, artistic skins.

To create the hover image, you will need to take the two buttons you created for the primary art file, copy them
to new layers, and add further layers for the text. Use the following steps:

1. Copy the Close button layer and rename it Close hover.
2. Use the Color Picker to create a foreground color of a light yellow (#CCFF33). This was chosen to

contrast with the button colors. Then use the Paint Bucket tool to fill the inside of the circle in the Close
hover layer.

3. Copy the Play button layer and rename it Play hover.
4. Use the Paint Bucket tool to fill the inside of the circle in the Play hover layer with the same color as the

Close hover circle.
5. Create a new layer and name it Close square. Use the Color Picker to create a foreground color of dark

blue. Use the pen tool to draw a square, turn it into a selection, fill it, and delete the path. Using the Move
tool, move the square and center it over the Close hover button.

6. Create a new layer and name it Play triangle. Use the pen tool to create the triangle for "Play" using the
same techniques you did to create the Close square layer. Center it over the Play hover button.

You are now ready to create the hover art file. Hide all layers, and then show only the following layers, in this
order (top to bottom):

Play triangle

Previous Next

Previous Next

Close square

Play hover

Close hover

Save to a new file using the Save a Copy command from the File menu. Select the BMP option in the Save As
portion of the Save a Copy dialog box, and type a file name that you will refer to later in your skin definition
file. Ideally you should save this in the same directory as your skin definition file. For example, you could call
this hover.bmp. Choose the default settings and save the file.

Your hover art file should look like this:

The yellow hover button will show in place of the normal button. If you hover over the right button in your
skin, the yellow button labeled "Play" will appear, and if you hover over the left button, the user will see
"Close". The two hover images will never both be displayed at the same time, because the mouse cannot hover
over both buttons at the same time. You must turn hovering on and have a hover art file that matches the areas
of the mapping files to areas of the hover file.

When you save your file, the file name you choose will later be used as the value for the hoverImage attribute
of the BUTTONGROUP element in your skin definition file.

See Also

Building Your First Skin

© 2000-2003 Microsoft Corporation. All rights reserved.

Creating the Skin Definition File
The skin definition file is a simple text file. You can create skin definition files in any text editor that saves
ASCII plain text files, such as Microsoft Notepad, Microsoft Visual InterDev®, or Microsoft Visual Studio.
Since you will be writing XML, not HTML, you may not want to use an editor for HTML because it may add
extra codes you do not want or may tell you about errors that you do not have. You will probably want to avoid
word processors such as Microsoft Word; even though Word can save plain text files, you may not want to

Previous Next

Previous Next

remember to save as text every time you save.

The following sections will guide you in creating a skin definition file:

Skin Definition File XML Structure
Start with THEME and VIEW
Adding BUTTONGROUP
Adding the Play BUTTONELEMENT
Adding the Close BUTTONELEMENT
Complete Code for Simple Skin

See Also

Building Your First Skin

© 2000-2003 Microsoft Corporation. All rights reserved.

Skin Definition File XML Structure

The skin definition file is written in XML. One of the important features of XML is that it is completely
structured, and is similar to an outline. The XML code is simply a series of elements such as VIEW and
BUTTONGROUP. You will start with the elements and then define them with attributes. The rest of this
tutorial will give you details on the attributes, but here is the outline of the elements that will be used:

<THEME>
 <VIEW>
 <BUTTONGROUP>
 <BUTTONELEMENT/>
 <BUTTONELEMENT/>
 </BUTTONGROUP>
 </VIEW>
<THEME>

By keeping in mind the simple structure of the elements, you can make sense of the attributes that make each
element unique. Details of each element will be covered in the remaining topics of this section. For more
information about elements and attributes, see the Skin Programming Reference.

See Also

Creating the Skin Definition File

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Start with THEME and VIEW

Every skin must have exactly one THEME element and at least one VIEW element.

Using your text editor, create the following text:

<THEME>
 <VIEW
 clippingColor = "#CCCC00"
 backgroundImage = "background.bmp"
 titleBar = "False">

 </VIEW>
</THEME>

Leave some blank lines before the closing VIEW tag because you'll be adding more code here later.

Save your file with any file name you wish, but be sure that the extension is .wms. For example, a typical file
name might be skinone.wms.

Every skin must start with <THEME> and end with </THEME>. You can only have one THEME element in
your skin, but you must have one.

You must also have at least one VIEW element. You can have more than one VIEW, but this example only has
one. You must have an opening <VIEW> and a closing <VIEW>. Notice that the opening </VIEW> tag does
not close the tag right away, but includes several attributes before the closing angle bracket (>). The following
attributes are used in the THEME element in this example:

clippingColor

You will not always need the clippingColor attribute if the edges of your skin are rectangular. The skin in this
example is oval-shaped, so you need a clipping color for the parts of the skin that you want to see the desktop
through; essentially all parts outside the oval. In this example skin, we will use a dark yellow, specified as
"#CCCC00" in Web format. The reasons for this choice are given in Creating the Primary Art File. Essentially,
this value will always be a number that you get from your art program.

backgroundImage

This is the name of the primary art file. It should be the exact file name and path of your primary art file. Only
BMP, JPG, GIF, and PNG files are supported, and BMP is recommended.

titleBar

This skin does not have a titleBar, so the value will be "false". You will only want a title bar if you want your

Previous Next

skin to have a background color and be rectangular.

Be sure that you put the closing angle bracket (>) after the titleBar value to indicate that you are finished
defining the VIEW. Leave a few blank lines before the closing VIEW and THEME tags. You will need the
lines for code that you will add later.

See Also

Creating the Skin Definition File

© 2000-2003 Microsoft Corporation. All rights reserved.

Adding BUTTONGROUP

This example uses the BUTTONGROUP element for the coding in the skin definition file. BUTTONGROUP
creates an easy way to process mouse events without having to calculate exact locations on the screen and uses
color instead of x and y-coordinates.

First you must add the BUTTONGROUP tags to the skin definition file you created. Put them after the
THEME tag attributes.

 <BUTTONGROUP
 mappingImage = "map.bmp"
 hoverImage = "hover.bmp">

 </BUTTONGROUP>

Leave a few blank lines above the closing BUTTONGROUP tag for the buttons you will add next.

The following attributes are used to define BUTTONGROUP:

mappingImage

This is the file name of the mapping art file you created before, the one with the red and green circles. This
attribute is required for any BUTTONGROUP.

hoverImage

This is the file name of the hover art file you created before, the one with the two yellow buttons that read
"Play" and "Close". This is not required, but a hover image helps to provide feedback to the user.

See Also

Previous Next

Previous Next

Creating the Skin Definition File

© 2000-2003 Microsoft Corporation. All rights reserved.

Adding the Play BUTTONELEMENT

Finally, you can add the BUTTONELEMENT elements that connect the visual buttons on the screen to
Windows Media Player actions. This is the core of your skin and you can think of it as wiring the surface of the
skin to the inner machinery of Windows Media Player.

BUTTONELEMENTs are contained within a BUTTONGROUP. You must always have at least one
BUTTONELEMENT inside each BUTTONGROUP.

Put the Play BUTTONELEMENT code after the closing angle bracket of BUTTONGROUP.

 <BUTTONELEMENT
 mappingColor = "#00FF00"
 upToolTip = "Play"
 onClick = "JScript: player.URL='http://proseware.com/laure.wma';" />

The following attributes are used to define the BUTTONELEMENT for the Play button:

mappingColor

This is the color value of a region in the mapping art file you created before. In this case it is the solid green
color. This attribute is required for any BUTTONELEMENT. By defining this color, you are telling Windows
Media Player to associate this color area with the XML code of this button.

upToolTip

This defines the text that will be displayed if the user hovers the mouse over the button. Do not confuse this
with the hover art that will be displayed. A ToolTip is a small balloon caption that takes a moment to appear.
The hover art image, however, will appear instantly in whatever color and shape you choose.

onClick

This defines the event that occurs when the mouse clicks on the button. The value of this event attribute is
called an event handler and will be either a line of Microsoft JScript code, or a JScript function in an external
text file that is loaded by the loadScript attribute of a VIEW. In this case, the JScript code calls the URL
method of Windows Media Player, which loads and starts playing a file named "laure.wma". Note that the line
ends with a semicolon inside the quotes, which is good JScript coding practice. Note also the use of single
quotes inside the double quotes to set off the file name. For more information about JScript, see Using JScript in
the About Skins section of this SDK.

Previous Next

Previous Next

Notice that there is no ending BUTTONELEMENT tag. If an element does not enclose another element, you
can close it off with the forward slash just before the closing angle bracket. This tells XML that you are finished
with that element. For example,

<BUTTONELEMENT></BUTTONELEMENT>

and

<BUTTONELEMENT/>

convey the same information in XML.

The power of skins comes from using event handlers. If the user does something with a mouse, you can handle
that event with JScript. Your code can be a single line that makes Windows Media Player do something simple
like play, or it can be a complete application written in JScript.

See Also

Creating the Skin Definition File

© 2000-2003 Microsoft Corporation. All rights reserved.

Adding the Close BUTTONELEMENT

The Close button is similar in concept to the Play button, but has different codes and colors.

Put the Close BUTTONELEMENT code after the closing angle bracket of the Play BUTTONELEMENT.

 <BUTTONELEMENT
 mappingColor = "#FF0000"
 upToolTip = "Close"
 onClick="JScript: view.close();" />

The following attributes are used to define the BUTTONELEMENT for the Close button:

mappingColor

This is the color value of the region in the mapping art file you created before. In this case it is the solid red
color. This attribute is required for any BUTTONELEMENT. By defining this color, you are telling Windows
Media Player to associate this color area with the XML code of this button.

upToolTip

Previous Next

Previous Next

This defines the text that will be displayed when the user hovers the mouse over the button. This is the same as
the Play button except that it is labeled "Close".

onClick

This defines the event that occurs when the mouse clicks on the button. The value of this event attribute is
called an event handler and will be either a line of Microsoft JScript code, or a JScript function in an external
text file that is loaded by the loadScript attribute of a VIEW. In this case, the JScript code calls the close
method of the VIEW element using the global attribute view, which closes the view and shuts down Windows
Media Player.

See Also

Creating the Skin Definition File

© 2000-2003 Microsoft Corporation. All rights reserved.

Complete Code for Simple Skin

Here is the complete code for the first sample skin:

<THEME>
 <VIEW
 clippingColor = "#CCCC00"
 backgroundImage = "background.bmp"
 titleBar = "false">

 <BUTTONGROUP
 mappingImage = "map.bmp"
 hoverImage = "hover.bmp">

 <BUTTONELEMENT
 mappingColor = "#00FF00"
 upToolTip = "Play"
 onClick="JScript: player.URL='http://proseware.com/laure.wma';" />

 <BUTTONELEMENT
 mappingColor = "#FF0000"
 upToolTip = "Close"
 onClick = "JScript: view.close(); " />

 </BUTTONGROUP>
 </VIEW>
</THEME>

Now you have all the pieces put together. Using PKZip, WinZip, or another program that compresses files into

Previous Next

Previous Next

the PKWare "zip" compression format, create a compressed file that contains your skin definition file, bitmaps,
and any media files you want to include. Rename the file so that it has a .wmz file name extension. Then
double-clicking your compressed skin will start it playing.

You can see a similar working simple skin in the samples section of the SDK.

See Also

Creating the Skin Definition File

© 2000-2003 Microsoft Corporation. All rights reserved.

Adding a Playlist
You can use playlists to choose from collections of your audio and video.

Using the artwork from your first skin, you can make a few changes to the skin definition file.

The first step is to use the shell you will use for most skins:

<THEME>
 <VIEW
 clippingColor = "#CCCC00"
 backgroundImage = "background.bmp"
 titleBar = "false">

 <BUTTONGROUP
 mappingImage = "map.bmp"
 hoverImage = "hover.bmp">

 </VIEW>

</THEME>

Now add a second VIEW, which contains a playlist. Place the following code after the </VIEW> of the shell
code.

 <VIEW
 id = "playview">
 <PLAYLIST/>
 </VIEW>

You will need to give this second view an ID so you can refer to it later. Add a PLAYELEMENT and a

Previous Next

Previous Next

STOPELEMENT. These predefined buttons make life easier.

 <PLAYELEMENT
 mappingColor = "#00FF00" />

 <STOPELEMENT
 mappingColor = "#FF0000" />

Finally, add an onClick event to the PLAYELEMENT to display a playlist in the second view:

 onClick = "JScript: theme.openView('playview');" />

You can see a similar working playlist skin in the sample section of the SDK.

See Also

Skin Creation Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Choosing Files
If you want to choose a file, you can use code similar to the Playlist example, but substitute the following for
the PLAYELEMENT section:

<PLAYELEMENT
 mappingColor = "#00FF00"
 onClick = "JScript:player.URL=theme.openDialog('FILE_OPEN','FILES_ALL');"
 />

This line will use the openDialog method of THEME to define a URL for the player. You can use this to
choose files that are not in playlists.

You can see a similar working openDialog example in the sample section of the SDK.

See Also

Skin Creation Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Adding Video
You can add a video to your file by simply using the VIDEO element and defining where you want the video
window to be placed.

Use the same code as you did in the Choosing Files section; all you need to do is add the VIDEO element with
the top, left, width, and height attributes.

 <VIDEO
 top = "10"
 left = "80"
 width = "180"
 height = "180"/>

Then when you play a video, it will be displayed in the window. The art for the video sample was modified to
make a slightly larger skin. Because layers were used in Photoshop, the buttons were easily moved around and a
new set was created very quickly. Only the background image was changed. A fill was used in a blank layer and
a bevel and emboss effect was added.

You can see a similar working video skin in the sample section of the SDK.

See Also

Skin Creation Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Adding Visualizations
You can add a visualization window the same way you added a video window. The same skin can be used, but
an EFFECTS element is used.

First you must add the EFFECTS element and give it an ID and size:

Previous Next

Previous Next

Previous Next

 <EFFECTS
 id = "myeffects"
 top = "25"
 left = "88"
 width = "180"
 height = "150"/>

Then you can assign the two buttons a previous and next visualization code string:

 <BUTTONELEMENT
 mappingColor = "#00FF00"
 upToolTip = "Next"
 onClick = "JScript:myeffects.next(); " />

 <BUTTONELEMENT
 mappingColor = "#FF0000"
 upToolTip = "Previous"
 onClick = "JScript:myeffects.previous(); " />

The layers and bitmaps were the same ones used in the video example, except that the play arrow was copied
and flipped horizontally.

Finally, a simple PLAYER element with the URL attribute was added to choose a song to play.

 <PLAYER
 URL = "http://proseware.com/mellow.wma">
 </PLAYER>

You can see a similar working visualization skin in the sample section of the SDK.

See Also

Skin Creation Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Adding a Slider
You can add a slider to show the current position of the media, and also enable the user to change the position
in the current media file.

First you must add the SLIDER element:

<SLIDER
 id = "myslider"

Previous Next

Previous Next

 min = "0"
 max = "wmpprop:player.currentMedia.duration"
 onmouseup = "player.controls.currentPosition = myslider.value; "
 tooltip = "current position"
 height = "10"
 width = "180"
 top = "150"
 left = "88"
 backgroundColor = "red"
 foregroundColor = "blue"
 thumbImage = "thumb.bmp"/>

This sets a maximum value based on the duration of the current media file. This uses a tiny thumb image bitmap
that is just a 10 pixel by 10 pixel green square. The background of the slider will be red and the foreground will
be blue. When the user drags the thumb image to a new position and lets go of the mouse button, the media will
change to that position.

But the slider will not move by itself unless you measure the current position with the
currentPosition_onchange attribute of the CONTROLS element, which is embedded in the PLAYER
element.

<PLAYER
 URL = "http://proseware.com/laure.wma">

 <CONTROLS
 currentPosition_onchange = "myslider.value = player.controls.currentPosition; "/>

</PLAYER>

When the position of the media changes, this fires an event which then runs the line of code that changes the
value of the slider to the current position of the media.

You can see a similar working slider skin in the sample section of the SDK.

See Also

Skin Creation Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Creating Custom Sliders
You can create custom sliders in any shape you want. For this example, a simple strip is chosen, but the actual
shape can be anything. Here is the code for the CUSTOMSLIDER element:

Previous Next

Previous Next

<CustomSlider
 top="160"
 left="130"
 min="0"
 max="100"
 toolTip="volume control"
 image="slider.bmp"
 positionImage="graymap.bmp"
 enabled="true"
 value="wmpprop:player.settings.volume"
 value_onchange="player.settings.volume = value" />

This sets up an initial value for the slider. Two new bitmaps are introduced. One is the grayscale bitmap
(slider.bmp) that defines which values will be used when clicked on, and the other (slider.bmp) that determines
which image will be shown when a particular portion of the grayscale is clicked on.

The initial value is determined by listening to the volume with wmpprop and then the volume can be changed
when the user clicks on a portion of the slider that triggers a change in value.

You can see a similar working slider skin in the sample section of the SDK.

See Also

Skin Creation Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Other Skin Samples
To see samples of complete working skins, click the Start button, then point to Programs, then Windows
Media, then Windows Media SDK, and then click Player SDK samples. You must first install the Windows
Media Player SDK to use the samples.

See Also

Samples
Skin Creation Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Skin Programming Reference
The Skin Programming Reference documents the following elements and their associated attributes, methods,
and events.

The elements and attributes in this section require Windows Media Player 7.0 or later unless otherwise noted.

Previous Next

Element Description

Ambient Attributes Attributes that apply to all skin elements with exceptions noted.

Ambient Event Handlers Event handlers that can be implemented by most skin elements.

Ambient Event Attributes Attributes detailing the state of Windows Media Player when an event is
fired.

AUTOMENU Provides a way to display the Quick Access Panel in a skin.

BUTTON A standalone button.

BUTTONELEMENT A button within a button group.

BUTTONGROUP A group of button elements.

COLUMN Represents a column within a playlist control.

CONTROLS Provides access to the Controls object from within a skin.

CUSTOMSLIDER A customizable slider control.

EDITBOX Provides a way for users to enter text within a skin.

EFFECTS An element that contains and controls a collection of effects.

EQUALIZERSETTINGS An element allowing manipulation of the graphic equalizer.

ITEM Represents an item in a list box or pop-up control.

LISTBOX Provides a way for users to select items from a list.

PLAYER Provides access to the Player object from within a skin.

PLAYLIST An element for controlling the appearance of a playlist within a skin.

POPUP Provides a way for users to select items from a list.

PROGRESSBAR Provides a way to display progress information in a horizontal or vertical
control.

SETTINGS Provides access to the Settings object from within a skin.

© 2000-2003 Microsoft Corporation. All rights reserved.

Ambient Attributes
The ambient attributes and method are supported by all appropriate skin elements, except where noted.

The following attributes are ambient.

SLIDER A slider control.

SUBVIEW Subsections within a view that can be moved or hidden.

TEXT A control containing text.

THEME The main element identifying a skin file.

VIDEO An element for specifying the appearance of a video window.

VIDEOSETTINGS An element allowing control of various video settings.

VIEW Specifies what the user interface (UI) looks like for each category of
media.

Miscellaneous Specialized attributes and other miscellaneous topics for use in creating
skins.

Previous Next

Previous Next

Attribute Description

accName Specifies or retrieves a name for any element.

accDescription Specifies or retrieves a description for any element.

accKeyboardShortcut Specifies or retrieves a keyboard shortcut description for any element.

alphaBlend Specifies or retrieves a value for alpha blending any VIEW,
SUBVIEW, or UI widget.

clippingColor Specifies or retrieves the color to clip out from the clippingImage
bitmap.

clippingImage Specifies or retrieves the region to clip the control to.

elementType Retrieves the type of the element (for instance, BUTTON).

enabled Specifies or retrieves a value indicating whether the control is enabled or
disabled.

The following methods are ambient.

See Also

Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

AmbientAttributes.accName
The accName attribute specifies or retrieves a name for any element.

height Specifies or retrieves the height of the control.

horizontalAlignment Specifies or retrieves a value that indicates the horizontal placement of
the control when the VIEW or parent SUBVIEW is resized.

id Specifies or retrieves the identifier of a control. Can only be set at design
time.

left Specifies or retrieves the left coordinate of the control.

passThrough Specifies or retrieves a value indicating whether the control will pass all
mouse events through to the control under it.

tabStop Specifies or retrieves a value indicating whether the control will be in
the tabbing order.

top Specifies or retrieves the top coordinate of the control.

verticalAlignment Specifies or retrieves a value that indicates the vertical placement of the
control when the VIEW or parent SUBVIEW is resized.

visible Specifies or retrieves the visibility of the control.

width Specifies or retrieves the width of the control.

zIndex Specifies or retrieves the order in which the control is rendered.

Method Description

alphaBlendTo Adjusts the alphaBlend property over a period of time.

moveTo Moves the control.

Previous Next

Previous Next

Syntax

elementID.accName

Possible Values

This attribute is a read/write String with a default value equal to the id attribute.

Remarks

This attribute is used for accessibility purposes. It allows the name of any element to be read aloud by a reader
program.

This attribute also applies to button elements inside a button group control.

Requirements

Windows Media Player 9 Series or later.

See Also

Ambient Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

AmbientAttributes.accDescription
The accDescription attribute specifies or retrieves a description for any element.

Syntax

elementID.accDescription

Possible Values

This attribute is a read/write String with a default value of "" (empty string).

Remarks

This attribute is used for accessibility purposes. It allows the description of any element to be read aloud by a
reader program.

Previous Next

Previous Next

This attribute also applies to button elements inside the button group control.

Requirements

Windows Media Player 9 Series or later.

See Also

Ambient Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

AmbientAttributes.accKeyboardShortcut
The accKeyboardShortcut attribute specifies or retrieves a keyboard shortcut description for any element.

Syntax

elementID.accKeyboardShortcut

Possible Values

This attribute is a read/write String with a default value of "" (empty string) For the BUTTON element, this
attribute has a default value of "Spacebar or Enter". For the SLIDER element, the default value is "Right/Up
Arrow to increase, Left/Down Arrow to decrease".

Remarks

This attribute is used for accessibility purposes. It allows a description of the keyboard shortcut for any element
to be read aloud by a reader program. This attribute does not set the shortcut. The scripter must do that work.

This attribute also applies to button elements inside the button group control.

Requirements

Windows Media Player 9 Series or later.

See Also

Ambient Attributes

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

AmbientAttributes.alphaBlend
The alphaBlend attribute specifies or retrieves a value for alpha blending any VIEW, SUBVIEW, or UI
widget.

Syntax

elementID.alphaBlend

Possible Values

This attribute is a read/write Number (long) with a value ranging from 0 (no opacity) to 255 (full opacity) and a
default value of 255.

Remarks

This attribute allows an element to appear semitransparent, depending on the amount of opacity set. The less
opacity, the more transparent the element will appear. Each element in the skin can have a separate opacity
value except for button elements in a BUTTONGROUP control. When alphaBlend is set in VIEW, the
opacity of the entire skin will be set. Alpha blend will not work for windowed controls, including PLAYLIST,
EFFECTS, LISTBOX, POPUP, EDITBOX, and VIDEO (if windowless is set to false). When alphaBlend is
set on VIEW, the whole skin becomes transparent. The transparencyColor attributes used by several elements
are not supported with alphaBlend.

When you use alphaBlend with a TEXT element that does not have the backgroundColor specified, a
background color of black will be used. If the foreground color is also black (which is the default value for
TEXT.foregroundColor), your text may become unreadable. In order to prevent this, always specify the
backgroundColor attribute, or set foregroundColor to a color other than black.

Note This attribute is not supported in Windows 98.

Requirements

Windows Media Player 9 Series or later.

See Also

Ambient Attributes
AmbientAttributes.alphaBlendTo
TEXT Element

Previous Next

Previous Next

TEXT.backgroundColor
TEXT.foregroundColor

© 2000-2003 Microsoft Corporation. All rights reserved.

AmbientAttributes.alphaBlendTo
The alphaBlendTo method adjusts the alphaBlend property over a period of time.

Syntax

elementID.alphaBlendTo(newVal, alphaTime)

Parameters

 newVal

Number (long) specifying the new opacity value. Ranges from 0 (no opacity) to 255 (full opacity).

 alphaTime

Number (long) specifying the time, in milliseconds, that it takes the element to change opacity.

Return Values

This method does not return a value.

Remarks

This method is useful for making elements gradually appear or disappear.

When you use alphaBlendTo with a TEXT element that does not have the backgroundColor specified, a
background color of black will be used. If the foreground color is also black (which is the default value for
TEXT.foregroundColor), your text may become unreadable. In order to prevent this, always specify the
backgroundColor attribute, or set foregroundColor to a color other than black.

Note This attribute is not supported in Windows 98.

Requirements

Windows Media Player 9 Series or later.

Previous Next

Previous Next

See Also

Ambient Attributes
AmbientAttributes.alphaBlend
TEXT Element
TEXT.backgroundColor
TEXT.foregroundColor

© 2000-2003 Microsoft Corporation. All rights reserved.

AmbientAttributes.clippingColor
The clippingColor attribute specifies or retrieves the color to clip out from the clippingImage bitmap.

Syntax

elementID.clippingColor

Possible Values

This attribute is a read/write String.

Remarks

The clipping color indicates the regions of the clippingImage (or backgroundImage for VIEW or
SUBVIEW) that correspond to transparent, non-clickable portions of the control. The clipping color can
indicate multiple regions to be clipped out. A warning is issued if the clippingImage is a JPG to warn of loss of
color in JPGs.

The clippingColor attribute is not supported by the PLAYLIST element.

Requirements

Windows Media Player version 7.0 or later.

Previous Next

Previous Next

Value Description

Auto Default. The color at pixel location 0,0 is used.

any Microsoft Internet Explorer
color value

The specified Internet Explorer color is used.

See Also

Ambient Attributes
AmbientAttributes.clippingImage
Color Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

AmbientAttributes.clippingImage
The clippingImage attribute specifies or retrieves the region to clip the control to.

Syntax

elementID.clippingImage

Possible Values

This attribute is a read/write String indicating the image file name. It has no default value.

Remarks

The clippingImage attribute supports PNG, JPG, BMP, and GIF files (not including animated GIFs). Because
JPGs are lossy and therefore subject to unexpected color change, they are not recommended for clipping
images.

This attribute is useful when you want to display only a part of the control image and not the entire rectangular
area. The clippingColor attribute indicates the regions of the clipping image that correspond to transparent,
non-clickable portions of the control. The control can therefore be of any shape. For best results, the clipping
image should be the same size as the control image.

The clippingImage attribute is not supported by the PLAYLIST, VIEW, and SUBVIEW elements. A clipping
image will not work with the VIDEO element if VIDEO.windowless is set to false, nor with the EFFECTS
element if EFFECTS.windowed is set to true.

Because the use of clipping images imposes a performance penalty, they should not be used when efficiency is
an issue.

Example

See the BUTTONELEMENT.mappingColor attribute for a sample illustrating the use of this attribute.

Previous Next

Previous Next

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Attributes
AmbientAttributes.clippingColor

© 2000-2003 Microsoft Corporation. All rights reserved.

AmbientAttributes.elementType
The elementType attribute retrieves the type of the element (for instance, BUTTON).

Syntax

elementID.elementType

Possible Values

This attribute is a read-only String indicating the name of the element.

Remarks

This attribute is useful in determining the type of element that fired an event and writing a generic event handler
for this class of elements.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

AmbientAttributes.enabled
The enabled attribute specifies or retrieves a value indicating whether the control is enabled or disabled.

Syntax

elementID.enabled

Possible Values

This attribute is a read/write Boolean.

Remarks

If the control is enabled, it can have a tab stop, and will receive all ambient events. When disabled, the control
does not have a tab stop, and does not receive any ambient mouse or keyboard events fired to it. (However, it
will continue to receive all other ambient events fired to it.)

This attribute is not supported for the SUBVIEW element.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Values Description

true Default. Control enabled.

false Control disabled.

Previous Next

AmbientAttributes.height
The height attribute specifies or retrieves the height of the control.

Syntax

elementID.height

Possible Values

This attribute is a read/write Number (long) representing the height of the control in pixels. The default value is
zero or the height of the image specified in the control's image attribute.

Remarks

If the height specified is smaller than the height of the image provided, then the image will be clipped. If the
height is larger than the height of the image, then the click region will go beyond the image boundary. No
matter what value is given to this attribute, the image cannot grow beyond its parent VIEW or SUBVIEW.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

AmbientAttributes.horizontalAlignment
The horizontalAlignment attribute specifies or retrieves a value that indicates the horizontal placement of the
control when the VIEW or parent SUBVIEW is resized.

Syntax

elementID.horizontalAlignment

Previous Next

Previous Next

Previous Next

Possible Values

This attribute is a read/write String.

Remarks

Unless horizontalAlignment is set to "center", the control retains its original distance from the specified edge,
or from both edges if "stretch" is specified and the control is resizable. If the control is not resizable and
"stretch" is specified, the clickable region is stretched instead.

You can set any combination of horizontalAlignment and verticalAlignment. For example, if you want to
center a control both horizontally and vertically, set horizontalAlignment="center" verticalAlignment="center".

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Attributes
AmbientAttributes.verticalAlignment
AmbientAttributes.clippingImage

© 2000-2003 Microsoft Corporation. All rights reserved.

Values Description

left Default. Maintains the placement of the control relative to the left of the
VIEW or parent SUBVIEW when the view is resized.

right Maintains the placement of the control relative to the right of the VIEW
or parent SUBVIEW when the view is resized.

center Maintains the placement of the control relative to the horizontal center
of the VIEW or parent SUBVIEW when the view is resized.

stretch Maintains the placement of the control relative to both the left and right
margins of the VIEW or parent SUBVIEW when resized. The control
stretches to fit when the VIEW or SUBVIEW is stretched. The actual
image does not grow or shrink unless it is resizable, but the clickable
area grows or shrinks if not bounded by a clippingImage.

Previous Next

Previous Next

AmbientAttributes.id
The id attribute specifies or retrieves the identifier of a control. This attribute will support any name permitted
by Microsoft Visual Basic for Applications. Can only be set at design time.

Syntax

elementID.id

Possible Values

This attribute is a String specified at design time and read-only thereafter. It has a default value of

 Unnamed_elementtype_num

where elementtype is the name of the control type, and num is a number corresponding to the position of the
control in the sequence of all unnamed controls in the Theme. This number is reset to zero for each new Theme.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

AmbientAttributes.left
The left attribute specifies or retrieves the left coordinate of the control.

Syntax

elementID.left

Possible Values

This attribute is a read/write Number (long) representing the distance in pixels from the control to the left edge
of the parent VIEW or SUBVIEW. It has a default value of zero. Negative numbers are allowed, in which case
the left border of the VIEW or SUBVIEW clips the control.

Previous Next

Previous Next

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

AmbientAttributes.moveTo
The moveTo method moves the control.

Syntax

elementID.moveTo(newLeft, newTop, time)

Parameters

 newX

Number (long) specifying the new value for the left attribute of the control.

 newY

Number (long) specifying the new value for the top attribute of the control.

 time

Number (long) specifying the time, in milliseconds, that it takes for the control to move to its new location.

Return Values

This method does not return a value.

Remarks

This method is useful for animated SUBVIEW elements (for example, if the user clicks on a tray and the
controls slide down).

Previous Next

Previous Next

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Attributes
AmbientAttributes.left
AmbientAttributes.top

© 2000-2003 Microsoft Corporation. All rights reserved.

AmbientAttributes.passThrough
The passThrough attribute specifies or retrieves a value indicating whether the control will pass all mouse
events through to the control under it.

Syntax

elementID.passThrough

Possible Values

This attribute is a read/write Boolean.

Remarks

This attribute is useful if, for example, a text control sits on top of a button control only to provide labeling. In
this case, clicks on the text control must be passed through to the button control.

The passThrough attribute is not supported by the VIEW, SUBVIEW, and PLAYLIST elements. It will not
work with the VIDEO element if VIDEO.windowless is set to false, nor with the EFFECTS element if
EFFECTS.windowed is set to true.

Requirements

Previous Next

Previous Next

Values Description

true Control passes events through to the control under it.

false Default. Control does not pass events through.

Windows Media Player version 7.0 or later.

See Also

Ambient Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

AmbientAttributes.tabStop
The tabStop attribute specifies or retrieves a value indicating whether the control is in the tabbing order. You
set the tabbing order by placing the control in the overall script before or after other control tags.

Syntax

elementID.tabStop

Possible Values

This attribute is a read/write Boolean.

Remarks

The tabStop attribute is not applicable to the EFFECTS element.

The default value for this attribute is true for all elements except AUTOMENU and TEXT, which have a
default value of false.

Requirements

Windows Media Player version 7.0 or later.

See Also

Previous Next

Previous Next

Values Description

true Control is in the tabbing order (control will have a tab stop: accessibility
requirement).

false Control is not in the tabbing order.

Ambient Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

AmbientAttributes.top
The top attribute specifies or retrieves the top coordinate of the control.

Syntax

elementID.top

Possible Values

This attribute is a read/write Number (long) representing the distance in pixels from the control to the top edge
of the parent VIEW or SUBVIEW. It has a default value of zero. Negative numbers are allowed, in which case
the top border of the VIEW or SUBVIEW clips the control.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Attributes
AmbientAttributes.id

© 2000-2003 Microsoft Corporation. All rights reserved.

AmbientAttributes.verticalAlignment

Previous Next

Previous Next

Previous Next

Previous Next

The verticalAlignment attribute specifies or retrieves a value indicating the vertical placement of the control
when the VIEW or parent SUBVIEW is stretched.

Syntax

elementID.verticalAlignment

Possible Values

This attribute is a read/write String.

Remarks

Unless verticalAlignment is set to "center", the control retains its original distance from the specified edge, or
from both edges if "stretch" is specified and the control is resizable. If the control is not resizable and "stretch"
is specified, the clickable region is stretched instead.

You can set any combination of the horizontalAlignment and verticalAlignment attributes. For example, if
you want a control to be centered both horizontally and vertically, set horizontalAlignment to "center" and
verticalAlignment to "center".

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Attributes
AmbientAttributes.horizontalAlignment

© 2000-2003 Microsoft Corporation. All rights reserved.

Values Description

top Default. Maintains the placement of the control relative to the top of the VIEW
or parent SUBVIEW when the view is resized.

bottom Maintains the placement of the control relative to the bottom of the VIEW or
parent SUBVIEW when the view is resized.

center Maintains the placement of the control relative to the vertical center of the VIEW
or parent SUBVIEW when the view is resized.

stretch Maintains the placement of the control relative to both the top and bottom
margins of the View when resized. The control stretches to fit when the VIEW or
parent SUBVIEW is stretched. The actual image does not grow or shrink unless
it is resizable, but the clickable area grows or shrinks if not bounded by a
clippingImage.

Previous Next

AmbientAttributes.visible
The visible attribute specifies or retrieves the visibility for the control.

Syntax

elementID.visible

Possible Values

This attribute is a read/write Boolean.

Remarks

This attribute is useful for hiding controls, for example when swapping a pause button for a play button.

If the value is false, the control is not visible and click events are passed to the control behind it. If the value is
true, the control is visible and receives the click event itself.

The default value for the AUTOMENU element is false.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Values Description

true Default. The control is visible.

false The control is not visible.

Previous Next

AmbientAttributes.width
The width attribute specifies or retrieves the width of the control.

Syntax

elementID.width

Possible Values

This attribute is a read/write 16-bit Integer (0 to 32,767) representing the width of the control in pixels. The
default value is zero or the width of the image specified in the control's image attribute.

Remarks

If the width specified is narrower than the width of the image provided, then the image will be clipped. If the
width is wider than the width of the image, then the click region will go beyond the image boundary. No matter
what value is given to this attribute, the image cannot grow beyond its parent VIEW or SUBVIEW.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

AmbientAttributes.zIndex
The zIndex attribute specifies or retrieves the order in which the control is rendered.

Syntax

elementID.zIndex

Possible Values

Previous Next

Previous Next

Previous Next

This attribute is a read/write Number (long) with a default value of zero. The range is that of a signed long
integer.

Remarks

The background bitmap of a VIEW or SUBVIEW has a fixed z index of zero. If you want a control to be
behind the background, the zIndex must be set to a negative number.

The z index of a VIEW or SUBVIEW is an absolute index, while the z index of a control is relative to the z
index of the VIEW or SUBVIEW that contains it.

The zIndex attribute is not supported by the BROWSER and PLAYLIST elements. It will not work with the
VIDEO element if VIDEO.windowless is set to false, nor with the EFFECTS element if EFFECTS.windowed
is set to true.

BUTTONELEMENT elements use the zIndex of their BUTTONGROUP.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

Ambient Event Handlers
The following event handlers can be implemented for most skin elements. The ambient event attributes
accessed with the event keyword can be used within an event handler to determine the state of the keyboard and
mouse at the time of the event.

Previous Next

Previous Next

Event handler Description

attribute_onchange When a skin attribute changes value, an event occurs that can be handled
by an event handler. The name of the event handler is the name of the
attribute followed by an underscore and "onchange", such as
value_onchange.

onblur Handles an event that occurs when the element loses the keyboard focus.

See Also

Ambient Event Attributes
Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

attribute_onchange
When a skin attribute changes value, an event occurs that can be handled by an event handler. The name of the
event handler is the name of the attribute followed by an underscore and "onchange", such as value_onchange.

onclick Handles an event that occurs when the user clicks the element.

ondblclick Handles an event that occurs when the user double-clicks the element.

onendalphablend Handles an event that occurs when an element completes an
alphaBlendTo operation.

onendmove Handles an event that occurs when an element completes a moveTo
operation.

onfocus Handles an event that occurs when the element receives the keyboard
focus.

onkeydown Handles an event that occurs when a key is pressed down.

onkeypress Handles an event that occurs when the user presses an alphanumeric key.

onkeyup Handles an event that occurs when a key is released.

onmousedown Handles an event that occurs when the user clicks a mouse button.

onmousemove Handles an event that occurs when the user moves the mouse pointer
while it is over an element.

onmouseout Handles an event that occurs when the user moves the pointer off the
element.

onmouseover Handles an event that occurs when the user first places the pointer over
the element.

onmouseup Handles an event that occurs when the user releases a mouse button
while the pointer is over the element.

onresize Handles an event that occurs when a control resizes.

Previous Next

Previous Next

Syntax

attribute_onchange

Example

<SLIDER
 thumbImage = "thumb.gif"
 value_onchange = "JScript: if (value == 100) backgroundColor = 'green';"
/>

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Handlers

© 2000-2003 Microsoft Corporation. All rights reserved.

onblur
The onblur event handler handles an event that occurs when the element loses the keyboard focus.

Syntax

onblur

Remarks

The onblur event handler is not applicable to the EFFECTS element or the POPUP element.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Handlers

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

onclick
The onclick event handler handles an event that occurs when the user clicks the element.

Syntax

onclick

Remarks

This event handler is not applicable to the PLAYLIST element, the POPUP element, the VIDEO element, the
LISTBOX element, when VIDEO.windowless is false, or the EFFECT element when EFFECTS.windowed is
true.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Handlers

© 2000-2003 Microsoft Corporation. All rights reserved.

ondblclick
The ondblclick event handler handles an event that occurs when the user double-clicks the element.

Syntax

Previous Next

Previous Next

Previous Next

ondblclick

Remarks

This event handler is not applicable to the PLAYLIST element, the POPUP element, the VIDEO element
when VIDEO.windowless is false, or the EFFECT element when EFFECTS.windowed is true.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Handlers

© 2000-2003 Microsoft Corporation. All rights reserved.

onendalphablend
The onendalphablend event handler handles an event that occurs when an element completes an
alphaBlendTo operation.

Syntax

onendalphablend

Requirements

Windows Media Player 9 Series or later.

See Also

Ambient Event Handlers
AmbientAttributes.alphaBlendTo

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

onendmove
The onendmove event handler handles an event that occurs when an element completes a moveTo operation.

Syntax

onendmove

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Handlers
AmbientAttributes.moveTo

© 2000-2003 Microsoft Corporation. All rights reserved.

onfocus
The onfocus event handler handles an event that occurs when the element receives the keyboard focus.

Syntax

onfocus

Remarks

The onfocus event handler is not applicable to the EFFECTS element or the POPUP element.

Requirements

Windows Media Player version 7.0 or later.

Previous Next

Previous Next

Previous Next

See Also

Ambient Event Handlers

© 2000-2003 Microsoft Corporation. All rights reserved.

onkeydown
The onkeydown event handler handles an event that occurs when a key is pressed.

Syntax

onkeydown

Remarks

This event handler is not applicable to the PLAYLIST element, the EFFECTS element, or the VIDEO
element when VIDEO.windowless is false.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Handlers

© 2000-2003 Microsoft Corporation. All rights reserved.

onkeypress

Previous Next

Previous Next

Previous Next

Previous Next

The onkeypress event handler handles an event that occurs when an alphanumeric key is pressed.

Syntax

onkeypress

Remarks

This event handler is not applicable to the PLAYLIST element, the EFFECTS element, or the VIDEO
element when VIDEO.windowless is false.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Handlers

© 2000-2003 Microsoft Corporation. All rights reserved.

onkeyup
The onkeyup event handler handles an event that occurs when a key is released.

Syntax

onkeyup

Remarks

This event handler is not applicable to the PLAYLIST element, the EFFECTS element, or the VIDEO
element when VIDEO.windowless is false.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Handlers

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

onmousedown
The onmousedown event handler handles an event that occurs when the user clicks a mouse button.

Syntax

onmousedown

Remarks

This event handler is not applicable to the PLAYLIST element, the VIDEO element when VIDEO.windowless
is false, or the EFFECT element when EFFECTS.windowed is true.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Handlers

© 2000-2003 Microsoft Corporation. All rights reserved.

onmousemove
The onmousemove event handler handles an event that occurs when the user moves the mouse pointer while it
is over an element.

Syntax

Previous Next

Previous Next

Previous Next

Previous Next

onmousemove

Remarks

This event handler is not applicable to the PLAYLIST element, the VIDEO element when VIDEO.windowless
is false, or the EFFECT element when EFFECTS.windowed is true.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Handlers

© 2000-2003 Microsoft Corporation. All rights reserved.

onmouseout
The onmouseout event handler handles an event that occurs when the user moves the pointer off the element.

Syntax

onmouseout

Remarks

This event handler is not applicable to the PLAYLIST element.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Handlers

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

onmouseover
The onmouseover event handler handles an event that occurs when the user first places the pointer over the
element.

Syntax

onmouseover

Remarks

This event handler is not applicable to the PLAYLIST element.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Handlers

© 2000-2003 Microsoft Corporation. All rights reserved.

onmouseup
The onmouseup event handler handles an event that occurs when the user releases a mouse button while the
pointer is over the element.

Syntax

onmouseup

Remarks

Previous Next

Previous Next

Previous Next

This event handler is not applicable to the PLAYLIST element.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Handlers

© 2000-2003 Microsoft Corporation. All rights reserved.

onresize
The onresize event handler handles an event that occurs when a control resizes.

Syntax

onresize

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Handlers

© 2000-2003 Microsoft Corporation. All rights reserved.

Ambient Event Attributes

Previous Next

Previous Next

Previous Next

Previous Next

The following attributes are common to all skin events. They are accessed with the event keyword within an
event handler for the element.

See Also

Skin Programming Reference

Attribute Description

altKey Retrieves a value indicating whether the ALT key was down when the
event occurred.

button Retrieves a value indicating which mouse buttons were down when the
event occurred.

clientX Retrieves the x coordinate of the mouse pointer with respect to the client
region of the application window.

clientY Retrieves the y coordinate of the mouse pointer with respect to the client
region of the application window.

ctrlKey Retrieves a value indicating whether the CTRL key was down when the
event occurred.

fromElement Retrieves the element the event came from.

keyCode Retrieves the ASCII key code if a key was pressed when the event
occurred.

offsetX Retrieves the x coordinate of the mouse pointer with respect to the
element firing the event.

offsetY Retrieves the y coordinate of the mouse pointer with respect to the
element firing the event.

screenHeight Retrieves the height of the available screen size in pixels.

screenWidth Retrieves the width of the available screen size in pixels.

screenX Retrieves the absolute x coordinate of the mouse pointer with respect to
the screen.

screenY Retrieves the absolute y coordinate of the mouse pointer with respect to
the screen.

shiftKey Retrieves a value indicating whether the SHIFT key was down when the
event occurred.

srcElement Retrieves the element that fired the event.

toElement Retrieves the element the keyboard focus moved to.

x Retrieves the x coordinate of the mouse pointer with respect to the
application window.

y Retrieves the y coordinate of the mouse pointer with respect to the
application window.

© 2000-2003 Microsoft Corporation. All rights reserved.

event.altKey
The altKey attribute retrieves a value indicating whether the ALT key was down when the event occurred.

Syntax

event.altKey

Possible Values

This attribute is a read-only Boolean.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

event.button

Previous Next

Previous Next

Value Description

true Indicates the ALT key was in the down position.

false Indicates the ALT key was in the up position.

Previous Next

Previous Next

The button attribute retrieves a value indicating which mouse buttons were down when the event occurred.

Syntax

event.button

Possible Values

This attribute is a read-only Number (long).

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

event.clientX
The clientX attribute retrieves the x coordinate of the mouse pointer with respect to the client region of the
application window.

Syntax

event.clientX

Possible Values

This attribute is a read-only Number (long).

Value Description

0 No mouse buttons were down.

1 The left mouse button was down.

2 The right mouse button was down.

3 Both mouse buttons were down.

Previous Next

Previous Next

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Attributes
event.clientY

© 2000-2003 Microsoft Corporation. All rights reserved.

event.clientY
The clientY attribute retrieves the y coordinate of the mouse pointer with respect to the client region of the
application window.

Syntax

event.clientY

Possible Values

This attribute is a read-only Number (long).

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Attributes
event.clientX

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

event.ctrlKey
The ctrlKey attribute retrieves a value indicating whether the CTRL key was down when the event occurred.

Syntax

event.ctrlKey

Possible Values

This attribute is a read-only Boolean.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

event.fromElement
The fromElement attribute retrieves the element the event came from. If no element passes an event, the value
is NULL.

Syntax

Previous Next

Value Description

true Indicates the CTRL key was in the down position.

false Indicates the CTRL key was in the up position.

Previous Next

Previous Next

event.fromElement

Possible Values

This attribute is a read-only object.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

event.keyCode
The keyCode attribute retrieves the ASCII key code if a key was pressed when the event occurred.

Syntax

event.keyCode

Possible Values

This attribute is a read-only Number (long).

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

event.offsetX
The offsetX attribute retrieves the x coordinate of the mouse pointer with respect to the element firing the event.

Syntax

event.offsetX

Possible Values

This attribute is a read-only Number (long).

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Attributes
event.offsetY

© 2000-2003 Microsoft Corporation. All rights reserved.

event.offsetY
The offsetY attribute retrieves the y coordinate of the mouse pointer with respect to the element firing the event.

Syntax

event.offsetY

Possible Values

This attribute is a read-only Number (long).

Previous Next

Previous Next

Previous Next

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Attributes
event.offsetX

© 2000-2003 Microsoft Corporation. All rights reserved.

event.screenHeight
The screenHeight attribute retrieves the height of the available screen size in pixels.

Syntax

event.screenHeight

Possible Values

This attribute is a read-only Number (long).

Remarks

This is useful for determining the amount of space there is in the monitor. If there are two monitors, it calculates
the space for both monitors.

Requirements

Windows Media Player 9 Series or later.

See Also

Ambient Event Attributes
event.screenWidth

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

event.screenWidth
The screenWidth attribute retrieves the width of the available screen size in pixels.

Syntax

event.screenWidth

Possible Values

This attribute is a read-only Number (long).

Remarks

This is useful for determining the amount of space there is in the monitor. If there are two monitors, it calculates
the space for both monitors.

Requirements

Windows Media Player 9 Series or later.

See Also

Ambient Event Attributes
event.screenHeight

© 2000-2003 Microsoft Corporation. All rights reserved.

event.screenX
The screenX attribute retrieves the absolute x coordinate of the mouse pointer with respect to the screen.

Syntax

Previous Next

Previous Next

Previous Next

event.screenX

Possible Values

This attribute is a read-only Number (long).

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Attributes
event.screenY

© 2000-2003 Microsoft Corporation. All rights reserved.

event.screenY
The screenY attribute retrieves the absolute y coordinate of the mouse pointer with respect to the screen.

Syntax

event.screenY

Possible Values

This attribute is a read-only Number (long).

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Attributes
event.screenX

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

event.shiftKey
The shiftKey attribute retrieves a value indicating whether the SHIFT key was down when the event occurred.

Syntax

event.shiftKey

Possible Values

This attribute is a read-only Boolean.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

event.srcElement
The srcElement attribute retrieves the element that fired the event.

Syntax

Previous Next

Value Description

true Indicates the SHIFT key was in the down position.

false Indicates the SHIFT key was in the up position.

Previous Next

Previous Next

event.srcElement

Possible Values

This attribute is a read-only object.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

event.toElement
The toElement attribute retrieves the element that the keyboard focus moved to. This attribute only applies to
the onblur event; for all other events, its value is NULL.

Syntax

event.toElement

Possible Values

This attribute is a read-only object.

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

event.x
The x attribute retrieves the x coordinate of the mouse pointer with respect to the application window.

Syntax

event.x

Possible Values

This attribute is a read-only Number (long).

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Attributes
event.y

© 2000-2003 Microsoft Corporation. All rights reserved.

event.y
The y attribute retrieves the y coordinate of the mouse pointer with respect to the application window.

Syntax

event.y

Possible Values

This attribute is a read-only Number (long).

Previous Next

Previous Next

Previous Next

Requirements

Windows Media Player version 7.0 or later.

See Also

Ambient Event Attributes
event.x

© 2000-2003 Microsoft Corporation. All rights reserved.

AUTOMENU Element
The AUTOMENU element provides a way to display the Quick Access Panel in a skin. This is a menu that
appears in the full mode of the Player when you click the arrow to the right of the Now Playing button. It
provides immediate access to digital media files organized in various ways, such as in playlists or by album,
artist, or genre. Use the left and top attributes to specify the location at which the menu should appear when the
show method is called.

The AUTOMENU element supports the following method.

The AUTOMENU element supports the following ambient attributes: left and top.

Note This element requires Windows Media Player 9 Series or later.

See Also

Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Method Description

show Displays the Quick Access Panel.

Previous Next

AUTOMENU.show
The show method displays the Quick Access Panel.

Syntax

elementID.show("Play")

Parameters

 "Play"

Always specify this value.

Return Values

This method does not return a value.

Remarks

The Quick Access Panel appears at the location specified by the left and top attributes of the AUTOMENU
element.

Requirements

Windows Media Player 9 Series or later.

See Also

AUTOMENU Element

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTON Element

Previous Next

Previous Next

Previous Next

The BUTTON element provides a way to create a button within a skin. The attributes below can be used to
customize the behavior of a button, or a predefined button can be used for convenience.

The BUTTON element supports the following attributes.

The BUTTON element supports the ambient attributes and can implement the ambient event handlers. For
more information, see Ambient Attributes and Ambient Event Handlers.

Predefined buttons are normal BUTTON elements with various common attribute settings specified by default.
The following predefined buttons are available.

Attribute Description

cursor Specifies or retrieves the cursor that appears when the mouse pointer
hovers over the BUTTON.

disabledImage Specifies or retrieves the image that displays when the BUTTON is
disabled.

down Specifies or retrieves a value indicating whether the BUTTON is in the
up or down position.

downImage Specifies or retrieves the image representing the down state of the
BUTTON.

downToolTip Specifies or retrieves the ToolTip text that appears when the mouse is
over the BUTTON and the BUTTON is in the down or depressed state.

hoverDownImage Specifies or retrieves the image displayed when the BUTTON is in the
down state and the user hovers over it with the mouse pointer.

hoverImage Specifies or retrieves the image displayed when the BUTTON is in the
up state and the user hovers over it with the mouse pointer.

image Specifies or retrieves the default image of the BUTTON.

sticky Specifies or retrieves a value indicating whether the BUTTON is a
toggle, that is, whether it is a two-state or single-state button.

tiled Specifies or retrieves a value indicating whether the BUTTON image
will be tiled.

transparencyColor Specifies or retrieves the color that will be transparent in the BUTTON
image.

upToolTip Specifies or retrieves the ToolTip text that appears when the mouse is
over the BUTTON and the BUTTON is in the up state.

Predefined BUTTON Description

CLOSEBUTTON A BUTTON used to close the Player.

FFWDBUTTON A BUTTON with a built in call to
player.controls.fastForward when clicked.

IMAGEBUTTON A BUTTON used to display an image.

See Also

Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTON.cursor
The cursor attribute specifies or retrieves the cursor that appears when the mouse pointer hovers over the
BUTTON.

Syntax

elementID.cursor

Possible Values

MINIMIZEBUTTON A BUTTON used to minimize the Player.

MUTEBUTTON A BUTTON used to mute and un-mute the audio.

NEXTBUTTON A BUTTON with a built in call to player.controls.next when
clicked.

PAUSEBUTTON A BUTTON with a built in call to player.controls.pause when
clicked.

PLAYBUTTON A BUTTON with a built in call to player.controls.play when
clicked.

PREVBUTTON A BUTTON with a built in call to player.controls.previous
when clicked.

REPEATBUTTON A BUTTON that toggles the Repeat option.

RETURNBUTTON A BUTTON that returns Windows Media Player to the media
center.

REWBUTTON A BUTTON with a built in call to player.controls.fastReverse
when clicked.

SHUFFLEBUTTON A BUTTON that toggles the Shuffle option.

STOPBUTTON A BUTTON with a built in call to player.controls.stop when
clicked.

Previous Next

Previous Next

This attribute is a read/write String.

Remarks

If the system does not recognize the cursor value specified, the cursor value remains at the previously set value.

Cursor file name paths are ignored, so the cursor file must reside in the default directory.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTON Element

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTON.disabledImage
The disabledImage attribute specifies or retrieves the image that displays when the BUTTON is disabled.

Value Description

system Default. Platform-dependent cursor (usually an arrow).

hand Hand.

help Arrow with question mark indicating Help is available.

sizeall Four-pointed arrow pointing north, south, east, and west.

sizenesw Double-pointed arrow pointing northeast and southwest.

sizens Double-pointed arrow pointing north and south.

sizenwse Double-pointed arrow pointing northwest and southeast.

sizewe Double-pointed arrow pointing west and east.

uparrow Vertical arrow pointing upward.

*.ani or *.cur Any .ani or .cur file (must be in the same directory as the .wms file or in
the .wmz file)

Previous Next

Previous Next

Syntax

elementID.disabledImage

Possible Values

This attribute is a read/write String containing the image file name.

Remarks

The supported image formats are BMP, JPG, PNG, and GIF.

This image will be displayed whenever the disabled attribute of the control is set to true. If the disabled image
is larger than the defined region, the disabled image will be cropped.

If the image cannot be retrieved, a default image (the red-x image) is displayed.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTON Element

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTON.down
The down attribute specifies or retrieves a value indicating whether the BUTTON is in the up or down position.

Syntax

elementID.down

Possible Values

This attribute is a read/write Boolean.

Previous Next

Previous Next

Value Description

Remarks

In order for a BUTTON to remain in the down position, sticky must be set to true. By default, sticky is false,
and any attempt to set down to true will be ignored.

If an invalid value is specified, the previous state is maintained.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTON Element
BUTTON.downImage
BUTTON.downToolTip

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTON.downImage
The downImage attribute specifies or retrieves the image representing the down state of the BUTTON.

Syntax

elementID.downImage

Possible Values

This attribute is a read/write String containing the image file name.

Remarks

The supported image formats are BMP, JPG, PNG, and GIF.

The default image is the one specified in the image attribute, or its default.

true Indicates that the BUTTON is in the down position.

false Default. Indicates that the BUTTON is in the up position.

Previous Next

Previous Next

If the down image is larger than the defined region in the ambient attribute, the down image will be cropped.

If the image cannot be retrieved, a default image (the red-x image) is displayed.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTON Element
BUTTON.down
BUTTON.image

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTON.downToolTip
The downToolTip attribute specifies or retrieves the ToolTip text that appears when the mouse is over the
BUTTON and the BUTTON is in the down state.

Syntax

elementID.downToolTip

Possible Values

This attribute is a read/write String with a default value of "" (empty string) and a maximum length of 1024
characters.

Remarks

When this attribute is set to "" (empty string), no ToolTip is displayed.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTON Element

Previous Next

Previous Next

BUTTON.down

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTON.hoverDownImage
The hoverDownImage attribute specifies or retrieves the image displayed when the BUTTON is in the down
state and the user hovers over it with the mouse pointer.

Syntax

elementID.hoverDownImage

Possible Values

This attribute is a read/write String containing the image file name.

Remarks

The supported image formats are BMP, JPG, PNG, and GIF.

The default image is the one specified in the downImage attribute, or its default.

If the hover-down image is larger than the defined region in the ambient attribute, the hover-down image will be
cropped.

If the image cannot be retrieved, a default image (the red-x image) is displayed.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTON Element
BUTTON.downImage

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

BUTTON.hoverImage
The hoverImage attribute specifies or retrieves the image displayed when the BUTTON is in the up state and
the user hovers over it with the mouse pointer.

Syntax

elementID.hoverImage

Possible Values

This attribute is a read/write String containing the image file name.

Remarks

The supported image formats are BMP, JPG, PNG, and GIF.

The default image is the one specified in the image attribute, or its default.

If the hover image is larger than the defined region in the ambient attribute, the hover image will be cropped.

If the image cannot be retrieved, a default image (the red-x image) is displayed.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTON Element
BUTTON.image

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

BUTTON.image
The image attribute specifies or retrieves the default image of the BUTTON.

Syntax

elementID.image

Possible Values

This attribute is a read/write String containing the image file name.

Remarks

The supported image formats are BMP, JPG, PNG, and GIF (including animated GIFs).

If the BUTTON image is larger than the region defined by the width and height attributes, the image will be
cropped.

If the image is not specified but the height and width are, then the image directly behind this control is
displayed. This can facilitate drawing the image on the VIEW itself, reducing the number of separate image
files needed.

If the image cannot be retrieved, a default image (the red-x image) is displayed.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTON Element

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTON.sticky
The sticky attribute specifies or retrieves a value indicating whether the BUTTON is a toggle, that is, whether it
is a two-state or single-state BUTTON.

Previous Next

Previous Next

Syntax

elementID.sticky

Possible Values

This attribute is a read/write Boolean.

Remarks

If sticky is set to true, the BUTTON will change to the down state when clicked and will remain in that state
until clicked again. When the BUTTON is in the down state, the down attribute will be true and the
downImage will be displayed.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTON Element
BUTTON.down
BUTTON.downImage

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTON.tiled
The tiled attribute specifies or retrieves a value indicating whether the BUTTON image will be tiled.

Syntax

elementID.tiled

Possible Values

Value Description

true BUTTON is sticky.

false Default. BUTTON is not sticky.

Previous Next

Previous Next

This attribute is a read/write Boolean.

Remarks

If the image is smaller than the actual region of the control, then tiling the image will repeat it until it fills the
entire region. If an image is not specified or cannot be retrieved, tiled will be set to false.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTON Element
BUTTON.image

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTON.transparencyColor
The transparencyColor attribute specifies or retrieves the color that will be transparent in the BUTTON
images.

Syntax

elementID.transparencyColor

Possible Values

This attribute is a read/write String with no default containing one of the following values.

Value Description

true Image will be tiled.

false Default. Image will not be tiled.

Previous Next

Previous Next

Value Description

Auto The color of the pixel at location 0,0 in the image becomes the
transparent color.

Remarks

A transparent color in an image allows whatever is behind the image to show through the transparent areas. The
BUTTON will still receive clicks on the transparent region.

The transparent color can be any Internet Explorer color value. If the value of the transparencyColor attribute
is set to "Auto", the color of the pixel at location 0,0 in the image is used.

If the color specified is not one of the valid IE colors, the previous value is maintained.

Because JPGs are lossy and therefore subject to unexpected color change, they are not recommended when
transparencyColor is used.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTON Element
BUTTON.image
Color Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTON.upToolTip
The upToolTip attribute specifies or retrieves the ToolTip text that appears when the mouse is over the
BUTTON and the BUTTON is in the up state.

Syntax

elementID.upToolTip

Possible Values

any IE color format value An Internet Explorer color format value becomes the transparent color
(for example, "red" or "#FF0000").

None No transparency.

Previous Next

Previous Next

This attribute is a read/write String with a default value of "" (empty string) and a maximum length of 1024
characters.

Remarks

When this attribute is set to "" (empty string), no ToolTip is displayed.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTON Element
BUTTON.down

© 2000-2003 Microsoft Corporation. All rights reserved.

CLOSEBUTTON
This is a predefined BUTTON with the following default values.

onclick="jscript:view.close();"
upToolTip="Close"

Remarks

This creates a BUTTON control that closes the Player. The ToolTips are localized. All properties of this
BUTTON can be overridden by explicitly specifying them.

Requirements

Windows Media Player 7.0 or later.

See Also

BUTTON Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

FFWDBUTTON
This is a predefined BUTTON with the following default values.

onclick="jscript:player.controls.fastForward()"
upToolTip="Fast Forward"
cursor="system"
enabled="wmpenabled:player.controls.fastForward"

Remarks

All properties of this BUTTON can be overridden by explicitly specifying them.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTON Element

© 2000-2003 Microsoft Corporation. All rights reserved.

IMAGEBUTTON
This is a predefined BUTTON with the following default value.

cursor="Hand"

Remarks

All buttons can contain images. This element is useful for code clarification purposes to indicate a button that is
used primarily as an image container.

Previous Next

Previous Next

Previous Next

All properties of this BUTTON can be overridden by explicitly specifying them.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTON Element

© 2000-2003 Microsoft Corporation. All rights reserved.

MINIMIZEBUTTON
This is a predefined BUTTON with the following default values.

onclick="jscript:view.minimize();"
upToolTip="Minimize"

Remarks

This will create a BUTTON control that will minimize the Player. The ToolTips are localized. All properties of
this BUTTON can be overridden by explicitly specifying them.

Requirements

Windows Media Player 7.0 or later.

See Also

BUTTON Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

MUTEBUTTON
This is a predefined BUTTON with the following default values.

onclick="jscript:player.settings.mute=down;"
upToolTip="Mute"
downToolTip="Sound"
down="wmpprop:player.settings.mute"
sticky="true"

Remarks

This creates a BUTTON control that will mute and un-mute the audio. The ToolTips are localized. All
properties of this BUTTON can be overridden by explicitly specifying them.

Requirements

Windows Media Player 7.0 or later.

See Also

BUTTON Element

© 2000-2003 Microsoft Corporation. All rights reserved.

NEXTBUTTON
This is a predefined BUTTON with the following default values.

onclick="jscript:player.controls.next()"
upToolTip="Next"
cursor="system"
enabled="wmpenabled:player.controls.next"

Remarks

Previous Next

Previous Next

Previous Next

All properties of this BUTTON can be overridden by explicitly specifying them.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTON Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PAUSEBUTTON
This is a predefined BUTTON with the following default values.

onclick="jscript:player.controls.pause()"
upToolTip="Pause"
cursor="system"
enabled="wmpenabled:player.controls.pause"

Remarks

All properties of this BUTTON can be overridden by explicitly specifying them.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTON Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

PLAYBUTTON
This is a predefined BUTTON with the following default values.

onclick="jscript:player.controls.play()"
upToolTip="Play"
cursor="system"
enabled="wmpenabled:player.controls.play"

Remarks

All properties of this BUTTON can be overridden by explicitly specifying them.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTON Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PREVBUTTON
This is a predefined BUTTON with the following default values.

onclick="jscript:player.controls.previous()"
upToolTip="Previous"
cursor="system"
enabled="wmpenabled:player.controls.previous"

Remarks

All properties of this BUTTON can be overridden by explicitly specifying them.

Previous Next

Previous Next

Previous Next

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTON Element

© 2000-2003 Microsoft Corporation. All rights reserved.

REPEATBUTTON
This is a predefined BUTTON with the following default values.

onclick="jscript:player.settings.setMode('loop',down);"
upToolTip="Turn Repeat On"
downToolTip="Turn Repeat Off"
down="wmpprop:player.settings.getMode('loop')"
sticky="true"

Remarks

This creates a BUTTON control that toggles Repeat on and off. The ToolTips are localized. All properties of
this BUTTON can be overridden by explicitly specifying them.

Requirements

Windows Media Player 7.0 or later.

See Also

BUTTON Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

RETURNBUTTON
This is a predefined BUTTON with the following default values.

onclick="jscript:view.returnToMediaCenter();"
upToolTip="Return to Full Mode"

Remarks

This creates a BUTTON control that returns the Player to the media center. The ToolTips are localized. All
properties of this BUTTON can be overridden by explicitly specifying them.

Requirements

Windows Media Player 7.0 or later.

See Also

BUTTON Element

© 2000-2003 Microsoft Corporation. All rights reserved.

REWBUTTON
This is a predefined BUTTON with the following default values.

onclick="jscript:player.controls.fastReverse()"
upToolTip="Fast Reverse"
cursor="system"
enabled="wmpenabled:player.controls.fastReverse"

Remarks

All properties of this BUTTON can be overridden by explicitly specifying them.

Previous Next

Previous Next

Previous Next

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTON Element

© 2000-2003 Microsoft Corporation. All rights reserved.

SHUFFLEBUTTON
This is a predefined BUTTON with the following default values.

onclick="jscript:player.settings.setMode('shuffle',down);"
upToolTip="Turn Shuffle On"
downToolTip="Turn Shuffle Off"
down="wmpprop:player.settings.getMode('shuffle')"
sticky="true"

Remarks

This creates a BUTTON control that toggles Shuffle on and off. The ToolTips are localized. All properties of
this BUTTON can be overridden by explicitly specifying them.

Requirements

Windows Media Player 7.0 or later.

See Also

BUTTON Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

STOPBUTTON
This is a predefined BUTTON with the following default values.

onclick="jscript:player.controls.stop()"
upToolTip="Stop"
cursor="system"
enabled="wmpenabled:player.controls.stop"

Remarks

All properties of this BUTTON can be overridden by explicitly specifying them.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTON Element

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONELEMENT Element
The BUTTONELEMENT element defines a single button within a parent BUTTONGROUP element. It
supports the following attributes. Predefined BUTTONELEMENT elements are also provided for
convenience.

The BUTTONELEMENT element supports the following attributes.

Previous Next

Previous Next

Previous Next

Attribute Description

cursor Specifies or retrieves the value of the BUTTONELEMENT cursor that
appears when the mouse is over the BUTTONELEMENT.

The BUTTONELEMENT element supports the following method.

The BUTTONELEMENT element can implement the ambient event handlers. For more information, see
Ambient Event Handlers.

The BUTTONELEMENT element supports the following ambient attributes: enabled and tabStop.

Predefined effects are normal EFFECTS elements with various common attribute settings specified by default.
The following predefined BUTTONELEMENT elements are available.

down Specifies or retrieves the up or down value of the
BUTTONELEMENT.

downToolTip Specifies or retrieves the ToolTip text that appears when the mouse is
over the BUTTONELEMENT and the BUTTONELEMENT is in the
down state.

index Retrieves the index of the BUTTONELEMENT within the
BUTTONGROUP.

mappingColor Specifies or retrieves the color key that identifies this
BUTTONELEMENT in the BUTTONELEMENT group.

sticky Specifies or retrieves a value indicating whether the
BUTTONELEMENT is sticky. When sticky, a BUTTONELEMENT
will change states after being clicked and will remain in the new state
until clicked again.

upToolTip Specifies or retrieves the ToolTip text that appears when the mouse is
over the BUTTONELEMENT and the BUTTONELEMENT is in the
up or active state.

Method Description

click Calls the onclick event handler defined for the BUTTONELEMENT.

Predefined
BUTTONELEMENT

Description

FFWDELEMENT A BUTTONELEMENT with a built in onclick event handler that calls
player.controls.fastForward.

NEXTELEMENT A BUTTONELEMENT with a built in onclick event handler that calls
player.controls.next.

PAUSEELEMENT A BUTTONELEMENT with a built in onclick event handler that calls
player.controls.pause.

PLAYELEMENT A BUTTONELEMENT with a built in onclick event handler that calls
player.controls.play.

PREVELEMENT A BUTTONELEMENT with a built in onclick event handler that calls
player.controls.previous.

REWELEMENT A BUTTONELEMENT with a built in onclick event handler that calls

See Also

Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONELEMENT.click
The click method calls the onclick event handler defined for the BUTTONELEMENT.

Syntax

elementID.click()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

Use this method to provide an alternate means of running the code associated with a button.

Requirements

Windows Media Player 9 Series or later.

See Also

BUTTONELEMENT Element

player.controls.rewind.

STOPELEMENT A BUTTONELEMENT with a built in onclick event handler that calls
player.controls.stop.

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONELEMENT.cursor
The cursor attribute specifies or retrieves the value of the BUTTONELEMENT cursor that appears when the
mouse is over the BUTTONELEMENT.

Syntax

elementID.cursor

Possible Values

This attribute is a read/write String.

Remarks

If an invalid value is specified, the previous value is maintained.

Cursor file name paths are ignored, so the cursor file must reside in the default directory.

Requirements

Previous Next

Value Description

system Default. Platform-dependent cursor (usually an arrow).

hand Hand.

help Arrow with question mark indicating Help is available.

sizeall Four-pointed arrow pointing north, south, east, and west.

sizenesw Double-pointed arrow pointing northeast and southwest.

sizens Double-pointed arrow pointing north and south.

sizenwse Double-pointed arrow pointing northwest and southeast.

sizewe Double-pointed arrow pointing west and east.

uparrow Vertical arrow pointing upward.

*.ani or *.cur Any .ani or .cur file (must be in the same directory as the .wms file or in
the .wmz file).

Windows Media Player version 7.0 or later.

See Also

BUTTONELEMENT Element

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONELEMENT.down
The down attribute specifies or retrieves a value indicating whether the button element is in the up or down
position.

Syntax

elementID.down

Possible Values

This attribute is a read/write Boolean.

Remarks

In order for a button element to remain in the down position, sticky must be set to true. By default, sticky is
false, and any attempt to set down to true will be ignored.

If an invalid value is specified, the previous state is maintained.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTONELEMENT Element

Previous Next

Previous Next

Value Description

true Indicates the BUTTONELEMENT is in the down position.

false Default. Indicates the BUTTONELEMENT is in the up position.

BUTTONELEMENT.downToolTip

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONELEMENT.downToolTip
The downToolTip attribute specifies or retrieves the ToolTip text that appears when the mouse is over the
BUTTONELEMENT and the BUTTONELEMENT is in the down state.

Syntax

elementID.downToolTip

Possible Values

This attribute is a read/write String with a default value of "" (empty string) with a maximum length of 1024
characters.

Remarks

When this attribute is set to "" (empty string), no ToolTip is displayed.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTONELEMENT Element
BUTTONELEMENT.down

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

BUTTONELEMENT.index
The index attribute retrieves the index of the BUTTONELEMENT within the BUTTONGROUP.

Syntax

elementID.index

Possible Values

This attribute is a read-only Number (long).

Requirements

Windows Media Player 9 Series or later.

See Also

BUTTONELEMENT Element

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONELEMENT.mappingColor
The mappingColor attribute specifies or retrieves the color key that identifies this BUTTONELEMENT in
the BUTTONGROUP.

Syntax

elementID.mappingColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value. It has no default
value.

Example

The following sample is a complete skin definition file that illustrates how some of the BUTTONELEMENT

Previous Next

Previous Next

attributes are used. It can be found in the Samples directory that was installed with the SDK.

<THEME>
 <VIEW
 backgroundImage = "background.bmp"
 titleBar = "False"
 >
 <PLAYER
 URL = "http://proseware.com/mellow.wma"
 />
 <EFFECTS
 id = "myeffects"
 top = "25"
 left = "88"
 width = "180"
 height = "150"
 />
 <BUTTONGROUP
 mappingImage = "map.bmp"
 hoverImage = "hover.bmp"
 >
 <BUTTONELEMENT
 mappingColor = "#00FF00"
 upToolTip = "Next"
 onClick = "JScript:myeffects.next();"
 />
 <BUTTONELEMENT
 mappingColor = "#FF0000"
 upToolTip = "Previous"
 onClick = "JScript:myeffects.previous();"
 />
 </BUTTONGROUP>
 </VIEW>
</THEME>

Remarks

This attribute specifies the color of the region in the button group mappingImage that corresponds to this
button element. All clicks on this region are handled by this button element.

If an invalid color is specified, the BUTTONELEMENT is not activated.

Requirements

Windows Media Player version 7.0 or later.

See Also

Color Reference
BUTTONELEMENT Element
BUTTONGROUP.mappingImage

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

BUTTONELEMENT.sticky
The sticky attribute specifies or retrieves a value indicating whether the BUTTONELEMENT is a toggle, that
is, whether it is a two-state or single-state button.

Syntax

elementID.sticky

Possible Values

This attribute is a read/write Boolean.

Remarks

If the sticky attribute is set to true, the button element will change to the down state when clicked and will
remain in that state until clicked again. When the button element is in the down state, the down attribute will be
true and the appropriate portion of the button group downImage will be displayed.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTONELEMENT Element
BUTTONELEMENT.down
BUTTONGROUP.downImage

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Value Description

true BUTTONELEMENT is sticky.

false Default. BUTTONELEMENT is not sticky.

Previous Next

Previous Next

BUTTONELEMENT.upToolTip
The upToolTip attribute specifies or retrieves the ToolTip text that appears when the mouse is over the
BUTTONELEMENT and the BUTTONELEMENT is in the up state.

Syntax

elementID.upToolTip

Possible Values

This attribute is a read/write String with a default value of "" (empty string) with a maximum length of 1024
characters.

Example

See the mappingColor attribute for a sample illustrating the use of this attribute.

Remarks

When this attribute is set to "" (empty string), no ToolTip is displayed.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTONELEMENT Element

© 2000-2003 Microsoft Corporation. All rights reserved.

FFWDELEMENT
This is a predefined BUTTONELEMENT with the following default values.

onclick="jscript:player.controls.fastForward()" .
upToolTip="Fast Forward"
cursor="system"
enabled="wmpenabled:player.controls.fastForward"

Previous Next

Previous Next

Remarks

All properties of this BUTTONELEMENT can be overridden by explicitly specifying them.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTONELEMENT Element

© 2000-2003 Microsoft Corporation. All rights reserved.

NEXTELEMENT
This is a predefined BUTTONELEMENT with the following default values.

onclick="jscript:player.controls.next()"
upToolTip="Next"
cursor="system"
enabled="wmpenabled:player.controls.next"

Remarks

All properties of this BUTTONELEMENT can be overridden by explicitly specifying them.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTONELEMENT Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

PAUSEELEMENT
This is a predefined BUTTONELEMENT with the following default values.

onclick="jscript:player.controls.pause()"
upToolTip="Pause"
cursor="system"
enabled="wmpenabled:player.controls.pause"

Remarks

All properties of this BUTTONELEMENT can be overridden by explicitly specifying them.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTONELEMENT Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYELEMENT
This is a predefined BUTTONELEMENT with the following default values.

onclick="jscript:player.controls.play()"
upToolTip="Play"
cursor="system"
enabled="wmpenabled:player.controls.play"

Remarks

All properties of this BUTTONELEMENT can be overridden by explicitly specifying them.

Previous Next

Previous Next

Previous Next

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTONELEMENT Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PREVELEMENT
This is a predefined BUTTONELEMENT with the following default values.

onclick="jscript:player.controls.previous()"
upToolTip="Previous"
cursor="system"
enabled="wmpenabled:player.controls.previous"

Remarks

All properties of this BUTTONELEMENT can be overridden by explicitly specifying them.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTONELEMENT Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

REWELEMENT
This is a predefined BUTTONELEMENT with the following default values.

onclick="jscript:player.controls.fastReverse()"
upToolTip="Fast Reverse"
cursor="system"
enabled="wmpenabled:player.controls.fastReverse"

Remarks

All properties of this BUTTONELEMENT can be overridden by explicitly specifying them.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTONELEMENT Element

© 2000-2003 Microsoft Corporation. All rights reserved.

STOPELEMENT
This is a predefined BUTTONELEMENT with the following default values.

onclick="jscript:player.controls.stop()"
upToolTip="Stop"
cursor="system"
enabled="wmpenabled:player.controls.stop"

Remarks

All properties of this BUTTONELEMENT can be overridden by explicitly specifying them.

Requirements

Windows Media Player version 7.0 or later.

Previous Next

Previous Next

See Also

BUTTONELEMENT Element

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONGROUP Element
The BUTTONGROUP element provides a way to group several buttons within a skin. These buttons can be
specified by using BUTTONELEMENT elements as children of the BUTTONGROUP element.

The BUTTONGROUP element supports the following attributes.

Previous Next

Previous Next

Attribute Description

buttonCount Retrieves the number of buttons in the BUTTONGROUP.

cursor Specifies or retrieves the type of cursor that appears when the mouse is
over a button in the BUTTONGROUP.

disabledImage Specifies or retrieves the name of the image representing the disabled
state of the buttons in the BUTTONGROUP.

downImage Specifies or retrieves the name of the image representing the down state
of the BUTTONGROUP.

hoverDownImage Specifies or retrieves the name of the image representing the hover-
down state of a button in the BUTTONGROUP. The hover-down state
occurs when the button is in the down state and the user hovers over it
with the mouse.

hoverImage Specifies or retrieves the name of the image representing the hover state
of a button in the BUTTONGROUP. The hover state occurs when the
button is in the up state and the user hovers over it with the mouse.

hueShift Specifies or retrieves the amount by which the hue of the
BUTTONGROUP images is shifted.

image Specifies or retrieves the name of the image representing the buttons of a
BUTTONGROUP.

mappingImage Specifies or retrieves the name of the image representing the button map
of the BUTTONGROUP.

radio Specifies or retrieves a value indicating whether the BUTTONGROUP

The BUTTONGROUP element supports the following methods.

The BUTTONGROUP element supports the ambient attributes and can implement the ambient event handlers.
For more information, see Ambient Attributes and Ambient Event Handlers.

See Also

Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONGROUP.buttonCount
The buttonCount attribute retrieves the number of buttons in the BUTTONGROUP.

Syntax

elementID.buttonCount

Possible Values

This attribute is a read-only Number (long).

is composed of radio buttons.

saturation Specifies or retrieves the saturation value of the BUTTONGROUP
images.

showBackground Specifies or retrieves a value indicating whether the BUTTONGROUP
displays only the buttons, or displays the full bitmap specified in the
image attribute.

transparencyColor Specifies or retrieves the transparent color of the BUTTONGROUP
images.

Method Description

click Calls the onclick event handler defined for the BUTTONELEMENT
with the specified index.

getButton Retrieves the BUTTONELEMENT with the specified index.

Previous Next

Previous Next

Requirements

Windows Media Player 9 Series or later.

See Also

BUTTONGROUP Element

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONGROUP.click
The click method calls the onclick event handler defined for the BUTTONELEMENT with the specified
index.

Syntax

elementID.click(button)

Parameters

 button

Number (long) containing the index of the BUTTONELEMENT with the onclick event handler to be called.

Return Values

This method does not return a value.

Remarks

Use this method to provide an alternate means of running the code associated with a button contained within the
BUTTONGROUP.

Requirements

Windows Media Player 9 Series or later.

See Also

BUTTONGROUP Element

Previous Next

Previous Next

BUTTONELEMENT.index

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONGROUP.cursor
The cursor attribute specifies or retrieves the type of cursor that appears when the mouse is over a button in the
BUTTONGROUP.

Syntax

elementID.cursor

Possible Values

This attribute is a read/write String containing one of the following values.

Remarks

The cursor specified applies to all buttons in the BUTTONGROUP.

Previous Next

Previous Next

Value Description

system Default. Platform-dependent cursor (usually an arrow).

hand Hand.

help Arrow with question mark indicating Help is available.

sizeall Four-pointed arrow pointing north, south, east, and west.

sizenesw Double-pointed arrow pointing northeast and southwest.

sizens Double-pointed arrow pointing north and south.

sizenwse Double-pointed arrow pointing northwest and southeast.

sizewe Double-pointed arrow pointing west and east.

uparrow Vertical arrow pointing upward.

*.ani or *.cur Any .ani or .cur file (must be in the same directory as the .wms file or in
the .wmz file).

If you specify an invalid cursor value, it remains at the previously set value.

Cursor file name paths are ignored, so the cursor file must reside in the default directory.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTONGROUP Element

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONGROUP.disabledImage
The disabledImage attribute specifies or retrieves the name of the image representing the disabled state of the
buttons in the BUTTONGROUP.

Syntax

elementID.disabledImage

Possible Values

This attribute is a read/write String.

Remarks

The supported image formats are BMP, JPG, PNG, and GIF. If the image is an 8-bit BMP file, its hue and
saturation values can be changed dynamically using the hueShift and saturation attributes.

When the disabled attribute of a BUTTONELEMENT element is set to true, the corresponding region of the
disabledImage for the BUTTONGROUP is displayed. If the disabled image is larger than the defined region,
the disabled image will be cropped.

If the image cannot be retrieved, a default image (the red-x image) is displayed.

Requirements

Windows Media Player version 7.0 or later.

Previous Next

Previous Next

See Also

BUTTONGROUP Element
BUTTONGROUP.hueShift
BUTTONGROUP.saturation

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONGROUP.downImage
The downImage attribute specifies or retrieves the name of the image representing the down state of the
BUTTONGROUP.

Syntax

elementID.downImage

Possible Values

This attribute is a read/write String.

Remarks

The supported image formats are BMP, JPG, PNG, and GIF. If the image is an 8-bit BMP file, its hue and
saturation values can be changed dynamically using the hueShift and saturation attributes.

The default image is the one specified in the image attribute.

If the down image is larger than the defined region, the down image will be cropped.

If the image cannot be retrieved, a default image (the red-x image) is displayed.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTONGROUP Element
BUTTONGROUP.hueShift
BUTTONGROUP.image

Previous Next

Previous Next

BUTTONGROUP.saturation

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONGROUP.getButton
The getButton method retrieves the BUTTONELEMENT with the specified index.

Syntax

elementID.getButton(button)

Parameters

 button

Number (long) containing the index of the BUTTONELEMENT to retrieve.

Return Values

This method returns an Object corresponding to a BUTTONELEMENT element.

Requirements

Windows Media Player 9 Series or later.

See Also

BUTTONGROUP Element
BUTTONELEMENT.index

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

BUTTONGROUP.hoverDownImage
The hoverDownImage attribute specifies or retrieves the name of the image representing the hover-down state
of a button in the BUTTONGROUP. The hover-down state occurs when the button is in the down state and the
user hovers over it with the mouse.

Syntax

elementID.hoverDownImage

Possible Values

This attribute is a read/write String.

Remarks

The supported image formats are BMP, JPG, PNG, and GIF. If the image is an 8-bit BMP file, its hue and
saturation values can be changed dynamically using the hueShift and saturation attributes.

The default image is the one specified in the downImage attribute, or its default.

If the hover-down image is larger than the defined region, the hover-down image will be cropped.

If the image cannot be retrieved, a default image (the red-x image) is displayed.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTONGROUP Element
BUTTONGROUP.downImage
BUTTONGROUP.hueShift
BUTTONGROUP.saturation

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONGROUP.hoverImage

Previous Next

Previous Next

The hoverImage attribute specifies or retrieves the name of the image representing the hover state of a button
in the BUTTONGROUP. The hover state occurs when the button is in the up state and the user hovers over it
with the mouse.

Syntax

elementID.hoverImage

Possible Values

This attribute is a read/write String.

Remarks

The supported image formats are BMP, JPG, PNG, and GIF. If the image is an 8-bit BMP file, its hue and
saturation values can be changed dynamically using the hueShift and saturation attributes.

The default image is the one specified in the image attribute, or its default.

If the hover image is larger than the defined region, the hover image will be cropped.

If the image cannot be retrieved, a default image (the red-x image) is displayed.

Example

See the BUTTONELEMENT.mappingColor attribute for a sample illustrating the use of this attribute.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTONGROUP Element
BUTTONGROUP.hueShift
BUTTONGROUP.image
BUTTONGROUP.saturation

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONGROUP.hueShift

Previous Next

Previous Next

The hueShift attribute specifies or retrieves the amount by which the hue of the BUTTONGROUP images is
shifted.

Syntax

elementID.hueShift

Possible Values

This attribute is a read/write Number (float) with a value ranging from 0.0 to 360.0 with a default value of 0.0.

Remarks

This attribute changes the hue value of the images specified by the disabledImage, downImage,
hoverDownImage, hoverImage, and image attributes if they have been specified and they refer to 8-bit BMP
images.

Requirements

Windows Media Player 9 Series or later.

See Also

BUTTONGROUP Element
BUTTONGROUP.disabledImage
BUTTONGROUP.downImage
BUTTONGROUP.hoverDownImage
BUTTONGROUP.hoverImage
BUTTONGROUP.image
BUTTONGROUP.saturation

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONGROUP.image
The image attribute specifies or retrieves the name of the image representing the buttons of a
BUTTONGROUP.

Syntax

elementID.image

Previous Next

Previous Next

Possible Values

This attribute is a read/write String.

Remarks

The supported image formats are BMP, JPG, PNG, and GIF. If the image is an 8-bit BMP file, its hue and
saturation values can be changed dynamically using the hueShift and saturation attributes.

If the image of the control is larger than the defined region, the image will be cropped.

If the image cannot be retrieved, a default image (the red-x image) is displayed.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTONGROUP Element
BUTTONGROUP.hueShift
BUTTONGROUP.saturation

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONGROUP.mappingImage
The mappingImage attribute specifies or retrieves the name of the image representing the button map of the
BUTTONGROUP.

Syntax

elementID.mappingImage

Possible Values

This attribute is a read/write String.

Remarks

This is a mandatory attribute that must be specified.

Previous Next

Previous Next

The mapping image should be the same dimensions as the main image. It is a map of the clickable areas of the
main image. Construct the map by filling each clickable area with a different color.

When defining each BUTTONELEMENT, designate its color from the map using the mappingColor
attribute. For example, if you have a stop-sign-shaped button graphic in the main image, you can create a map
with the area of the sign colored red. The BUTTONELEMENT attribute must then be specified as red to make
the stop-sign image clickable.

The supported image formats are BMP, JPG, PNG, and GIF (not including animated GIFs). Because JPGs are
lossy and therefore subject to unexpected color change, they are not recommended for mapping images.

Example

The following is an example of a mappingImage and the visible image it corresponds to. These images are part
of the skin in the Tiny folder included with the SDK.

See the BUTTONELEMENT.mappingColor attribute for a code sample illustrating the use of this attribute.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTONELEMENT.mappingColor
BUTTONGROUP Element
BUTTONGROUP.image
BUTTONGROUP.transparencyColor

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONGROUP.radio
The radio attribute specifies or retrieves a value indicating whether the BUTTONGROUP is composed of
radio buttons.

Previous Next

Previous Next

Syntax

elementID.radio

Possible Values

This attribute is a read/write Boolean.

Remarks

If radio is set to true, all the BUTTONELEMENT elements in the BUTTONGROUP will be sticky, but only
one button at a time will be in the down state.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTONELEMENT.sticky
BUTTONGROUP Element

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONGROUP.saturation
The saturation attribute specifies or retrieves the saturation value of the BUTTONGROUP images.

Syntax

elementID.saturation

Possible Values

This attribute is a read/write Number (float) with a value ranging from 0.0 to 2.0 with a default value of 1.0.

Value Description

true The BUTTONGROUP is radio style.

false Default. The BUTTONGROUP is not radio style.

Previous Next

Previous Next

Remarks

This attribute changes the saturation value of the images specified by the disabledImage, downImage,
hoverDownImage, hoverImage, and image attributes if they have been specified and they refer to 8-bit BMP
images.

Requirements

Windows Media Player 9 Series or later.

See Also

BUTTONGROUP Element
BUTTONGROUP.disabledImage
BUTTONGROUP.downImage
BUTTONGROUP.hoverDownImage
BUTTONGROUP.hoverImage
BUTTONGROUP.hueShift
BUTTONGROUP.image

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONGROUP.showBackground
The showBackground attribute specifies or retrieves a value indicating whether the BUTTONGROUP
displays only the buttons, or displays the full bitmap specified in the image attribute.

Syntax

elementID.showBackground

Possible Values

This attribute is a read/write Boolean.

Previous Next

Previous Next

Value Description

true Buttons are displayed and the area not occupied by buttons is drawn
from the Image bitmap.

false Default. Only the buttons are displayed.

Remarks

When showBackground is true, the entire main image will be visible.

When showBackground is false, only the areas corresponding to assigned mappingImage colors will be
rendered. In other words, only BUTTONELEMENTs with their mappingColor assigned will be visible.

If an invalid value is specified, the previous state is maintained.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTONGROUP Element
BUTTONELEMENT.mappingColor
BUTTONGROUP.image
BUTTONGROUP.mappingImage

© 2000-2003 Microsoft Corporation. All rights reserved.

BUTTONGROUP.transparencyColor
The transparencyColor attribute specifies or retrieves the transparent color of the BUTTONGROUP images.

Syntax

elementID.transparencyColor

Possible Values

This attribute is a read/write String with no default, containing one of the following values.

Previous Next

Previous Next

Value Description

Auto The pixel at location 0,0 in the image becomes the transparent color.

any Microsoft Internet Explorer
color value

An Internet Explorer color value becomes the transparent color (for
example, "red" or "#FF0000").

None Default. No transparency.

Remarks

A transparent color in an image will allow whatever is behind the image to show through the areas of
transparency. The transparent region is clickable unless clipped by the clippingImage tag.

The color can be any Microsoft Internet Explorer color value. If the value is Auto, then the color of the pixel at
location 0,0 in the image is used.

If the color specified is not one of the valid Internet Explorer colors, a warning is returned and the previous
value is maintained.

Because JPGs are lossy and therefore subject to unexpected color change, they are not recommended when
transparencyColor is used.

Requirements

Windows Media Player version 7.0 or later.

See Also

BUTTONGROUP Element
Color Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

COLUMN Element
The COLUMN element represents a column within a playlist control. COLUMN elements are always children
of PLAYLIST elements.

The COLUMN element supports the following attributes.

Previous Next

Previous Next

Attribute Description

columnName Specifies or retrieves a column name in the PLAYLIST control.

columnID Specifies or retrieves a column ID in the PLAYLIST control.

columnResizeMode Specifies or retrieves the resize mode for this column.

columnWidth Specifies or retrieves a column width in the PLAYLIST control.

See Also

Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

COLUMN.columnName
The columnName attribute specifies or retrieves a column name in the PLAYLIST control.

Syntax

elementID.columnName

Possible Values

This attribute is a read/write String.

Remarks

The column name is the friendly name that appears in the header of the column.

Requirements

Windows Media Player 9 Series or later.

See Also

COLUMN Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

COLUMN.columnID
The columnID attribute specifies or retrieves a column ID in the PLAYLIST control.

Syntax

elementID.columnID

Possible Values

This attribute is a read/write String.

Remarks

The columnID values are the same values used with the getItemInfo method on a Media object. A list can be
obtained by using the Media.attributeCount property to determine the number of attributes available for a
given Media object. Index numbers can then be used with the Media.getAttributeName method to determine
the names of the attributes, which can in turn be passed to Media.getItemInfo. The columnID property can
only be set to these values, with the exception of some values that may not be returned by
Media.getAttributeName. These values are listed below.

Requirements

Windows Media Player 9 Series or later.

See Also

COLUMN Element
Media Object
Media.attributeCount
Media.getAttributeName
Media.getItemInfo

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Value Description

name Displays the name of the Media object.

duration Displays the duration of the Media object.

sourceURL Displays the URL of the Media object.

status Displays the status of copying files.

size Displays the size of the file that the Media object represents.

extension Displays the file name extension of the file that the Media object represents.

Previous Next

COLUMN.columnResizeMode
The columnResizeMode attribute specifies or retrieves the resize mode for this column.

Syntax

elementID.columnResizeMode

Possible Values

This attribute is a read/write String containing one of the following values.

Requirements

Windows Media Player 9 Series or later.

See Also

COLUMN Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Value Description

AutosizeHeader Default. The column resizes to accommodate all data in both the column and the
header.

AutosizeData The column resizes to accommodate all data in the column only.

Fixed The column is a fixed size.

Stretches The column resizes to use the remaining space in the PLAYLIST control after
all other columns are resized.

Previous Next

Previous Next

COLUMN.columnWidth
The columnWidth attribute specifies or retrieves a column width in the PLAYLIST control.

Syntax

elementID.columnWidth

Possible Values

This attribute is a read/write Number (long) representing the width of the column in pixels.

Remarks

The columnResizeMode property must be set to "fixed" for this property to work.

Requirements

Windows Media Player 9 Series or later.

See Also

COLUMN Element

© 2000-2003 Microsoft Corporation. All rights reserved.

CONTROLS Element
The CONTROLS element enables the following attributes of the Controls object to be specified within a skin.

Previous Next

Previous Next

Attribute Description

currentAudioLanguage Specifies or retrieves the locale identifier (LCID) of the audio
language for playback.

currentAudioLanguageIndex Specifies or retrieves the index that corresponds to the audio
language for playback.

currentItem Specifies or retrieves the current media item.

currentMarker Specifies or retrieves the current marker number.

See Also

Controls Object
Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

CUSTOMSLIDER Element
The CUSTOMSLIDER element provides a way to create and manipulate a slider control of any shape, such as
a circular knob. The following tables list the attributes and event handlers supported by this element.

The CUSTOMSLIDER element supports the following attributes.

currentPosition Specifies or retrieves the current position of the clip in seconds from
the beginning.

currentPositionTimecode Specifies or retrieves the current position in the current media item
using a time code format.

Previous Next

Previous Next

Attribute Description

cursor Specifies or retrieves the value of the slider control cursor that appears
when the mouse is over the slider.

disabledImage Specifies or retrieves the image of the slider used when the slider is
disabled.

downImage Specifies or retrieves the down state image of the custom slider.

hoverImage Specifies or retrieves the image that displays when the mouse is over the
custom slider.

image Specifies or retrieves the name of the file containing the images
corresponding to the various states of the custom slider.

max Specifies or retrieves the maximum value of the range defined by the
custom slider.

min Specifies or retrieves the minimum value of the range defined by the
custom slider.

positionImage Specifies or retrieves the image map used to determine which position

The CUSTOMSLIDER element can implement the following event handlers.

The CUSTOMSLIDER element supports the ambient attributes and can implement the ambient event
handlers. For more information, see Ambient Attributes and Ambient Event Handlers.

See Also

Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

CUSTOMSLIDER.cursor
The cursor attribute specifies or retrieves the value of the slider control cursor that appears when the mouse is
over the slider.

Syntax

elementID.cursor

Possible Values

This attribute is a read/write String.

image from the image file to display.

toolTip Specifies or retrieves the ToolTip text for the slider.

transparencyColor Specifies or retrieves the transparency color of the custom slider images.

value Specifies or retrieves the current position of the slider.

Event handler Description

onDragBegin Handles an event that occurs when the user clicks and holds the left
mouse button down and begins to drag the mouse.

onDragEnd Handles an event that occurs when the left mouse button is released after
a dragging operation.

onPositionChange Handles an event that occurs when the position of the slider changes as a
result of the user clicking or dragging.

Previous Next

Previous Next

Requirements

Windows Media Player version 7.0 or later.

See Also

CUSTOMSLIDER Element

© 2000-2003 Microsoft Corporation. All rights reserved.

CUSTOMSLIDER.disabledImage
The disabledImage attribute specifies or retrieves the image of the slider used when the slider is disabled.

Syntax

elementID.disabledImage

Possible Values

This attribute is a read/write String containing the name of an image file.

Value Description

system Platform-dependent cursor (usually an arrow).

hand Default. Cursor is a hand.

help Arrow with question mark indicating Help is available.

sizeall Four-pointed arrow pointing north, south, east, and west.

sizenesw Double-pointed arrow pointing northeast and southwest.

sizens Double-pointed arrow pointing north and south.

sizenwse Double-pointed arrow pointing northwest and southeast.

sizewe Double-pointed arrow pointing west and east.

uparrow Vertical arrow pointing upward.

*.ani or *.cur Any .ani or .cur file (must be in the same directory as the .wms file or in
the .wmz file).

Previous Next

Previous Next

Remarks

This attribute is optional. If it not specified, the file specified in the image attribute will be used.

The disabledImage represents the disabled state of the CUSTOMSLIDER control. It can be a single image or
a series of images representing the various states of the slider. If multiple images are used, they are arranged in
the same way as the image file.

The supported image file types are BMP, JPG, PNG, and GIF (not including animated GIFs).

Requirements

Windows Media Player version 7.0 or later.

See Also

CUSTOMSLIDER Element
CUSTOMSLIDER.image

© 2000-2003 Microsoft Corporation. All rights reserved.

CUSTOMSLIDER.downImage
The downImage attribute specifies or retrieves the down state image of the custom slider.

Syntax

elementID.downImage

Possible Values

This attribute is a read/write String containing the name of an image file.

Remarks

This attribute is optional. If it not specified, the file specified in the image attribute will be used.

The downImage represents the down state of the CUSTOMSLIDER control. It can be a single image or a
series of images representing the various states of the slider. If multiple images are used, they are arranged in
the same way as the image file.

Previous Next

Previous Next

The supported image file types are BMP, JPG, PNG, and GIF (not including animated GIFs).

Requirements

Windows Media Player version 7.0 or later.

See Also

CUSTOMSLIDER Element
CUSTOMSLIDER.image

© 2000-2003 Microsoft Corporation. All rights reserved.

CUSTOMSLIDER.hoverImage
The hoverImage attribute specifies or retrieves the image that appears when the mouse is over the custom
slider.

Syntax

elementID.hoverImage

Possible Values

This attribute is a read/write String containing the name of an image file.

Remarks

This attribute is optional. If it not specified, the file specified in the image attribute will be used.

The hoverImage represents the hover state of the CUSTOMSLIDER control; that is, the state that is shown
when the mouse cursor hovers over it. It can be a single image or a series of images representing the various
states of the slider. If multiple images are used, they are arranged in the same way as the image file

The supported image file types are BMP, JPG, PNG, and GIF (not including animated GIFs).

Requirements

Windows Media Player version 7.0 or later.

See Also

Previous Next

Previous Next

CUSTOMSLIDER Element
CUSTOMSLIDER.image

© 2000-2003 Microsoft Corporation. All rights reserved.

CUSTOMSLIDER.image
The image attribute specifies or retrieves the name of the file containing the images corresponding to the
various states of the custom slider.

Syntax

elementID.image

Possible Values

This attribute is a read/write String containing the name of an image file.

Remarks

The image attribute is required. It specifies an image file that consists of one or more sub-images, arranged
either horizontally or vertically, representing the various states of the custom slider. Each sub-image must have
the same dimensions as the positionImage or the custom slider will not work correctly. The height or width of
the overall image must therefore be an even multiple of the height or width of the positionImage.

The supported image file types are BMP, JPG, PNG, and GIF (not including animated GIFs).

Example

The following is an example of a custom slider image. The corresponding positionImage is shown in the
example section of the positionImage property.

The positionImage attribute also contains a code sample illustrating how the attributes of the
CUSTOMSLIDER element are used.

Requirements

Windows Media Player version 7.0 or later.

Previous Next

Previous Next

See Also

CUSTOMSLIDER Element
CUSTOMSLIDER.positionImage

© 2000-2003 Microsoft Corporation. All rights reserved.

CUSTOMSLIDER.max
The max attribute specifies or retrieves the maximum value of the range defined by the custom slider.

Syntax

elementID.max

Possible Values

This attribute is a read/write Number (float) with a default value of 100.

Remarks

The value of max must be greater than that of min.

Example

See the positionImage attribute for a sample illustrating how the attributes of the CUSTOMSLIDER element
are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

CUSTOMSLIDER Element
CUSTOMSLIDER.min

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

CUSTOMSLIDER.min
The min attribute specifies or retrieves the minimum value of the range defined by the custom slider.

Syntax

elementID.min

Possible Values

This attribute is a read/write Number (float) with a default value of zero.

Remarks

The value of min must be less than max.

Example

See the positionImage attribute for a sample illustrating how the attributes of the CUSTOMSLIDER element
are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

CUSTOMSLIDER Element
CUSTOMSLIDER.max

© 2000-2003 Microsoft Corporation. All rights reserved.

CUSTOMSLIDER.onDragBegin

Previous Next

Previous Next

Previous Next

The onDragBegin event handler handles an event that occurs when the user clicks and holds the left mouse
button down and begins to drag the mouse.

Syntax

onDragBegin

Requirements

Windows Media Player version 7.0 or later.

See Also

CUSTOMSLIDER Element

© 2000-2003 Microsoft Corporation. All rights reserved.

CUSTOMSLIDER.onDragEnd
The onDragEnd event handler handles an event that occurs when the left mouse button is released after a
dragging operation.

Syntax

onDragEnd

Requirements

Windows Media Player version 7.0 or later.

See Also

CUSTOMSLIDER Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

CUSTOMSLIDER.onPositionChange
The onPositionChange event handler handles an event that occurs when the position of the slider changes as a
result of the user clicking or dragging.

Syntax

onPositionChange

Remarks

If the position of the custom slider changes as a result of the value attribute being modified in script, this event
is not fired. To accommodate this possibility, implement the value_onchange event handler instead.

Requirements

Windows Media Player version 7.0 or later.

See Also

CUSTOMSLIDER Element

© 2000-2003 Microsoft Corporation. All rights reserved.

CUSTOMSLIDER.positionImage
The positionImage attribute specifies or retrieves the image map used to determine which position image from
the image file to display.

Syntax

elementID.positionImage

Possible Values

Previous Next

Previous Next

Previous Next

This attribute is a read/write String containing the name of an image file.

Remarks

This attribute is required and must be specified.

The positionImage is not displayed. Instead, it serves as a map defining the clickable regions of the displayed
image. The displayed image is one of the sub-images of the image file and represents the actual state of the
slider. The positionImage includes a number of gray scale regions equal to the number of these sub-images.
The sub-images must have the same dimensions as the positionImage or the custom slider will not work
correctly.

Any region that is not in gray scale will not be clickable. The clickable regions should be set to color values that
range evenly across the gray scale spectrum from black to white, with the first region being pure black and the
last region being pure white. The color values of each successive region should be incremented by a value equal
to 255 divided by the total number of regions minus one, rounding to the nearest whole number.

For example, if there are six regions, the increment would be 51 (255 divided by 5), and the six gray scale
values would be 0, 51, 102, 153, 204, and 255. The hexadecimal color values for the six regions would then be
#000000, #333333, #666666, #999999, #CCCCCC, and #FFFFFF.

In this way, the regions will have a sequence dictated by their gray scale color values, and this sequence will
correspond to the sequence of sub-images in the image file. When one of the regions is clicked, the
corresponding sub-image is shown and the value of the custom slider is updated accordingly.

The supported image file types are BMP, JPG, PNG, and GIF (not including animated GIFs).

Example

The following is an example of a custom slider positionImage. The corresponding image is shown in the
example section of the image property.

The following code illustrates the use of CUSTOMSLIDER attributes.

<THEME>
 <VIEW
 backgroundImage = "background.bmp"
 titleBar = "False"
 >

 <PLAYER
 URL = "http://proseware.com/mellow.wma"
 >
 <CONTROLS
 currentPosition_onchange = "myslider.value = player.controls.currentPosition;"
 />
 </PLAYER>

 <SLIDER
 id = "myslider"
 min = "0"
 max = "wmpprop:player.currentMedia.duration"

 onmouseup = "player.controls.currentPosition = myslider.value; "
 tooltip = "current position"
 height = "10"
 width = "180"
 top = "150"
 left = "88"
 backgroundColor = "red"
 foregroundColor = "blue"
 thumbImage = "thumb.bmp"
 />

 <CUSTOMSLIDER
 top = "120"
 left = "23"
 min = "0"
 max = "100"
 borderSize = "10"
 toolTip = "volume control"
 image = "dial.bmp"
 transparencyColor = "#00FFFF"
 positionImage = "dialmap.bmp"
 enabled = "true"
 value = "wmpprop:player.settings.volume"
 value_onchange = "player.settings.volume = value"
 />

 <EFFECTS
 id = "myeffects"
 top = "25"
 left = "88"
 width = "180"
 height = "100"
 />

 <BUTTONGROUP
 mappingImage = "map.bmp"
 hoverImage = "hover.bmp"
 >

 <BUTTONELEMENT
 mappingColor = "#00FF00"
 upToolTip = "Next"
 onClick = "JScript:myeffects.next();"
 />

 <BUTTONELEMENT
 mappingColor = "#FF0000"
 upToolTip = "Previous"
 onClick = "JScript:myeffects.previous();"
 />

 </BUTTONGROUP>

 </VIEW>
</THEME>

Requirements

Windows Media Player version 7.0 or later.

See Also

CUSTOMSLIDER Element
CUSTOMSLIDER.image

© 2000-2003 Microsoft Corporation. All rights reserved.

CUSTOMSLIDER.toolTip
The toolTip attribute specifies or retrieves the ToolTip text for the slider.

Syntax

elementID.toolTip

Possible Values

This attribute is a read/write String with a maximum length of 1024 characters. It has no default value.

Remarks

When this attribute is set to "" (empty string), no ToolTip is displayed.

Example

See the positionImage attribute for a sample illustrating how the attributes of the CUSTOMSLIDER element
are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

CUSTOMSLIDER Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

CUSTOMSLIDER.transparencyColor
The transparencyColor attribute specifies or retrieves the transparency color of the custom slider images.

Syntax

elementID.transparencyColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value. It has no default
value.

Remarks

Any part of the custom slider images containing the transparencyColor will allow the background to show
through.

Because JPGs are lossy and therefore subject to unexpected color change, they are not recommended when
transparencyColor is used.

Example

See the positionImage attribute for a sample illustrating how the attributes of the CUSTOMSLIDER element
are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

Color Reference
CUSTOMSLIDER Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

CUSTOMSLIDER.value
The value attribute specifies or retrieves the current position of the slider.

Syntax

elementID.value

Possible Values

This attribute is a read/write Number (float) with a default value equal to the min attribute.

Remarks

The value must be greater than or equal to min and less than or equal to max. If the value falls outside the
range, a warning is issued, and the value does not change.

Example

See the positionImage attribute for a sample illustrating how the attributes of the CUSTOMSLIDER element
are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

CUSTOMSLIDER Element

© 2000-2003 Microsoft Corporation. All rights reserved.

EDITBOX Element
The EDITBOX element provides a way for users to enter text within a skin.

The EDITBOX element supports the following attributes.

Previous Next

Previous Next

The EDITBOX element supports the following methods.

Attribute Description

backgroundColor Specifies or retrieves the background color for the
edit box control.

border Specifies or retrieves a value indicating whether the
edit box control has a border.

editStyle Specifies or retrieves the style of the edit box control.

fontFace Specifies or retrieves the font used for text in the edit
box control.

fontSize Specifies or retrieves the font size for the edit box
control.

fontStyle Specifies or retrieves the font style for the edit box
control.

foregroundColor Specifies or retrieves the text color in the edit box
control.

justification Specifies or retrieves the alignment of the text within
the edit box control.

lineCount Retrieves the number of lines in the edit box control.

readOnly Specifies or retrieves a value indicating whether text
in the edit box control is read-only or can be edited.

textLimit Specifies or retrieves the maximum number of
characters that the user can type in the edit box
control.

value Specifies or retrieves the text that is displayed in the
edit box control.

wordWrap Specifies or retrieves a value indicating whether word
wrap is enabled in the edit box control.

Method Description

getLine Retrieves the text for the line with the specified
index.

getLineFromChar Retrieves the line index for the specified character
index.

getLineIndex Retrieves the character index for the specified line
index.

getSelectionEnd Retrieves the ending position of the selected text in
the edit box control.

getSelectionStart Retrieves the starting position of the selected text in
the edit box control.

The EDITBOX element supports the ambient attributes and can implement all ambient event handlers with the
exception of onclick. For more information, see Ambient Attributes and Ambient Event Handlers.

Note This element requires Windows Media Player for Windows XP or later.

See Also

Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

EDITBOX.backgroundColor
The backgroundColor attribute specifies or retrieves the background color for the edit box control.

Syntax

elementID.backgroundColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value or the value "none".
It has a default value equal to the background color in Windows.

Requirements

Windows Media Player for Windows XP or later.

See Also

Color Reference
EDITBOX Element
EDITBOX.foregroundColor

replaceSelection Replaces the current selection with the specified text.

setSelection Selects the text in the edit box control from the
specified start index to the specified end index.

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

EDITBOX.border
The border attribute specifies or retrieves a value indicating whether the edit box control has a border. Can
only be set at design time.

Syntax

elementID.border

Possible Values

This attribute is a Boolean specified at design time and read-only thereafter. It has a default value of true.

Remarks

The border appears as a two-pixel-wide sunken border around the edit box control with system colors.

Requirements

Windows Media Player for Windows XP or later.

See Also

EDITBOX Element

© 2000-2003 Microsoft Corporation. All rights reserved.

EDITBOX.editStyle
The editStyle attribute specifies or retrieves the style of the edit box control.

Previous Next

Previous Next

Previous Next

Syntax

elementID.editStyle

Possible Values

This attribute is a read/write String containing one of the following values.

Remarks

This attribute can only be set to "password" or "multiline" at design time. If it is set to "multiline", the value
cannot be changed at run time.

Requirements

Windows Media Player for Windows XP or later.

See Also

EDITBOX Element

© 2000-2003 Microsoft Corporation. All rights reserved.

EDITBOX.fontFace
The fontFace attribute specifies or retrieves the font for text in the edit box control.

Value Description

normal Default. Displays normal text on a single line.

password Displays asterisks (*) in place of text. Can only be
specified at design time.

uppercase Displays text as all uppercase.

lowercase Displays text as all lowercase.

number Only displays numbers.

multiline Displays multiple lines of text. Can only be specified
at design time.

Previous Next

Previous Next

Syntax

elementID.fontFace

Possible Values

This attribute is a read/write String.

Remarks

This attribute can be the name of any valid font available in Windows. Windows Media Player will not support
installing fonts, so choose a font that you know will be on the intended system.

If the fontFace specified is not available on the user's system, the edit box control defaults to the Windows
system font. The default value for English-language systems is "Tahoma". For international systems, the default
is loaded from a resource file.

Requirements

Windows Media Player for Windows XP or later.

See Also

EDITBOX Element
EDITBOX.fontSize
EDITBOX.fontStyle

© 2000-2003 Microsoft Corporation. All rights reserved.

EDITBOX.fontSize
The fontSize attribute specifies or retrieves the font size for the edit box control.

Syntax

elementID.fontSize

Possible Values

This attribute is a read/write Number (long) specifying the font size in points. The default value is 10.

Requirements

Previous Next

Previous Next

Windows Media Player for Windows XP or later.

See Also

EDITBOX Element
EDITBOX.fontFace
EDITBOX.fontStyle

© 2000-2003 Microsoft Corporation. All rights reserved.

EDITBOX.fontStyle
The fontStyle attribute specifies or retrieves the font style for the edit box control.

Syntax

elementID.fontStyle

Possible Values

This attribute is a read/write String containing one or more of the following values.

Remarks

Any combination of the values can be used, separated with spaces. The Normal style has priority over all other
values, and any others specified along with Normal will be ignored.

For rendering purposes, Normal is the default font style. The default value retrieved from this attribute is
"" (empty string).

Requirements

Previous Next

Previous Next

Value Description

Bold Bold font style.

Italic Italic font style.

Underline Underline font style.

Strikeout Strikeout font style.

Normal Normal font style.

Windows Media Player for Windows XP or later.

See Also

EDITBOX Element
EDITBOX.fontFace
EDITBOX.fontSize

© 2000-2003 Microsoft Corporation. All rights reserved.

EDITBOX.foregroundColor
The foregroundColor attribute specifies or retrieves the text color in the edit box control.

Syntax

elementID.foregroundColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value. It has a default
value equal to the Windows text color.

Requirements

Windows Media Player for Windows XP or later.

See Also

Color Reference
EDITBOX Element
EDITBOX.backgroundColor

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

EDITBOX.getLine
The getLine method retrieves the text for the line with the specified index.

Syntax

elementID.getLine(index)

Parameters

 index

Number (long) containing the index of the line to retrieve.

Return Values

This method returns a String.

Remarks

If the index is not valid, an empty string is returned. This method can only be called after the control becomes
visible.

Requirements

Windows Media Player for Windows XP or later.

See Also

EDITBOX Element
EDITBOX.getLineFromChar
EDITBOX.getLineIndex

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

EDITBOX.getLineFromChar
The getLineFromChar method retrieves the line index for the specified character index.

Syntax

elementID.getLineFromChar(index)

Parameters

 index

Number (long) containing the index of the character whose line index is to be retrieved.

Return Values

This method returns a Number (long).

Remarks

If the specified character position is –1, this method retrieves the line index of the current line.

This method can only be called after the control becomes visible.

Requirements

Windows Media Player for Windows XP or later.

See Also

EDITBOX Element
EDITBOX.getLine
EDITBOX.getLineIndex

© 2000-2003 Microsoft Corporation. All rights reserved.

EDITBOX.getLineIndex
The getLineIndex method retrieves the character index of the first character on the line with the specified line
index.

Previous Next

Previous Next

Syntax

elementID.getLineIndex(index)

Parameters

 index

Number (long) containing the index of the line whose character index is to be retrieved.

Return Values

This method returns a Number (long).

Remarks

If the specified line index is –1, the line containing the insertion point is used.

This method can only be called after the control becomes visible.

Requirements

Windows Media Player for Windows XP or later.

See Also

EDITBOX Element
EDITBOX.getLine
EDITBOX.getLineFromChar

© 2000-2003 Microsoft Corporation. All rights reserved.

EDITBOX.getSelectionEnd
The getSelectionEnd method retrieves the ending position of the selected text in the editbox control.

Syntax

elementID.getSelectionEnd()

Parameters

Previous Next

Previous Next

This method takes no parameters.

Return Values

This method returns a Number (long).

Remarks

If no text is selected, this method returns the position of the insertion point.

If the control is multiline, this method returns the character index in the control, not the line index.

This method can only be called after the control becomes visible.

Requirements

Windows Media Player for Windows XP or later.

See Also

EDITBOX Element
EDITBOX.getSelectionStart
EDITBOX.replaceSelection
EDITBOX.setSelection

© 2000-2003 Microsoft Corporation. All rights reserved.

EDITBOX.getSelectionStart
The getSelectionStart method retrieves the starting position of the selected text in the editbox control.

Syntax

elementID.getSelectionStart()

Parameters

This method takes no parameters.

Return Values

Previous Next

Previous Next

This method returns a Number (long).

Remarks

If no text is selected, this method returns the position of the insertion point.

If the control is multiline, this method returns the character index in the control, not the line index.

This method can only be called after the control becomes visible.

Requirements

Windows Media Player for Windows XP or later.

See Also

EDITBOX Element
EDITBOX.getSelectionEnd
EDITBOX.replaceSelection
EDITBOX.setSelection

© 2000-2003 Microsoft Corporation. All rights reserved.

EDITBOX.justification
The justification attribute specifies or retrieves the alignment of the text within the editbox control.

Syntax

elementID.justification

Possible Values

This attribute is a read/write String containing one of the following values.

Previous Next

Previous Next

Value Description

Left Default. Aligns the text to the left edge of the edit box
control.

Right Aligns the text to the right edge of the edit box

Remarks

There is a margin of two pixels.

Requirements

Windows Media Player for Windows XP or later.

See Also

EDITBOX Element

© 2000-2003 Microsoft Corporation. All rights reserved.

EDITBOX.lineCount
The lineCount attribute retrieves the number of lines in the edit box control.

Syntax

elementID.lineCount

Possible Values

This attribute is a read-only Number (long).

Remarks

This attribute is useful only when editStyle is set to "multiline".

Requirements

Windows Media Player for Windows XP or later.

See Also

control.

Center Aligns the text to the horizontal center of the edit box
control.

Previous Next

Previous Next

EDITBOX Element
EDITBOX.editStyle

© 2000-2003 Microsoft Corporation. All rights reserved.

EDITBOX.readOnly
The readOnly attribute specifies or retrieves a value indicating whether text in the edit box control is read-only
or can be edited.

Syntax

elementID.readOnly

Possible Values

This attribute is a read/write Boolean with a default value of false.

Requirements

Windows Media Player for Windows XP or later.

See Also

EDITBOX Element

© 2000-2003 Microsoft Corporation. All rights reserved.

EDITBOX.replaceSelection
The replaceSelection method replaces the current selection with the specified text.

Previous Next

Previous Next

Previous Next

Previous Next

Syntax

elementID.replaceSelection(newValue)

Parameters

 newValue

String containing the text to replace the selected text.

Return Values

This method does not return a value.

Remarks

If there is no text selected, the replacement text is inserted at the current location of the insertion point.

This method can only be called after the control becomes visible.

Requirements

Windows Media Player for Windows XP or later.

See Also

EDITBOX Element
EDITBOX.getSelectionEnd
EDITBOX.getSelectionStart
EDITBOX.setSelection

© 2000-2003 Microsoft Corporation. All rights reserved.

EDITBOX.setSelection
The setSelection method selects the text in the edit box control from the specified start index to the specified
end index.

Syntax

elementID.setSelection(start, end)

Previous Next

Previous Next

Parameters

 start

Number (long) containing the character index of the starting position of the selected text.

 end

Number (long) containing the character index of the ending position of the selected text.

Return Values

This method does not return a value.

Remarks

If the start is 0 and the end is –1, all of the text in the edit box control is selected. If the start is –1, any current
selection is deselected.

This method can only be called after the control becomes visible.

Requirements

Windows Media Player for Windows XP or later.

See Also

EDITBOX Element
EDITBOX.getSelectionEnd
EDITBOX.getSelectionStart
EDITBOX.replaceSelection

© 2000-2003 Microsoft Corporation. All rights reserved.

EDITBOX.textLimit
The textLimit attribute specifies or retrieves the maximum number of characters that the user can type in the
edit box control.

Syntax

Previous Next

Previous Next

elementID.textLimit

Possible Values

This attribute is a read/write Number (long) with a default value of 0, which indicates no limit.

Requirements

Windows Media Player for Windows XP or later.

See Also

EDITBOX Element

© 2000-2003 Microsoft Corporation. All rights reserved.

EDITBOX.value
The value attribute specifies or retrieves the text that is displayed in the edit box control.

Syntax

elementID.value

Possible Values

This attribute is a read/write String with a default value of "" (empty string).

Requirements

Windows Media Player for Windows XP or later.

See Also

EDITBOX Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

EDITBOX.wordWrap
The wordWrap attribute specifies or retrieves a value indicating whether word wrap is enabled.

Syntax

elementID.wordWrap

Possible Values

This attribute is a read/write Boolean with a default value of true.

Remarks

This attribute is useful only when editStyle is set to "multiline".

If word wrap is disabled, and the text does not fit in the control, the text is truncated.

Requirements

Windows Media Player for Windows XP or later.

See Also

EDITBOX Element
EDITBOX.editStyle

© 2000-2003 Microsoft Corporation. All rights reserved.

EFFECTS Element
The EFFECTS element provides a way to organize and manipulate visualizations by using the following
attributes and methods. A predefined EFFECTS element is also provided for convenience.

Previous Next

Previous Next

Previous Next

The EFFECTS element supports the following attributes.

The EFFECTS element supports the following methods.

Attribute Description

allowAll Specifies or retrieves a value indicating whether to include all the
visualizations in the registry.

currentEffect Specifies or retrieves the current visualization.

currentEffectPresetCount Retrieves number of available presets for the current visualization.

currentEffectTitle Retrieves the display title of the current visualization.

currentEffectType Retrieves the registry name of the current visualization.

currentPreset Specifies or retrieves the current preset of the current visualization.

currentPresetTitle Retrieves the title of the current preset of the current visualization.

effectCanGoFullScreen Retrieves a value indicating whether the current visualization can be
displayed full-screen.

effectCount Retrieves the number of visualizations available.

effectHasPropertyPage Retrieves a value indicating whether the current visualization has a
property page.

fullScreen Specifies or retrieves a value indicating whether the current visualization
is displayed full-screen. Can only be set at run time.

windowed Specifies or retrieves a value indicating whether the visualization will be
windowed or windowless, that is, whether the entire rectangle of the
control will be visible at all times, or whether it can be clipped. Can only
be set at design time.

Method Description

effectTitle Retrieves the friendly name of the visualization with the specified
registry index.

effectType Retrieves the registry name of the visualization with the specified
registry index.

next Displays the next visualization preset, moving to the next visualization if
necessary.

nextEffect Displays the first preset of the next visualization, skipping intervening
presets.

nextPreset Displays the next preset of the current visualization.

previous Displays the previous visualization preset, moving to the last preset of
the previous visualization if necessary.

previousEffect Displays the previous visualization, skipping presets.

The EFFECTS element supports the ambient attributes and can implement the ambient event handlers. For
more information, see Ambient Attributes and Ambient Event Handlers.

Predefined effects are normal EFFECTS elements with various common attribute settings specified by default.
The following predefined effects are available.

See Also

Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

EFFECTS.allowAll
The allowAll attribute specifies or retrieves a value indicating whether to include all the visualizations that are
in the registry.

Syntax

elementID.allowAll

Possible Values

This attribute is a read/write Boolean.

Remarks

previousPreset Displays the previous preset of the current visualization.

settings Displays the attribute page for the current visualization, if present.

Predefined EFFECTS Description

WMPEFFECTS An EFFECTS element that iterates through the available
effects.

Previous Next

Previous Next

Value Description

true Default. Allows cycling of all visualizations on the user's system.

false Limits cycling to visualizations appearing within EFFECTS tags.

If this attribute is set to false, only the visualizations appearing within EFFECTS tags can be cycled through
using previous/next. If it is set to true, then all visualizations that are registered on the user's system can be
cycled through. If it is set to true and you specify any visualizations within EFFECTS tags, then the attributes
specified in these tags are applied to all visualizations on the user's system.

Requirements

Windows Media Player version 7.0 or later.

See Also

EFFECTS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

EFFECTS.currentEffect
The currentEffect attribute specifies or retrieves the current visualization.

Syntax

elementID.currentEffect

Possible Values

This attribute is a read/write object. The default value is the first visualization in the authoring order. If there
are no visualizations authored in the skin, the default is the first visualization in the registry.

Remarks

You can use this object to access custom visualizations you have created. For example, you could expose a
property through the IDispatch interface in your visualization. You can then change the property value from
your skin by making your visualization the current effect, and then using the currentEffect object to set a new
value for the property. For example, if your visualization exposes a property named backgroundColor, the
following JScript code specifies a new value:

// The EFFECTS element ID is MyEffects.
MyEffects.currentEffect.backgroundColor = "blue";

Requirements

Windows Media Player version 7.0 or later.

Previous Next

Previous Next

See Also

EFFECTS Element
EFFECTS.currentEffectTitle
EFFECTS.currentEffectType

© 2000-2003 Microsoft Corporation. All rights reserved.

EFFECTS.currentEffectPresetCount
The currentEffectPresetCount attribute retrieves number of available presets for the current visualization.

Syntax

elementID.currentEffectPresetCount

Possible Values

This attribute is a read-only Number (long).

Requirements

Windows Media Player version 7.0 or later.

See Also

EFFECTS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

EFFECTS.currentEffectTitle

Previous Next

Previous Next

Previous Next

Previous Next

The currentEffectTitle attribute retrieves the display title of the current visualization.

Syntax

elementID.currentEffectTitle

Possible Values

This attribute is a read-only String.

Requirements

Windows Media Player version 7.0 or later.

See Also

EFFECTS Element
EFFECTS.currentEffect
EFFECTS.effectTitle

© 2000-2003 Microsoft Corporation. All rights reserved.

EFFECTS.currentEffectType
The currentEffectType attribute specifies or retrieves the registry name of the current visualization. This name
is a unique ID defined by the visualization author.

Syntax

elementID.currentEffectType

Possible Values

This attribute is a read/write String.

Remarks

You can use this attribute at run time to change the currently displayed effect. To do this, follow these steps:

1. Use effectCount to retrieve the count of registered effects.
2. In a loop, retrieve the name of each registered effect by using effectType.
3. Specify one of the names you retrieved for currentEffectType to set the current effect.

Previous Next

Previous Next

Requirements

Windows Media Player version 7.0 or later.

See Also

EFFECTS Element
EFFECTS.currentEffect
EFFECTS.effectCount
EFFECTS.effectType

© 2000-2003 Microsoft Corporation. All rights reserved.

EFFECTS.currentPreset
The currentPreset attribute specifies or retrieves the current preset of the current visualization.

Syntax

elementID.currentPreset

Possible Values

This attribute is a read/write Number (long) indicating the index of the preset. The indexes begin with zero,
which is also the default value.

Requirements

Windows Media Player version 7.0 or later.

See Also

EFFECTS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

EFFECTS.currentPresetTitle
The currentPresetTitle attribute retrieves the title of the current preset of the current visualization.

Syntax

elementID.currentPresetTitle

Possible Values

This attribute is a read-only String.

Requirements

Windows Media Player version 7.0 or later.

See Also

EFFECTS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

EFFECTS.effectCanGoFullScreen
The effectCanGoFullScreen attribute retrieves a value indicating whether the current visualization can be
displayed full-screen.

Syntax

elementID.effectCanGoFullScreen

Possible Values

This attribute is a read-only Boolean.

Previous Next

Previous Next

Previous Next

Requirements

Windows Media Player for Windows XP or later.

See Also

EFFECTS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

EFFECTS.effectCount
The effectCount attribute retrieves the number of visualizations available.

Syntax

elementID.effectCount

Possible Values

This attribute is a read-only Number (long).

Requirements

Windows Media Player for Windows XP or later.

See Also

EFFECTS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Value Description

true Visualization can be displayed full-screen.

false Visualization cannot be displayed full-screen.

Previous Next

Previous Next

Previous Next

EFFECTS.effectHasPropertyPage
The effectHasPropertyPage attribute retrieves a value indicating whether the current visualization has a
property page.

Syntax

elementID.effectHasPropertyPage

Possible Values

This attribute is a read-only Boolean.

Requirements

Windows Media Player version 7.0 or later.

See Also

EFFECTS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

EFFECTS.effectTitle
The effectTitle method retrieves the display title of the visualization with the specified registry index.

Previous Next

Value Description

true Visualization has a property page.

false Visualization does not have a property page.

Previous Next

Previous Next

Syntax

elementID.effectTitle(index)

Parameters

 index

Number (long) containing the registry index of a visualization.

Return Values

This method returns a String.

Remarks

This method is used for displaying visualization titles in a user interface.

Requirements

Windows Media Player 9 Series or later.

See Also

EFFECTS Element
EFFECTS.currentEffectTitle

© 2000-2003 Microsoft Corporation. All rights reserved.

EFFECTS.effectType
The effectType method retrieves the registry name of the visualization with the specified registry index. This
name is a unique ID defined by the visualization author.

Syntax

elementID.effectType(index)

Parameters

 index

Previous Next

Previous Next

Number (long) containing the registry index of a visualization.

Return Values

This method returns a String.

Remarks

This method is useful for switching between visualizations in script. A user interface could display the set of
titles, but when the user selects one, the script must use currentEffectType to switch visualizations.

Requirements

Windows Media Player 9 Series or later.

See Also

EFFECTS Element
EFFECTS.currentEffectType

© 2000-2003 Microsoft Corporation. All rights reserved.

EFFECTS.fullScreen
The fullScreen attribute specifies or retrieves a value indicating whether the current visualization is displayed
full-screen. This attribute can only be set at run time.

Syntax

elementID.fullScreen

Possible Values

This attribute is a read/write Boolean.

Previous Next

Previous Next

Value Description

true Visualization is displayed full-screen.

false Default. Visualization is not displayed full-screen.

Remarks

A visualization can be put into full-screen mode only while media is playing or paused. If Player.currentMedia
is video, a video plug-in must be present. If it is audio, a visualization plug-in that supports full-screen display
must be present.

Requirements

Windows Media Player version 7.0 or later.

See Also

EFFECTS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

EFFECTS.next
The next method displays the next visualization preset, moving to the next visualization if necessary.

Syntax

elementID.next()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

If the current preset is the last one in the series of all available visualizations, the first preset of the first
visualization is made current.

Requirements

Windows Media Player version 7.0 or later.

Previous Next

Previous Next

See Also

EFFECTS Element
EFFECTS.allowAll
EFFECTS.previous

© 2000-2003 Microsoft Corporation. All rights reserved.

EFFECTS.nextEffect
The nextEffect method displays the first preset of the next visualization, skipping intervening presets.

Syntax

elementID.nextEffect()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

This method displays the first preset of the next visualization in the authoring order. If the current visualization
is the last in the authoring order, and if allowAll is false, the first visualization is made current.

Requirements

Windows Media Player version 7.0 or later.

See Also

EFFECTS Element
EFFECTS.allowAll
EFFECTS.previousEffect

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

EFFECTS.nextPreset
The nextPreset method displays the next preset of the current visualization.

Syntax

elementID.nextPreset()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

If the current preset is the last one in the list for the current visualization, the first preset is made current.

Requirements

Windows Media Player version 7.0 or later.

See Also

EFFECTS Element
EFFECTS.allowAll
EFFECTS.previous

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

EFFECTS.previous
The previous method displays the previous visualization preset, moving to the last preset of the previous
visualization if necessary.

Syntax

elementID.previous()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

If the current preset is the first one in the series of all available visualizations, the last preset of the last
visualization is made current.

Requirements

Windows Media Player version 7.0 or later.

See Also

EFFECTS Element
EFFECTS.next
EFFECTS.allowAll

© 2000-2003 Microsoft Corporation. All rights reserved.

EFFECTS.previousEffect
The previousEffect method displays the previous visualization, skipping presets.

Syntax

elementID.previousEffect()

Previous Next

Previous Next

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

This method displays the previous visualization in the authoring order. If the current visualization is the first in
the authoring order, and if allowAll is false, the last visualization is made current.

Requirements

Windows Media Player version 7.0 or later.

See Also

EFFECTS Element
EFFECTS.nextEffect
EFFECTS.allowAll

© 2000-2003 Microsoft Corporation. All rights reserved.

EFFECTS.previousPreset
The previousPreset method displays the previous preset of the current visualization.

Syntax

elementID.previousPreset()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Previous Next

Previous Next

Remarks

If the current preset is the first one in the list for the current visualization, the last preset is made current.

Requirements

Windows Media Player version 7.0 or later.

See Also

EFFECTS Element
EFFECTS.allowAll
EFFECTS.previous

© 2000-2003 Microsoft Corporation. All rights reserved.

EFFECTS.settings
The settings method displays the attribute page for the current visualization, if present.

Syntax

elementID.settings()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Requirements

Windows Media Player version 7.0 or later.

See Also

EFFECTS Element

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

EFFECTS.windowed
The windowed attribute specifies or retrieves a value indicating whether the visualization will be windowed or
windowless, that is, whether the entire rectangle of the control will be visible at all times, or whether it can be
clipped. This attribute can only be set at design time.

Syntax

elementID.windowed

Possible Values

This attribute is a Boolean specified at design time and read-only thereafter.

Remarks

If a non-rectangular visualization window is desired, or if any part of the window is covered by an image, this
attribute must be set to false. This sacrifices some performance to do the necessary clipping.

If windowed is set to true, any image covering the visualization window is ignored, and the visualization
window has the highest-level z-order.

Requirements

Windows Media Player version 7.0 or later.

See Also

EFFECTS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Value Description

true The control will be windowed.

false Default. The control will be windowless.

Previous Next

WMPEFFECTS
This is a predefined EFFECTS element with the following default values.

horizontalAlignment="stretch"
verticalAlignment="stretch"
height="200"
width="250"
tabStop="false"
onclick="next();"

Remarks

This will create an EFFECTS element that will step through the visualization presets when the user clicks the
control. It will also stretch the visualizations when the player is resized.

The initial visualization preset shown is the one selected on the View menu under Visualizations. Changing the
selection on this menu will automatically change the preset displayed by this element when the Player is in skin
mode. The View menu is displayed in the full mode of the Player or when the VIEW.titleBar attribute is set to
true in a skin.

All properties of this EFFECTS element can be overridden by explicitly specifying them.

Requirements

Windows Media Player 7.0 or later.

See Also

EFFECTS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS Element

Previous Next

Previous Next

Previous Next

The EQUALIZERSETTINGS element provides a way to manipulate the graphic equalizer and other audio
settings of Windows Media Player using the attributes and method listed here.

The EQUALIZERSETTINGS element supports the following attributes.

Attribute Description

bands Retrieves the number of frequency bands supported.

bypass Specifies or retrieves a value indicating whether the equalizer filter is
bypassed in the filter graph.

crossFade Specifies or retrieves a value indicating whether cross-fade is enabled.

crossFadeWindow Specifies or retrieves the amount of cross-fade overlap in milliseconds.

currentPreset Specifies or retrieves the index of the current preset.

currentPresetTitle Retrieves the title of the current preset.

currentSpeakerName Retrieves the name of the current speaker setting.

enableSplineTension Specifies or retrieves a value indicating whether spline tension is
enabled or disabled.

enhancedAudio Specifies or retrieves a value indicating whether enhanced audio is
turned on.

gainLevels Specifies or retrieves the gain level of the band corresponding to the
index provided.

gainLevel1 Specifies or retrieves the gain level of band 1.

gainLevel2 Specifies or retrieves the gain level of band 2.

gainLevel3 Specifies or retrieves the gain level of band 3.

gainLevel4 Specifies or retrieves the gain level of band 4.

gainLevel5 Specifies or retrieves the gain level of band 5.

gainLevel6 Specifies or retrieves the gain level of band 6.

gainLevel7 Specifies or retrieves the gain level of band 7.

gainLevel8 Specifies or retrieves the gain level of band 8.

gainLevel9 Specifies or retrieves the gain level of band 9.

gainLevel10 Specifies or retrieves the gain level of band 10.

normalization Specifies or retrieves a value indicating whether normalization is
enabled.

normalizationAverage Retrieves the average normalization value.

normalizationPeak Retrieves the peak normalization value.

presetCount Retrieves the number of presets available.

speakerSize Specifies or retrieves the index of the current speaker size.

The EQUALIZERSETTINGS element supports the following methods.

The EQUALIZERSETTINGS element can implement the attribute_onchange event handlers.

See Also

Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.bands
The bands attribute retrieves the number of frequency bands supported.

Syntax

elementID.bands

Possible Values

This attribute is a read-only Number (long).

Requirements

Windows Media Player version 7.0 or later.

splineTension Specifies or retrieves the spline tension for the equalizer control.

truBassLevel Specifies or retrieves the SRS TruBass level.

wowLevel Specifies or retrieves the SRS WOW Effect level.

Method Description

nextPreset Applies the next equalizer preset.

presetTitle Retrieves the name of the equalizer preset with the specified index.

previousPreset Applies the previous equalizer preset.

reset Resets the gain levels of all bands to zero decibels.

Previous Next

Previous Next

See Also

EQUALIZERSETTINGS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.bypass
The bypass attribute specifies or retrieves a value indicating whether the equalizer filter is bypassed in the filter
graph.

Syntax

elementID.bypass

Possible Values

This attribute is a read/write Boolean.

Remarks

If this attribute is not specified, the previous value will be retained.

Requirements

Windows Media Player version 7.0 or later.

See Also

EQUALIZERSETTINGS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Value Description

true Default. The equalizer filter is bypassed.

false The equalizer filter is used.

Previous Next

EQUALIZERSETTINGS.crossFade
The crossFade attribute specifies or retrieves a value indicating whether cross-fade is enabled.

Syntax

elementID.crossFade

Possible Values

This attribute is a read/write Boolean.

Remarks

Cross-fade is an audio processing feature that gradually decreases the volume of one media item near the end of
its playback while simultaneously starting playback of the next media item at minimum volume and gradually
increasing it to normal volume. The overlap between the start of the second media item and the end of the first
media item is specified by the crossFadeWindow attribute.

Requirements

Windows Media Player 9 Series or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.crossFadeWindow

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Value Description

true Cross-fade is enabled.

false Default. Cross-fade is disabled.

Previous Next

EQUALIZERSETTINGS.crossFadeWindow
The crossFadeWindow attribute specifies or retrieves the amount of cross-fade overlap in milliseconds.

Syntax

elementID.crossFadeWindow

Possible Values

This attribute is a read/write Number (long) ranging from 0 to 10,000 with a default value of 250.

Requirements

Windows Media Player 9 Series or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.crossFade

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.currentPreset
The currentPreset attribute specifies or retrieves the index of the current preset.

Syntax

elementID.currentPreset

Possible Values

This attribute is a read/write Number (long).

Remarks

If this attribute is not specified, the previous value will be retained.

Previous Next

Previous Next

Previous Next

Requirements

Windows Media Player version 7.0 or later.

See Also

EQUALIZERSETTINGS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.currentPresetTitle
The currentPresetTitle attribute retrieves the title of the current preset.

Syntax

elementID.currentPresetTitle

Possible Values

This attribute is a read-only String.

Requirements

Windows Media Player version 7.0 or later.

See Also

EQUALIZERSETTINGS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

EQUALIZERSETTINGS.currentSpeakerName
The currentSpeakerName attribute retrieves the name of the current speaker setting.

Syntax

elementID.currentSpeakerName

Possible Values

This attribute is a read-only String containing one of the following values.

Requirements

Windows Media Player 9 Series or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.speakerSize

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.enableSplineTension
The enableSplineTension attribute specifies or retrieves a value indicating whether spline tension is enabled.

Syntax

elementID.enableSplineTension

Possible Values

Value Description

Headphones The current speakers are headphones.

Normal Speakers The current speakers are of normal size.

Large Speakers The current speakers are large.

Previous Next

Previous Next

This attribute is a read/write Boolean with a default value of true.

Remarks

Enabling spline tension allows the user to adjust the equalizer bandwidths more smoothly, so that there are no
large jumps between the frequency levels.

Requirements

Windows Media Player 9 Series or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.splineTension

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.enhancedAudio
The enhancedAudio attribute specifies or retrieves a value indicating whether enhanced audio is turned on.

Syntax

elementID.enhancedAudio

Possible Values

This attribute is a read/write Boolean.

Requirements

Windows Media Player 9 Series or later.

See Also

Previous Next

Previous Next

Description Value

true Enhanced audio is turned on.

false Default. Enhanced audio is turned off.

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.speakerSize
EQUALIZERSETTINGS.truBassLevel
EQUALIZERSETTINGS.wowLevel

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.gainLevels
The gainLevels attribute specifies or retrieves the gain level of the band corresponding to the index provided.

Syntax

elementID.gainLevels(theBand)

Parameters

 theBand

Number (long) between 1 and 10 indicating the index of the band.

Possible Values

This attribute is a read/write Number (float) with a value normally ranging from –20 to +20.

Remarks

This attribute takes a parameter, but its value is specified in script code the same way as other attribute values. It
cannot be specified in the EQUALIZERSETTINGS element, nor can it be used with the wmpprop listening
attribute. Instead, the numbered gain level attributes are provided for these situations.

Requirements

Windows Media Player version 7.0 or later.

See Also

EQUALIZERSETTINGS Element
Listening Attributes

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.gainLevel1
The gainLevel1 attribute specifies or retrieves the gain level of band 1.

Syntax

elementID.gainLevel1

Possible Values

This attribute is a read/write Number (float) with a value normally ranging from –20 to +20. It has a default
value of zero.

Remarks

This attribute adjusts the portion of the audio frequency spectrum centered on 31Hz.

If this attribute is not specified, the previous value will be retained.

Requirements

Windows Media Player version 7.0 or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.gainLevels

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

EQUALIZERSETTINGS.gainLevel2
The gainLevel2 attribute specifies or retrieves the gain level of band 2.

Syntax

elementID.gainLevel2

Possible Values

This attribute is a read/write Number (float) with a value normally ranging from –20 to +20. It has a default
value of zero.

Remarks

This attribute adjusts the portion of the audio frequency spectrum centered on 62Hz.

If this attribute is not specified, the previous value will be retained.

Requirements

Windows Media Player version 7.0 or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.gainLevels

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.gainLevel3
The gainLevel3 attribute specifies or retrieves the gain level of band 3.

Syntax

elementID.gainLevel3

Possible Values

Previous Next

Previous Next

This attribute is a read/write Number (float) with a value normally ranging from –20 to +20. It has a default
value of zero.

Remarks

This attribute adjusts the portion of the audio frequency spectrum centered on 125Hz.

If this attribute is not specified, the previous value will be retained.

Requirements

Windows Media Player version 7.0 or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.gainLevels

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.gainLevel4
The gainLevel4 attribute specifies or retrieves the gain level of band 4.

Syntax

elementID.gainLevel4

Possible Values

This attribute is a read/write Number (float) with a value normally ranging from –20 to +20. It has a default
value of zero.

Remarks

This attribute adjusts the portion of the audio frequency spectrum centered on 250Hz.

If this attribute is not specified, the previous value will be retained.

Requirements

Previous Next

Previous Next

Windows Media Player version 7.0 or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.gainLevels

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.gainLevel5
The gainLevel5 attribute specifies or retrieves the gain level of band 5.

Syntax

elementID.gainLevel5

Possible Values

This attribute is a read/write Number (float) with a value normally ranging from –20 to +20. It has a default
value of zero.

Remarks

This attribute adjusts the portion of the audio frequency spectrum centered on 500Hz.

If this attribute is not specified, the previous value will be retained.

Requirements

Windows Media Player version 7.0 or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.gainLevels

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

EQUALIZERSETTINGS.gainLevel6
The gainLevel6 attribute specifies or retrieves the gain level of band 6. It has a default value of zero.

Syntax

elementID.gainLevel6

Possible Values

This attribute is a read/write Number (float) with a value normally ranging from –20 to +20. It has a default
value of zero.

Remarks

This attribute adjusts the portion of the audio frequency spectrum centered on 1kHz.

If this attribute is not specified, the previous value will be retained.

Requirements

Windows Media Player version 7.0 or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.gainLevels

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.gainLevel7
The gainLevel7 attribute specifies or retrieves the gain level of band 7.

Previous Next

Previous Next

Previous Next

Syntax

elementID.gainLevel7

Possible Values

This attribute is a read/write Number (float) with a value normally ranging from –20 to +20. It has a default
value of zero.

Remarks

This attribute adjusts the portion of the audio frequency spectrum centered on 2kHz.

If this attribute is not specified, the previous value will be retained.

Requirements

Windows Media Player version 7.0 or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.gainLevels

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.gainLevel8
The gainLevel8 attribute specifies or retrieves the gain level of band 8.

Syntax

elementID.gainLevel8

Possible Values

This attribute is a read/write Number (float) with a value normally ranging from –20 to +20. It has a default
value of zero.

Remarks

Previous Next

Previous Next

This attribute adjusts the portion of the audio frequency spectrum centered on 4kHz.

If this attribute is not specified, the previous value will be retained.

Requirements

Windows Media Player version 7.0 or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.gainLevels

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.gainLevel9
The gainLevel9 attribute specifies or retrieves the gain level of band 9.

Syntax

elementID.gainLevel9

Possible Values

This attribute is a read/write Number (float) with a value normally ranging from –20 to +20. It has a default
value of zero.

Remarks

This attribute adjusts the portion of the audio frequency spectrum centered on 8kHz.

If this attribute is not specified, the previous value will be retained.

Requirements

Windows Media Player version 7.0 or later.

See Also

EQUALIZERSETTINGS Element

Previous Next

Previous Next

EQUALIZERSETTINGS.gainLevels

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.gainLevel10
The gainLevel10 attribute specifies or retrieves the gain level of band 10.

Syntax

elementID.gainLevel10

Possible Values

This attribute is a read/write Number (float) with a value normally ranging from –20 to +20. It has a default
value of zero.

Remarks

This attribute adjusts the portion of the audio frequency spectrum centered on 16kHz.

If this attribute is not specified, the previous value will be retained.

Requirements

Windows Media Player version 7.0 or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.gainLevels

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

EQUALIZERSETTINGS.nextPreset
The nextPreset method applies the next equalizer preset.

Syntax

elementID.nextPreset()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Example

<SUBVIEW id="eqtray">
 <EQUALIZERSETTINGS id="eq"/>
 <BUTTON
 id="nextPreset"
 onClick="eq.nextPreset();"
 />
 <BUTTON
 id="prevPreset"
 onClick="eq.previousPreset();"
 />
 <TEXT
 id="currentPreset"
 value="wmpprop:eq.currentPresetTitle"
 />
</SUBVIEW>

Remarks

If the current preset is the last one available, the first preset is made current.

Requirements

Windows Media Player version 7.0 or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.previousPreset

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.normalization
The normalization attribute specifies or retrieves a value indicating whether normalization is enabled.

Syntax

elementID.normalization

Possible Values

This attribute is a read/write Boolean.

Remarks

When normalization is enabled, the audio signal for an entire digital media file is scaled up to the maximum
value. This allows multiple files to be played at approximately the same volume without requiring volume
adjustments.

Requirements

Windows Media Player 9 Series or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.normalizationAverage
EQUALIZERSETTINGS.normalizationPeak

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Value Description

true Normalization is enabled.

false Default. Normalization is disabled.

Previous Next

EQUALIZERSETTINGS.normalizationAverage
The normalizationAverage attribute retrieves the average normalization value.

Syntax

elementID.normalizationAverage

Possible Values

This attribute is a read-only Number (float).

Requirements

Windows Media Player 9 Series or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.normalization
EQUALIZERSETTINGS.normalizationPeak

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.normalizationPeak
The normalizationPeak attribute retrieves the peak normalization value.

Syntax

elementID.normalizationPeak

Possible Values

Previous Next

Previous Next

Previous Next

This attribute is a read-only Number (float).

Requirements

Windows Media Player 9 Series or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.normalization
EQUALIZERSETTINGS.normalizationAverage

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.presetCount
The presetCount attribute retrieves the number of presets available.

Syntax

elementID.presetCount

Possible Values

This attribute is a read-only Number (long).

Requirements

Windows Media Player version 7.0 or later.

See Also

EQUALIZERSETTINGS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

EQUALIZERSETTINGS.presetTitle
The presetTitle method retrieves the name of the equalizer preset with the specified index.

Syntax

elementID.presetTitle(index)

Parameters

 index

Number (long) containing the preset index.

Return Values

This method returns a String.

Requirements

Windows Media Player 9 Series or later.

See Also

EQUALIZERSETTINGS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.previousPreset
The previousPreset method applies the previous equalizer preset.

Syntax

elementID.previousPreset()

Previous Next

Previous Next

Previous Next

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

If the current preset is the first one available, the last preset is made current.

Requirements

Windows Media Player version 7.0 or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.nextPreset

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.reset
The reset method resets the gain levels of all bands to zero decibels.

Syntax

elementID.reset()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Requirements

Previous Next

Previous Next

Windows Media Player version 7.0 or later.

See Also

EQUALIZERSETTINGS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.speakerSize
The speakerSize attribute specifies or retrieves the index number of the current speaker size.

Syntax

elementID.speakerSize

Possible Values

This attribute is a read/write Number (long) containing one of the following values.

Remarks

The friendly name of the speaker size can be retrieved using the currentSpeakerName attribute.

This attribute is ignored if enhancedAudio is set to false.

Requirements

Windows Media Player 9 Series or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.currentSpeakerName

Previous Next

Previous Next

Value Description

0 The current speakers are headphones.

1 The current speakers are of normal size.

2 The current speakers are large.

EQUALIZERSETTINGS.enhancedAudio

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.splineTension
The splineTension attribute specifies or retrieves the spline tension for the equalizer control.

Syntax

elementID.splineTension

Possible Values

This attribute is a read/write Number (float) ranging from 0.0 (no tension) to 10.0 (full tension) with a default
value of 3.0.

Requirements

Windows Media Player 9 Series or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.enableSplineTension

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.truBassLevel
The truBassLevel attribute specifies or retrieves the SRS TruBass level.

Previous Next

Previous Next

Previous Next

Previous Next

Syntax

elementID.truBassLevel

Possible Values

This attribute is a read/write Number (long) ranging from 0 to 100 with a default value of 50.

Remarks

TruBass is an effect that enhances the sound of the bass levels of the audio track. This attribute is ignored if
enhancedAudio is set to false.

Requirements

Windows Media Player 9 Series or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.enhancedAudio

© 2000-2003 Microsoft Corporation. All rights reserved.

EQUALIZERSETTINGS.wowLevel
The wowLevel attribute specifies or retrieves the SRS WOW Effect level.

Syntax

elementID.wowLevel

Possible Values

This attribute is a read/write Number (long) ranging from 0 to 100 with a default value of 50.

Remarks

The SRS WOW Effect is an audio enhancement effect. This attribute is ignored if enhancedAudio is set to
false.

Previous Next

Previous Next

Requirements

Windows Media Player 9 Series or later.

See Also

EQUALIZERSETTINGS Element
EQUALIZERSETTINGS.enhancedAudio

© 2000-2003 Microsoft Corporation. All rights reserved.

ITEM Element
The ITEM element represents an item in a list box or pop-up controls. ITEM elements are always children of
LISTBOX or POPUP elements.

The ITEM element supports the following attributes.

Note This element requires Windows Media Player for Windows XP or later.

See Also

Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Attribute Description

value Specifies or retrieves the text that displays for a list
box or pop-up item.

Previous Next

Previous Next

ITEM.value
The value attribute specifies or retrieves the text that displays for a list box or pop-up item.

Syntax

elementID.value

Possible Values

This attribute is a read/write String.

Requirements

Windows Media Player for Windows XP or later.

See Also

ITEM Element

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX Element
The LISTBOX element provides a way for users to select items from a list. These items can be specified by
using ITEM elements as children of the LISTBOX element. If you need a list box control that is displayed
only when needed, use the POPUP element, which is identical to the LISTBOX element except for the default
value of the popUp attribute, which dictates its display behavior.

The LISTBOX element supports the following attributes.

Previous Next

Previous Next

Attribute Description

backgroundColor Specifies or retrieves the background color in the list
box control.

border Specifies or retrieves a value indicating whether the
list box control has a border. Can only be set at
design time.

firstVisibleItem Specifies or retrieves the index of the first visible line

The LISTBOX element supports the following methods.

in the list box control.

focusItem Specifies or retrieves the line that contains focus.

fontFace Specifies or retrieves the font for the list box control.

fontSize Specifies or retrieves the font size for the list box
control.

fontStyle Specifies or retrieves the font style for the list box
control.

foregroundColor Specifies or retrieves the text color in the list box
control.

itemCount Retrieves the number of items in the list box control.

multiSelect Specifies or retrieves a value indicating whether the
user can select multiple lines. Can only be set at
design time.

popUp Specifies a value indicating whether the element
represents a popup or list box control.

readOnly Specifies or retrieves a value indicating whether text
is read-only or text can be selected by the user.

selectedItem Specifies or retrieves the index of the item selected in
the list box control.

sorted Specifies or retrieves a value indicating whether the
list box control is sorted alphabetically.

Method Description

appendItem Inserts new text at the end of the list box control.

deleteAll Deletes all items from the list box control.

deleteItem Deletes the list box control item at the specified
index.

dismiss Hides the control.

findItem Searches for a given string starting with the item
following the specified item index.

getItem Retrieves the text for the item with the specified
index.

getNextSelectedItem Retrieves the next selected item in the list box control
starting at the item after the one with the specified
index.

insertItem Inserts the specified text at the specified index in the
list box control.

Note This element requires Windows Media Player for Windows XP or later.

See Also

POPUP Element
Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.appendItem
The appendItem method inserts new text at the end of the list box control.

Syntax

elementID.appendItem(newVal)

Parameters

 newVal

String containing the text to be inserted.

Return Values

This method does not return a value.

Requirements

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element

replaceItem Replaces the text at the specified index with the
specified text.

setSelectedState Selects or unselects the item with the specified index.

show Displays the control.

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.backgroundColor
The backgroundColor attribute specifies or retrieves the background color in the list box control.

Syntax

elementID.backgroundColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value or the value "none".
It has a default value equal to the Windows background color.

Requirements

Windows Media Player for Windows XP or later.

See Also

Color Reference
LISTBOX Element
LISTBOX.foregroundColor

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.border
The border attribute specifies or retrieves a value indicating whether the list box control has a border.

Previous Next

Previous Next

Previous Next

Previous Next

Syntax

elementID.border

Possible Values

This attribute is a Boolean value.

Remarks

The border appears as a two-pixel-wide sunken border around the list box control with system colors.

Requirements

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.deleteAll
The deleteAll method deletes all items from the list box control.

Syntax

elementID.deleteAll()

Parameters

This method takes no parameters.

Return Values

Value Description

true Default. The list box control has a border.

false The list box control does not have a border.

Previous Next

Previous Next

This method does not return a value.

Requirements

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.deleteItem
The deleteItem method deletes the list box control item at the specified index.

Syntax

elementID.deleteItem(index)

Parameters

 index

Number (long) containing the index of the item to delete.

Return Values

This method does not return a value.

Remarks

The lines below the deleted line will move up one index value.

Requirements

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.dismiss
The dismiss method hides the control.

Syntax

elementID.dismiss()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

This method is primarily used with the POPUP element, which represents a list box control that is displayed
only when needed.

Requirements

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element
LISTBOX.show
POPUP Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

LISTBOX.findItem
The findItem method searches for a given string starting with the item following the specified item index.

Syntax

elementID.findItem(startIndex, searchString)

Parameters

 startIndex

Number (long) containing the index of the item at which to start the search.

 searchString

String containing the text to search for.

Return Values

This method returns a Number (long) containing the index of the item that contains the string.

Remarks

To start the search at the first line of the list box control, use –1 as the startIndex. To continue to search for text
after the first line is found, use the returned line index as the startIndex, and the search will start at the next line.
This method will search for substrings and is not case-sensitive.

Requirements

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

LISTBOX.firstVisibleItem
The firstVisibleItem attribute specifies or retrieves the index of the first visible line in the list box control.

Syntax

elementID.firstVisibleItem

Possible Values

This attribute is a read/write Number (long).

Remarks

This attribute is useful for determining the first visible line when the list box is scrolled.

Requirements

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.focusItem
The focusItem attribute specifies or retrieves the line that contains focus.

Syntax

elementID.focusItem

Possible Values

Previous Next

Previous Next

Previous Next

This attribute is a read/write Number (long).

Remarks

The focus item and selected item could be different. An item can be selected through script, but another item
can be given focus through script. The item with focus will have a dotted rectangle around it, and will be
selected if the ENTER key is pressed.

Requirements

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.fontFace
The fontFace attribute specifies or retrieves the font for the list box control.

Syntax

elementID.fontFace

Possible Values

This attribute is a read/write String.

Remarks

This attribute can be the name of any valid font available in Windows. Windows Media Player will not support
installing fonts, so choose a font that you know will be on the intended system.

If the fontFace specified is not available on the user's system, the list box control defaults to the Windows
system font. The default value for English-language systems is "Tahoma". For international systems, the default
is loaded from a resource file.

Requirements

Previous Next

Previous Next

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element
LISTBOX.fontSize
LISTBOX.fontStyle

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.fontSize
The fontSize attribute specifies or retrieves the font size for the list box control.

Syntax

elementID.fontSize

Possible Values

This attribute is a read/write Number (long) specifying the font size in points. The default value is 10.

Requirements

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element
LISTBOX.fontSize
LISTBOX.fontStyle

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

LISTBOX.fontStyle
The fontStyle attribute specifies or retrieves the font style for the list box control.

Syntax

elementID.fontStyle

Possible Values

This attribute is a read/write String containing one or more of the following values.

Remarks

Any combination of the values can be used, separated with spaces. The Normal style has priority over all other
values, and any others specified along with Normal will be ignored.

For rendering purposes, Normal is the default font style. The default value retrieved from this attribute is
"" (empty string).

Requirements

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element
LISTBOX.fontSize
LISTBOX.fontStyle

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Value Description

Bold Bold font style.

Italic Italic font style.

Underline Underline font style.

Strikeout Strikeout font style.

Normal Normal font style.

Previous Next

LISTBOX.foregroundColor
The foregroundColor attribute specifies or retrieves the text color in the list box control.

Syntax

elementID.foregroundColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value. It has a default
value equal to the Windows text color.

Requirements

Windows Media Player for Windows XP or later.

See Also

Color Reference
LISTBOX Element
LISTBOX.backgroundColor

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.getItem
The getItem method retrieves the text for the item with the specified index.

Syntax

elementID.getItem(index)

Parameters

Previous Next

Previous Next

Previous Next

 index

Number (long) containing the index of the line to retrieve.

Return Values

This method returns a String.

Requirements

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.getNextSelectedItem
The getNextSelectedItem method retrieves the next selected item in the list box control starting at the item
after the one with the specified index.

Syntax

elementID.getNextSelectedItem(startIndex)

Parameters

 startIndex

Number (long) containing the index of the item that precedes the item being retrieved.

Return Values

This method returns a Number (long) containing the index of the next selected item.

Remarks

To start search from the beginning, use –1 for the start index.

Previous Next

Previous Next

Requirements

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.insertItem
The insertItem method inserts the specified text at the specified index in the list box control.

Syntax

elementID.insertItem(index, text)

Parameters

 index

Number (long) containing the index of the line to retrieve.

 text

String containing the text to be inserted.

Return Values

This method does not return a value.

Remarks

When a line is inserted, the line indexes for the lines below the inserted line increase by one.

Requirements

Windows Media Player for Windows XP or later.

See Also

Previous Next

Previous Next

LISTBOX Element

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.itemCount
The itemCount attribute retrieves the number of items in the list box control.

Syntax

elementID.itemCount

Possible Values

This attribute is a read-only Number (long).

Requirements

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.multiSelect
The multiSelect attribute specifies or retrieves a value indicating whether the user can select multiple lines. Can
only be set at design time.

Previous Next

Previous Next

Previous Next

Previous Next

Syntax

elementID.multiSelect

Possible Values

This attribute is a Boolean specified at design time and read-only thereafter.

Requirements

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.popUp
The popUp attribute specifies a value indicating whether the element represents a popup or list box control.

Syntax

<ELEMENT popUp="value">

Possible Values

This attribute is a Boolean specified at design time only.

Value Description

true The user can select multiple lines.

false Default. The user can only select individual lines.

Previous Next

Previous Next

Value Description

true The element represents a popup control.

false The element represents a list box control.

Remarks

The POPUP element represents a list box control that is displayed only when needed. It is identical to the
LISTBOX element except for the default value of this attribute, which changes the display behavior. For
LISTBOX elements, the default value is false. For POPUP elements, the default value is true. Instead of
specifying this attribute, the LISTBOX or POPUP element should be used to according to the desired
behavior.

Requirements

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element
POPUP Element

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.readOnly
The readOnly attribute specifies or retrieves a value indicating whether text is read only or can be selected by
the user. Can only be set at design time.

Syntax

elementID.readOnly

Possible Values

This attribute is a read/write Boolean.

Requirements

Previous Next

Previous Next

Value Description

true Text is read only.

false Default. Text can be selected by the user.

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.replaceItem
The replaceItem method replaces the text at the specified index with the specified text.

Syntax

elementID.replaceItem(index, text)

Parameters

 index

Number (long) containing the index of the line to retrieve.

 text

String containing the new text.

Return Values

This method does not return a value.

Requirements

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.selectedItem
The selectedItem attribute specifies or retrieves the index of the item selected in the list box control.

Syntax

elementID.selectedItem

Possible Values

This attribute is a read/write Number (long).

Remarks

This property will select one line in the list box control. Any other selected line will be unselected.

Requirements

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.setSelectedState
The setSelectedState method selects or unselects the item with the specified index.

Syntax

Previous Next

Previous Next

Previous Next

elementID.setSelectedState(index, selected)

Parameters

 index

Number (long) containing the index of the item to select or unselect.

 selected

Boolean value indicating whether the item is to be selected (true) or unselected (false).

Return Values

This method does not return a value.

Remarks

This is used to select or unselect multiple lines.

Requirements

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.show
The show method displays the control.

Syntax

elementID.show()

Parameters

This method takes no parameters.

Previous Next

Previous Next

Return Values

This method does not return a value.

Remarks

This method is primarily used with the POPUP element, which represents a list box control that is displayed
only when needed.

Requirements

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element
LISTBOX.dismiss
POPUP Element

© 2000-2003 Microsoft Corporation. All rights reserved.

LISTBOX.sorted
The sorted attribute specifies or retrieves a value indicating whether the list box control is sorted alphabetically.
Can only be set at design time.

Syntax

elementID.sorted

Possible Values

This attribute is a read/write Boolean.

Previous Next

Previous Next

Value Description

true The list box control is sorted alphabetically.

false Default. The list box control is not sorted
alphabetically.

Requirements

Windows Media Player for Windows XP or later.

See Also

LISTBOX Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYER Element
The PLAYER element lets you define event handlers and specify the URL property of the Player object at
design time within a skin definition file. Within script code, the Player object is accessed through the player
global attribute rather than through a name specified by an id attribute, which is not supported by the PLAYER
element.

The PLAYER element supports the following attribute.

The PLAYER element can implement event handlers for the following events fired from the Player object.

Previous Next

Previous Next

Attribute Description

URL Specifies or retrieves the name of the file to play.

Event Description

AudioLanguageChange Occurs when the current audio language changes.

Buffering Occurs when the player begins or ends buffering.

CdromMediaChange Occurs when the CD-ROM media changes.

CurrentItemChange Occurs when the current item changes.

CurrentMediaItemAvailable Occurs when the current media item becomes
available.

CurrentPlaylistChange Occurs when the current playlist changes.

CurrentPlaylistItemAvailable Occurs when the current playlist item becomes
available.

DomainChange Occurs when the DVD domain changes.

Error Occurs when the Windows Media Player control
has an error condition.

MarkerHit Occurs when the player encounters a marker in
the clip.

MediaChange Occurs when a media item changes.

MediaCollectionAttributeStringAdded Occurs when an attribute value is added to
Media Library.

MediaCollectionAttributeStringChanged Occurs when an attribute value in Media
Library is changed.

MediaCollectionAttributeStringRemoved Occurs when an attribute value is removed from
Media Library.

MediaCollectionChange Occurs when the MediaCollection object
changes.

MediaError Occurs when the media object has an error
condition.

ModeChange Occurs when switching between shuffle and
normal mode.

OpenPlaylistSwitch Occurs when a title on a DVD begins playing.

OpenStateChange Occurs when player.openState changes.

PlayerDockedStateChange Occurs when a remoted Windows Media Player
control docks or undocks.

PlaylistChange Occurs when a playlist changes.

PlaylistCollectionChange Occurs when something changes in the playlist
collection.

PlaylistCollectionPlaylistAdded Occurs when a playlist is added to the playlist
collection.

PlaylistCollectionPlaylistRemoved Occurs when a playlist is removed from the
playlist collection.

PlayStateChange Occurs when player.playState changes.

PositionChange Occurs when player.controls.currentPosition
changes.

ScriptCommand Occurs when the player encounters a script
command embedded in the Windows Media file.

StatusChange Occurs when the status property changes value.

SwitchedToControl Occurs when a remoted Windows Media Player
control switches to the docked state.

SwitchedToPlayerApplication Occurs when a remoted Windows Media Player

See Also

Player Object
Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST Element
The PLAYLIST element provides a way to organize media items in a list for easy manipulation using the
following attributes and methods. Predefined PLAYLIST elements are also provided for convenience.
Customized columns can be specified for a playlist by including COLUMN elements as children of the
PLAYLIST element.

The PLAYLIST element supports the following attributes.

control switches to the full mode of the Player.

Previous Next

Previous Next

Attribute Description

allowColumnSorting Specifies or retrieves a value indicating whether sorting on
column headers is allowed.

allowItemEditing Specifies or retrieves a value indicating whether items in a
playlist support in-place editing.

backgroundColor Specifies or retrieves the background color.

backgroundImage Specifies or retrieves the background image.

checkboxesVisible Specifies or retrieves a value indicating whether checkboxes are
visible.

columnCount Retrieves the number of columns shown.

columnOrder Specifies or retrieves the order of the playlist columns.

columns Defines the columns that appear in the Playlist control.

columnsVisible Specifies or retrieves a value indicating whether columns are
shown.

copying Retrieves a value indicating whether the Playlist control is in
the act of copying.

disabledItemColor Specifies or retrieves the color of a disabled CD track or of
online content when offline.

dropDownBackgroundImage Specifies or retrieves the name of the image that displays in the
background of the drop-down list.

dropDownImage Specifies or retrieves the name of the image used for the drop-
down list button that is displayed at the right edge of the drop-
down list.

dropDownList Specifies or retrieves a value indicating which elements show
up in the drop-down list for a given instance of the Playlist
control.

dropDownToolTip Specifies or retrieves the ToolTip shown when the user hovers
over the Playlist control drop-down menu.

dropDownVisible Specifies or retrieves a value indicating whether the Playlist
drop-down selector is visible.

editButtonVisible Specifies or retrieves a value indicating whether the Playlist
edit button is visible.

foregroundColor Specifies or retrieves the foreground color.

hueShift Specifies or retrieves the amount by which the hue of the drop-
down images is shifted.

itemCount Retrieves the number of items currently displayed in the
Playlist control.

itemErrorColor Specifies or retrieves the highlight color that indicates a playlist
item that has an error condition.

itemMedia Retrieves the Media object corresponding to the given index in
the playlist control.

itemPlayingBackgroundColor Specifies or retrieves the background color of the currently
playing Playlist item.

itemPlayingColor Specifies or retrieves the highlight color that indicates the
currently playing item in the playlist.

itemPlaylist Retrieves the playlist for the media item that is displayed at the
given index in the playlist control.

leftStatus Specifies or retrieves the status text that is displayed on the left
side and bottom of the Playlist control.

playlist Specifies or retrieves the Playlist object that the Playlist control
provides an interface to.

playlistItemsVisible Specifies or retrieves a value indicating whether items in the
playlist are visible.

rightStatus Specifies or retrieves the status text that is displayed on the
right side and bottom of the Playlist control.

saturation Specifies or retrieves the saturation value of the drop-down

The PLAYLIST element supports the following methods.

The PLAYLIST element supports the ambient attributes and can implement the ambient event handlers, except
where noted. For more information, see Ambient Attributes and Ambient Event Handlers.

Predefined playlists are normal PLAYLIST elements with various common attribute settings specified by
default. The following predefined playlists are available.

images.

statusColor Specifies or retrieves the color of the status line in the Playlist
control.

Method Description

abortCopy Cancels a copy operation.

addSelectedToPlaylist Adds the selected item to the playlist.

copy Begins a copy operation from the CD.

deleteSelected Deletes the selected item from the playlist.

deleteSelectedFromLibrary Deletes the selected item from the playlist and from Media
Library.

getNextCheckedItem Retrieves the index of the next checked item in the playlist
following the specified index.

getNextCheckedItem2 Retrieves the index of the next checked item in the playlist
following the specified index. Works with nested playlists.

getNextSelectedItem Retrieves the index of the next selected item in the playlist
following the specified index.

getNextSelectedItem2 Retrieves the index of the next selected item in the playlist
following the specified index. Works with nested playlists.

moveSelectedDown Moves the selected item down one position in the list.

moveSelectedUp Moves the selected item up one position in the list.

setCheckedState Specifies that the indexed item in the playlist is checked.

setCheckedState2 Sets the checked state of the item with the specified index in the
Playlist control. Works with nested playlists.

setColumnResizeMode Specifies how the indexed column sizes itself.

setColumnWidth Specifies the column width and changes the resize mode of the
column to "wmpcrmFixed".

setSelectedState Specifies that the indexed item in the playlist is selected.

setSelectedState2 Sets the selected state of the item with the specified index in the
Playlist control. Works with nested playlists.

sortColumn Sorts the data in the specified column.

See Also

Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.abortCopy
The abortCopy method cancels a copy operation.

Syntax

elementID.abortCopy()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element
PLAYLIST.copy
PLAYLIST.copying

Predefined PLAYLIST Description

DROPDOWNPLAYLIST A drop-down PLAYLIST with no items visible.

ITEMSPLAYLIST A drop-down PLAYLIST with no items or column headers
visible.

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.addSelectedToPlaylist
The addSelectedToPlaylist method adds the selected item to a playlist.

Syntax

elementID.addSelectedToPlaylist(playlist)

Parameters

 playlist

Playlist object that will receive the selected item.

Return Values

This method does not return a value.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.allowColumnSorting
The allowColumnSorting attribute specifies or retrieves a value indicating whether sorting column contents is

Previous Next

Previous Next

Previous Next

allowed.

Syntax

elementID.allowColumnSorting

Possible Values

This attribute is a read/write Boolean.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.allowItemEditing
The allowItemEditing attribute specifies or retrieves a value indicating whether items in a playlist will support
in-place editing.

Syntax

elementID.allowItemEditing

Possible Values

This attribute is a read/write Boolean.

Value Description

true Default. Sorting column contents is allowed.

false Sorting column contents is not allowed.

Previous Next

Previous Next

Value Description

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.backgroundColor
The backgroundColor attribute specifies or retrieves the background color.

Syntax

elementID.backgroundColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value. It has a default
value equal to the Windows system window color.

Requirements

Windows Media Player version 7.0 or later.

See Also

Color Reference
PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

true Default. In-place editing is allowed.

false In-place editing is not allowed.

Previous Next

Previous Next

Previous Next

PLAYLIST.backgroundImage
The backgroundImage attribute specifies or retrieves the background image.

Syntax

elementID.backgroundImage

Possible Values

This attribute is a read/write String containing the name of an image file. It has no default value.

Remarks

If the image height and width are smaller than the height and width of the Playlist control, the image is tiled.
The supported formats are BMP, JPG, GIF and PNG.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.checkboxesVisible
The checkboxesVisible attribute specifies or retrieves a value indicating whether check boxes are visible.

Syntax

elementID.checkboxesVisible

Previous Next

Previous Next

Previous Next

Possible Values

This attribute is a read/write Boolean.

Remarks

Check boxes appear in the far left column.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.columnCount
The columnCount attribute retrieves the number of columns shown.

Syntax

elementID.columnCount

Possible Values

This attribute is a read-only Number (long).

Requirements

Windows Media Player version 7.0 or later.

See Also

Value Description

true Check boxes are visible.

false Default. Check boxes are not visible.

Previous Next

Previous Next

PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.columnOrder
The columnOrder attribute specifies or retrieves the order of the playlist columns.

Syntax

elementID.columnOrder

Possible Values

This attribute is a read/write String specifying a semicolon-delimited list of Playlist column indexes. The
default value is "0;1;2;3". Leading and trailing semicolons and spaces should not be present.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.columns
The columns attribute defines the columns that appear in the Playlist control.

Previous Next

Previous Next

Previous Next

Previous Next

Syntax

elementID.columns

Possible Values

This attribute is a read/write String in the following format:

DB_NAME=FRIENDLY_NAME;DB_NAME=FRIENDLY_NAME;

where FRIENDLY_NAME is the value shown in the column header of the Playlist control, and DB_NAME is a
value from the following table. Note that a Playlist item might be a media item from Media Library or from a
CD, or it might be another Playlist that is either user-created or taken from a CD. Some columns are valid only
with certain Playlist items as indicated in the Description column.

Value Description

Album The name of the album. Used with media items only.

Artist The name of the artist. Not used with user-created Playlists.

Author The name of the artist.

Bitrate The bit rate of the content. Used only with media items from Media
Library.

CDTrackEnabled Indicates whether the CD track is enabled. Used only with CD media
items.

Checked Reserved for future use.

Copyright The copyright of the Playlist item. Not used with CD playlists or media
items.

CreationDate The date and time that the entry in Media Library was created. Used
only with items from Media Library.

DigitallySecure Indicates whether the item is protected with Windows Media Rights
Manager. Used only with media items from Media Library.

Duration The duration of the media item.

FileType Reserved for future use.

Genre The genre of the Playlist item. Not used with playlists from CDs.

MediaAttribute Reserved for future use.

MediaType The type of the media item (audio or video).

MetadataSource The source of the metadata for this CD track (AMG,
WindowsMedia.com, and so on). Used only with CD media items.

ModifiedBy Reserved for future use.

Name The name of the Playlist item.

OriginalIndex If applicable, the corresponding CD track identifier. Used only with CD

Remarks

If one of the columns does not exist in Media Library, it is left blank.

A maximum of 31 columns may be specified.

If you specify a duplicate column, the data in the first column will be left-aligned but all other duplicate
columns will be right-aligned. For example, if you have two duration columns, the data will be left-aligned in
the first and right-aligned in the second.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element
PLAYLIST.columnsVisible

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.columnsVisible

media items.

PlayCount The number of times the content has been played through to the end.
Used only with media items from Media Library.

PlaylistAttribute Reserved for future use.

Rating Reserved for future use.

SourceURL The path or URL to the content. Used only with media items from
Media Library.

Status The copying status of a CD track being copied. Used only with CD
media items.

Style Reserved for future use.

TOC If applicable, the corresponding CD Table of Contents Identifier. Not
used with user-created Playlists.

Previous Next

Previous Next

The columnsVisible attribute specifies or retrieves a value indicating whether column headers are shown.

Syntax

elementID.columnsVisible

Possible Values

This attribute is a read/write Boolean.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element
PLAYLIST.columns

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.copy
The copy method begins a copy operation from the CD.

Syntax

elementID.copy()

Parameters

This method takes no parameters.

Return Values

Value Description

true Default. Column headers are shown.

false Column headers are not shown.

Previous Next

Previous Next

This method does not return a value.

Remarks

This method copies only the checked items in the playlist, and works the same way as in the Copy from CD
pane in the full mode of the Player. For this method to work, a CD must be in the CD-ROM drive. Set the
checkboxesVisible attribute to true to allow users to select individual items on a CD before copying.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element
PLAYLIST.abortCopy
PLAYLIST.copying

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.copying
The copying attribute retrieves a value indicating whether the Playlist control is in the act of copying.

Syntax

elementID.copying

Possible Values

This attribute is a read-only Boolean.

Requirements

Windows Media Player version 7.0 or later.

Previous Next

Previous Next

Value Description

true The Playlist control is in the act of copying.

false The Playlist control is not in the act of copying.

See Also

PLAYLIST Element
PLAYLIST.abortCopy
PLAYLIST.copy

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.deleteSelected
The deleteSelected method deletes the selected item from the playlist.

Syntax

elementID.deleteSelected()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element
PLAYLIST.deleteSelectedFromLibrary

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

PLAYLIST.deleteSelectedFromLibrary
The deleteSelectedFromLibrary method deletes the selected item from the playlist and from Media Library.

Syntax

elementID.deleteSelectedFromLibrary()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element
PLAYLIST.deleteSelected

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.disabledItemColor
The disabledItemColor attribute specifies or retrieves the color of a disabled CD track or of online content
when offline.

Syntax

elementID.disabledItemColor

Previous Next

Previous Next

Previous Next

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value. It has a default
value of "graytext".

Requirements

Windows Media Player version 7.0 or later.

See Also

Color Reference
PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.dropDownBackgroundImage
The dropDownBackgroundImage attribute specifies or retrieves the name of the image that displays in the
background of the drop-down list.

Syntax

elementID.dropDownBackgroundImage

Possible Values

This attribute is a read/write String containing the name of an image file. It has no default value.

Remarks

This attribute supports PNG, JPG, BMP, and GIF files. If the image is an 8-bit BMP file, its hue and saturation
values can be changed dynamically using the hueShift and saturation attributes.

Requirements

Windows Media Player 9 Series or later.

See Also

PLAYLIST Element

Previous Next

Previous Next

PLAYLIST.dropDownImage
PLAYLIST.hueShift
PLAYLIST.saturation

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.dropDownImage
The dropDownImage attribute specifies or retrieves the name of the image used for the drop-down list button
that is displayed at the right edge of the drop-down list.

Syntax

elementID.dropDownImage

Possible Values

This attribute is a read/write String containing the name of an image file. It has no default value.

Remarks

This attribute supports PNG, JPG, BMP, and GIF files. If the image is an 8-bit BMP file, its hue and saturation
values can be changed dynamically using the hueShift and saturation attributes.

Requirements

Windows Media Player 9 Series or later.

See Also

PLAYLIST Element
PLAYLIST.dropDownBackgroundImage
PLAYLIST.hueShift
PLAYLIST.saturation

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

PLAYLIST.dropDownList
The dropDownList attribute specifies or retrieves a value indicating which elements show up in the drop-down
list box for a given instance of the Playlist control.

Syntax

elementID.dropDownList

Possible Values

This attribute is a read/write String containing one of the following values.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Value Description

showAlbums Shows albums.

showAll Default. Shows all available elements including CD playlists, user
playlists, and radio presets.

showCD Shows the CD playlist.

showClips Shows all clips.

showCurrent Shows the current, unsaved playlist.

showLibrary Shows only library playlists.

showRadio Shows radio presets.

showQueries Shows queries.

Previous Next

PLAYLIST.dropDownToolTip
The dropDownToolTip attribute specifies or retrieves the ToolTip shown when the user hovers over the
Playlist control drop-down list.

Syntax

elementID.dropDownToolTip

Possible Values

This attribute is a read/write String with a default value of "Display playlists, audio, video, or radio stations".

Remarks

When this attribute is set to "" (empty string), no ToolTip is displayed.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.dropDownVisible
The dropDownVisible attribute specifies or retrieves a value indicating whether the Playlist drop-down list is
visible.

Syntax

elementID.dropDownVisible

Previous Next

Previous Next

Previous Next

Possible Values

This attribute is a read/write Boolean.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.editButtonVisible
The editButtonVisible attribute specifies or retrieves a value indicating whether the Playlist edit button is
visible.

Syntax

elementID.editButtonVisible

Possible Values

This attribute is a read/write Boolean.

Remarks

Value Description

true Default. The drop-down is visible.

false The drop-down is not visible.

Previous Next

Previous Next

Value Description

true The playlist edit button is visible.

false Default. The playlist edit button is not visible.

When you set this attribute to true, the Playlist edit button will appear in the lower-left corner of the Playlist
control. Clicking this button displays a menu of options allowing the user to edit, clear, sort, open, save, or copy
a playlist.

Requirements

Windows Media Player 9 Series or later.

See Also

PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.foregroundColor
The foregroundColor attribute specifies or retrieves the foreground color.

Syntax

elementID.foregroundColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value. It has a default
value equal to the Windows system text color.

Requirements

Windows Media Player version 7.0 or later.

See Also

Color Reference
PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

PLAYLIST.getNextCheckedItem
The getNextCheckedItem method retrieves the index of the next checked item in the playlist following the
specified index.

Syntax

elementID.getNextCheckedItem(item)

Parameters

 item

Number (long) indicating the index of the item to search after.

Return Values

This method returns a Number (long).

Remarks

When there are no further checked items, this method returns –1.

This method has been replaced by getNextCheckedItem2, which supports nested playlists.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element
PLAYLIST.getNextCheckedItem2

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

PLAYLIST.getNextCheckedItem2
The getNextCheckedItem2 method retrieves the index of the next checked item in the playlist following the
specified index.

Syntax

elementID.getNextCheckedItem2(item)

Parameters

 item

Number (long) indicating the index of the item to search after.

Return Values

This method returns a Number (long).

Remarks

This method replaces the getNextCheckedItem method in order to work with nested playlists. Use –1 to find
the first checked item. When there are no further checked items, this method returns –1.

Requirements

Windows Media Player 9 Series or later.

See Also

PLAYLIST Element
PLAYLIST.getNextCheckedItem

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.getNextSelectedItem
The getNextSelectedItem method retrieves the index of the next selected item in the playlist following the

Previous Next

Previous Next

Previous Next

specified index.

Syntax

elementID.getNextSelectedItem(item)

Parameters

 item

Number (long) indicating the index of the item to search after.

Return Values

This method returns a Number (long).

Remarks

When there are no further selected items, this method returns –1.

This method has been replaced by getNextSelectedItem2, which supports nested playlists.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element
PLAYLIST.getNextSelectedItem2

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.getNextSelectedItem2
The getNextSelectedItem2 method retrieves the index of the next selected item in the playlist following the
specified index.

Syntax

elementID.getNextSelectedItem2(item)

Previous Next

Previous Next

Parameters

 item

Number (long) indicating the index of the item to search after.

Return Values

This method returns a Number (long).

Remarks

This method replaces the getNextSelectedItem method in order to work with nested playlists. Use –1 to find
the first selected item. When there are no further selected items, -1 is returned.

Requirements

Windows Media Player 9 Series or later.

See Also

PLAYLIST Element
PLAYLIST.getNextSelectedItem

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.hueShift
The hueShift attribute specifies or retrieves the amount by which the hue of the drop-down images is shifted.

Syntax

elementID.hueShift

Possible Values

This attribute is a read/write Number (float) with a value ranging from 0.0 to 360.0 with a default value of 0.0.

Remarks

This attribute changes the hue value of the images specified by the dropDownBackgroundImage and

Previous Next

Previous Next

dropDownImage attributes if they have been specified and they refer to 8-bit BMP images.

Requirements

Windows Media Player 9 Series or later.

See Also

PLAYLIST Element
PLAYLIST.dropDownBackgroundImage
PLAYLIST.dropDownImage
PLAYLIST.saturation

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.itemCount
The itemCount attribute retrieves the number of items currently displayed in the Playlist control.

Syntax

elementID.itemCount

Possible Values

This attribute is a read-only Number (long).

Remarks

The itemCount property will count the total number of expanded items. For example, if there are two playlists
that contain three media clips each, itemCount will return 2 if the playlists are not expanded. If only the first
playlist is expanded, itemCount will return 4. If both playlists are expanded, itemCount will return 6.

Requirements

Windows Media Player 9 Series or later.

See Also

PLAYLIST Element

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.itemErrorColor
The itemErrorColor attribute specifies or retrieves the highlight color that indicates a playlist item that has an
error condition.

Syntax

elementID.itemErrorColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value. It has a default
value of "red".

Requirements

Windows Media Player 9 Series or later.

See Also

Color Reference
PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.itemMedia
The itemMedia attribute retrieves the Media corresponding to the given index in the playlist control.

Previous Next

Previous Next

Previous Next

Previous Next

Syntax

elementID.itemMedia(index)

Parameters

 index

Number (long) containing the index of a playlist item.

Possible Values

This attribute is a read-only Media object.

Remarks

The itemMedia property will return media objects that are expanded in the playlist control. For example, if
there is a playlist that contains three media clips that is not expanded in the playlist control, itemMedia(0) will
return the playlist as the media object. If the playlist is expanded, itemMedia(0) will return the first media clip
in the playlist.

Requirements

Windows Media Player 9 Series or later.

See Also

Media Object
PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.itemPlayingBackgroundColor
The itemPlayingBackgroundColor attribute specifies or retrieves the background color of the currently
playing playlist item.

Syntax

elementID.itemPlayingBackgroundColor

Possible Values

Previous Next

Previous Next

This attribute is a read/write String containing any Microsoft Internet Explorer color value. It has a default
value of "#222222".

Requirements

Windows Media Player version 7.0 or later.

See Also

Color Reference
PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.itemPlayingColor
The itemPlayingColor attribute specifies or retrieves the highlight color that indicates the currently playing
item in the playlist.

Syntax

elementID.itemPlayingColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value. It has a default
value of "#00FF00".

Requirements

Windows Media Player version 7.0 or later.

See Also

Color Reference
PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

PLAYLIST.itemPlaylist
The itemPlaylist attribute retrieves the playlist for the media item that is displayed at the given index in the
playlist control.

Syntax

elementID.itemPlaylist(index)

Parameters

 index

Number (long) containing the index of a playlist item.

Possible Values

This attribute is a read-only Playlist object.

Remarks

The itemPlaylist property will return the playlist object that is expanded in the playlist control. For example, if
there are two nested playlists that are not expanded in the playlist control, and that contain three media clips
each, itemPlaylist(1) will return the parent playlist that contains the two nested playlists. If the second playlist
is expanded, itemPlaylist(1) will the second playlist. If both playlists are expanded, itemPlaylist(1) will return
the first playlist.

Requirements

Windows Media Player 9 Series or later.

See Also

PLAYLIST Element
Playlist Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

PLAYLIST.leftStatus
The leftStatus attribute specifies or retrieves the status text that is displayed on the left side and bottom of the
Playlist control.

Syntax

elementID.leftStatus

Possible Values

This attribute is a read/write String.

Remarks

This attribute can combine any text with specific keywords that will display the desired information, such as the
total duration of the playlist. The keywords are surrounded by percentage symbols (%) to keep them distinct
from the ordinary text.

The following keywords can be used.

Previous Next

Keyword Description

count Number of items in the playlist.

size Total size of the playlist.

duration Total duration of the playlist.

XXX Does a getItemInfo on the playlist with XXX being
the item to receive.

SelectedSize Total size of the selected entries in the playlist.

SelectedCount Total number of selected entries in the playlist.

SelectedDuration Total duration of the selected entries in the playlist.

CheckedCount Total number of checked tracks in the playlist.

CheckedDuration Total duration of the checked tracks in the playlist.

CheckedSize Total size of the checked tracks in the playlist.

DurationString Displays text that describes the duration as "Total
Time" or "Estimated Time", depending on whether
the total values are known. This text is followed by
"%duration%".

Example

The value "Total Time: %duration%" for a playlist that contains a total duration of seven minutes will display
Total Time: 07:00.

Requirements

Windows Media Player 9 Series or later.

See Also

PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.moveSelectedDown
The moveSelectedDown method moves the selected item down one position in the list.

Syntax

elementID.moveSelectedDown()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Requirements

Windows Media Player version 7.0 or later.

CheckedDurationString Displays text that describes the duration for all
checked items in the playlist as "Total Time" or
"Estimated Time", depending on whether the total
values are known. This text is followed by "%
duration%".

Previous Next

Previous Next

See Also

PLAYLIST Element
PLAYLIST.moveSelectedUp

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.moveSelectedUp
The moveSelectedUp method moves the selected item up one position in the list.

Syntax

elementID.moveSelectedUp()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element
PLAYLIST.moveSelectedDown

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

PLAYLIST.playlist
The playlist attribute specifies or retrieves the Playlist object that the Playlist control provides an interface to.

Syntax

elementID.playlist

Possible Values

This attribute is a read/write Playlist object with no default value.

Remarks

If the playlist specified is invalid or if no value is specified, the Playlist control displays the currently playing
media item.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element
Playlist Object

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.playlistItemsVisible
The playlistItemsVisible attribute specifies or retrieves a value indicating whether the Playlist items area is
visible.

Syntax

Previous Next

Previous Next

Previous Next

elementID.playlistItemsVisible

Possible Values

This attribute is a read/write Boolean.

Remarks

The Playlist items area includes the column headers, the contents of the columns, and the scrollbars (if present).

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.rightStatus
The rightStatus attribute specifies or retrieves the status text that is displayed on the right side and bottom of
the Playlist control.

Syntax

elementID.rightStatus

Possible Values

This attribute is a read/write String.

Remarks

Value Description

true Default. Playlist items area is visible.

false Playlist items area is not visible.

Previous Next

Previous Next

This attribute can combine any text with specific keywords that will display the desired information, such as the
total duration of the playlist. The keywords are surrounded by percentage symbols (%) to keep them distinct
from the ordinary text.

The following keywords can be used.

Example

The value "Total Time: %duration%" for a playlist that contains a total duration of seven minutes will display
Total Time: 07:00.

Requirements

Windows Media Player 9 Series or later.

See Also

PLAYLIST Element

Keyword Description

count Number of items in the playlist.

size Total size of the playlist.

duration Total duration of the playlist.

XXX Does a getItemInfo on the playlist with XXX being
the item to receive.

SelectedSize Total size of the selected entries in the playlist.

SelectedCount Total number of selected entries in the playlist.

SelectedDuration Total duration of the selected entries in the playlist.

CheckedCount Total number of checked tracks in the playlist.

CheckedDuration Total duration of the checked tracks in the playlist.

CheckedSize Total size of the checked tracks in the playlist.

DurationString Displays text that describes the duration as "Total
Time" or "Estimated Time", depending on whether
the total values are known. This text is followed by
"%duration%".

CheckedDurationString Displays text that describes the duration for all
checked items in the playlist as "Total Time" or
"Estimated Time", depending on whether the total
values are known. This text is followed by "%
duration%".

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.saturation
The saturation attribute specifies or retrieves the saturation value of the drop-down images.

Syntax

elementID.saturation

Possible Values

This attribute is a read/write Number (float) with a value ranging from 0.0 to 2.0 with a default value of 1.0.

Remarks

This attribute changes the saturation value of the images specified by the dropDownBackgroundImage and
dropDownImage attributes if they have been specified and they refer to 8-bit BMP images.

Requirements

Windows Media Player 9 Series or later.

See Also

PLAYLIST Element
PLAYLIST.dropDownBackgroundImage
PLAYLIST.dropDownImage
PLAYLIST.hueShift

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.setCheckedState

Previous Next

Previous Next

Previous Next

The setCheckedState method specifies that the indexed item in the playlist is checked.

Syntax

elementID.setCheckedState(item)

Parameters

 item

Number (long) indicating the index of the playlist item to be checked.

Return Values

This method returns a Boolean.

Remarks

You can set all items to the checked state by specifying –1 in the item parameter.

This method has been replaced by setCheckedState2, which supports nested playlists.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element
PLAYLIST.setCheckedState2

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.setCheckedState2
The setCheckedState2 method sets the checked state of the item with the specified index in the Playlist control.

Syntax

elementID.setCheckedState2(item, checked)

Previous Next

Previous Next

Parameters

 item

Number (long) indicating the index of the playlist item to be checked or unchecked.

 checked

Boolean indicating whether the specified item is to be checked (true) or unchecked (false).

Return Values

This method returns a Boolean.

Remarks

This method replaces the setCheckedState method in order to work with nested playlists. You can set all items
to the given state by specifying –1 in the item parameter.

Requirements

Windows Media Player 9 Series or later.

See Also

PLAYLIST Element
PLAYLIST.setCheckedState

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.setColumnResizeMode
The setColumnResizeMode method specifies how the indexed column sizes itself.

Syntax

elementID.setColumnResizeMode(column, mode)

Parameters

 column

Previous Next

Previous Next

Number (long) indicating the index of the column to be changed.

 mode

String indicating the sizing mode. Contains one of the following values.

Return Values

This method does not return a value.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.setColumnWidth
The setColumnWidth method specifies the column width and changes the resize mode of the column to
"Fixed".

Syntax

elementID.setColumnWidth(column, width)

Parameters

Value Description

AutosizeHeader The column resizes to accommodate all data in both the column and
the header.

AutosizeData The column resizes to accommodate all data in the column only.

Fixed The column is a fixed size.

Stretches The column resizes to use the remaining space in the Playlist control
after all other columns are resized.

Previous Next

Previous Next

 column

Number (long) indicating the index of the column being changed.

 width

Number (long) indicating the new width in pixels.

Return Values

This method does not return a value.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element
PLAYLIST.setColumnResizeMode

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.setSelectedState
The setSelectedState method specifies that the indexed item in the playlist is selected.

Syntax

elementID.setSelectedState(item)

Parameters

 item

Number (long) indicating the index of an item in the playlist.

Return Values

This method does not return a value.

Previous Next

Previous Next

Remarks

You can set all items to the selected state by specifying –1 in the item parameter.

This method has been replaced by setSelectedState2, which supports nested playlists.

Requirements

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element
PLAYLIST.setSelectedState2

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.setSelectedState2
The setSelectedState2 method sets the selected state of the item with the specified index in the Playlist control.

Syntax

elementID.setSelectedState2(item, selected)

Parameters

 item

Number (long) indicating the index of an item in the playlist.

 selected

Boolean indicating whether the specified item is to be selected (true) or unselected (false).

Return Values

This method does not return a value.

Remarks

Previous Next

Previous Next

This method replaces the setSelectedState method in order to work with nested playlists. You can set all items
to the given state by specifying –1 in the item parameter.

Requirements

Windows Media Player 9 Series or later.

See Also

PLAYLIST Element
PLAYLIST.setSelectedState

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.sortColumn
The sortColumn method sorts the data in the specified column.

Syntax

elementID.sortColumn(column)

Parameters

 column

Number (long) indicating the index of the column to sort.

Return Values

This method does not return a value.

Remarks

This method sorts the specified column in the same way as the column header buttons in the playlist control. If
the column has not yet been sorted, it is sorted in alphanumeric order. If it has been sorted, its order is reversed.

For this method to work, the allowColumnSorting attribute must be set to true.

Requirements

Previous Next

Previous Next

Windows Media Player version 7.0 or later.

See Also

PLAYLIST Element
PLAYLIST.allowColumnSorting

© 2000-2003 Microsoft Corporation. All rights reserved.

PLAYLIST.statusColor
The statusColor attribute specifies or retrieves the color of the status line in the Playlist control.

Syntax

elementID.statusColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value. It has a default
value equal to the value of the backgroundColor attribute.

Requirements

Windows Media Player 9 Series or later.

See Also

Color Reference
PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

DROPDOWNPLAYLIST
This is a predefined PLAYLIST element with the following default values.

playlistItemsVisible="false"

Remarks

This will create a simple dropdown PLAYLIST with no items displayed. All properties of this PLAYLIST can
be overridden by explicitly specifying them.

Requirements

Windows Media Player 7.0 or later.

See Also

PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

ITEMSPLAYLIST
This is a predefined PLAYLIST element with the following default values.

backgroundColor="black"
columns="name=Name;Duration=Time"
columnsVisible="false"
dropDownVisible="false"
foregroundColor="white"

Remarks

This will create a simple PLAYLIST that displays the items in a playlist with no drop-down or column headers
visible. All properties of this PLAYLIST can be overridden by explicitly specifying them.

Requirements

Windows Media Player 7.0 or later.

Previous Next

Previous Next

See Also

PLAYLIST Element

© 2000-2003 Microsoft Corporation. All rights reserved.

POPUP Element
The POPUP element provides a way for users to select items from a list. These items can be specified by using
ITEM elements as children of the POPUP element. The POPUP element is identical to the LISTBOX element
except the default value of the popUp attribute is true. When popUp is set to true, the control is displayed only
when the show method is called, and its width is set to the width of the content (the ambient width attribute is
ignored). The control is hidden automatically when the user selects an item from the list or when the dismiss
method is called.

Note This element requires Windows Media Player for Windows XP or later.

See Also

LISTBOX Element
LISTBOX.dismiss
LISTBOX.popUp
LISTBOX.show
Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

PROGRESSBAR Element
The PROGRESSBAR element provides a way to display progress information in a horizontal or vertical
control. This element is identical to the SLIDER element. A progress bar is normally a slider that is not

Previous Next

Previous Next

Previous Next

Previous Next

interactive, but there is nothing that prevents it from being used interactively. This element is provided solely as
a convenience tag for making the noninteractivity clear in your code, if you choose to use it that way. It has no
other value.

See Also

Skin Programming Reference
SLIDER Element

© 2000-2003 Microsoft Corporation. All rights reserved.

SETTINGS Element
The SETTINGS element enables the following attributes of the Settings object to be specified within a skin.

See Also

Settings Object

Previous Next

Previous Next

Attribute Description

autoStart Specifies or retrieves a value indicating whether the current media item
begins playing automatically.

balance Specifies or retrieves the current stereo balance.

baseURL Specifies or retrieves the base URL used for relative path resolution.

defaultFrame Specifies or retrieves the name of the frame used to display a URL
received in a ScriptCommand.

enableErrorDialogs Specifies or retrieves a value indicating whether error dialogs are shown
automatically.

invokeURLs Specifies or retrieves a value indicating whether URL events should start
a Web browser.

mute Specifies or retrieves a value indicating whether audio is muted.

playCount Specifies or retrieves the number of times a media item will play.

rate Specifies or retrieves the current playback rate

volume Specifies or retrieves the current volume.

Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER Element
The SLIDER element provides a way to create and manipulate a simple horizontal or vertical slider control. It
supports the following attributes and event handlers. Predefined SLIDER elements are also provided for
convenience.

The SLIDER element supports the following attributes.

Previous Next

Previous Next

Attribute Description

backgroundColor Specifies or retrieves the background color of the slider control.

backgroundEndColor Specifies or retrieves the background ending color of the slider control.

backgroundHoverImage Specifies or retrieves the background image of the slider that appears
when hovering over it with the mouse.

backgroundImage Specifies or retrieves the default background image of the slider.

borderSize Specifies or retrieves the border size in pixels.

cursor Specifies or retrieves a value indicating which type of cursor appears
when the mouse is over the slider control.

direction Specifies or retrieves the direction that slider images are laid out.

disabledColor Specifies or retrieves the disabled color of the slider control.

disabledImage Specifies or retrieves the image of the slider that appears when the
control is disabled.

foregroundColor Specifies or retrieves the foreground color of the slider control.

foregroundEndColor Specifies or retrieves the foreground ending color of the slider control.

foregroundHoverImage Specifies or retrieves the foreground image of the slider that appears
when hovering over it with the mouse.

foregroundImage Specifies or retrieves the default foreground image of the slider.

foregroundProgress Specifies or retrieves the current position of the foreground progress bar
as a percentage of the slider area.

The SLIDER element can implement the following event handlers.

The SLIDER element supports the ambient attributes and can implement the ambient event handlers. For more
information, see Ambient Attributes and Ambient Event Handlers.

Predefined sliders are normal SLIDER elements with various common attribute settings specified by default.
The following predefined sliders are available.

max Specifies or retrieves the maximum value of the range defined by the
slider control.

min Specifies or retrieves the minimum value of the range defined by the
slider control.

slide Specifies or retrieves a value indicating whether the foreground image
slides over the background image.

thumbDisabledImage Specifies or retrieves the disabled thumb image of the slider control.

thumbDownImage Specifies or retrieves the image representing the down state of the
thumb.

thumbHoverImage Specifies or retrieves the image of the thumb that appears when hovering
over it with the mouse.

thumbImage Specifies or retrieves the image that will be used to represent the current
position of the slider.

tiled Specifies or retrieves a value indicating whether the slider images will
be tiled.

toolTip Specifies or retrieves the ToolTip text for the slider control.

transparencyColor Specifies or retrieves the transparent color of the slider images.

useForegroundProgress Specifies or retrieves a value indicating whether the foreground progress
bar will be used.

value Specifies and retrieves the current position of the slider.

Event handler Description

onDragBegin Handles an event that occurs when the user clicks and holds the left
mouse button down and begins to drag the mouse.

onDragEnd Handles an event that occurs when the left mouse button is released after
a dragging operation.

onPositionChange Handles an event that occurs when the position of the slider changes as a
result of the user clicking or dragging.

Predefined SLIDER Description

BALANCESLIDER A SLIDER used to set audio balance.

SEEKSLIDER A SLIDER used to seek to any position within a media file.

See Also

Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.backgroundColor
The backgroundColor attribute specifies or retrieves the background color of the slider control.

Syntax

elementID.backgroundColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value. It has no default
value.

Remarks

A basic slider control can be constructed by specifying backgroundColor or backgroundImage, and
foregroundColor or foregroundImage.

When using the colors, the dimensions of the slider control define the area filled by the background color. The
foreground color covers the background color as the slider position increases.

To make a gradient fill of the area occupied by the background or foreground color, specify the
backgroundEndColor or foregroundEndColor attributes.

Example

See the CUSTOMSLIDER.positionImage attribute for a sample illustrating how the attributes of the SLIDER
element are used.

Requirements

Windows Media Player version 7.0 or later.

VOLUMESLIDER A SLIDER used to set audio volume.

Previous Next

Previous Next

See Also

Color Reference
SLIDER Element
SLIDER.backgroundEndColor
SLIDER.backgroundImage
SLIDER.foregroundColor
SLIDER.foregroundEndColor
SLIDER.foregroundImage

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.backgroundEndColor
The backgroundEndColor attribute specifies or retrieves the background ending color of the slider control.

Syntax

elementID.backgroundEndColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value. It has no default
value.

Remarks

The backgroundEndColor is used in conjunction with a backgroundColor. The effect created is a gradient
fade from the backgroundColor to the backgroundEndColor.

Requirements

Windows Media Player version 7.0 or later.

See Also

Color Reference
SLIDER Element
SLIDER.backgroundColor

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.backgroundHoverImage
The backgroundHoverImage attribute specifies or retrieves the background image of the slider that appears
when hovering over it with the mouse.

Syntax

elementID.backgroundHoverImage

Possible Values

This attribute is a read/write String containing the name of an image file.

Remarks

This attribute is optional. If it is not specified, the backgroundImage will be used.

The supported formats are BMP, JPG, PNG, and GIF (not including animated GIFs).

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.backgroundImage

Previous Next

Previous Next

Previous Next

The backgroundImage attribute specifies or retrieves the background image of the slider.

Syntax

elementID.backgroundImage

Possible Values

This attribute is a read/write String containing the name of an image file.

Remarks

This attribute is optional. When using images to construct a slider, the backgroundImage is used for the main
slider image. The thumbImage represents the actual slider and can be moved using the mouse. At the
thumbImage slider there is an invisible line where the background image is displayed on one side of the line,
and the foreground image is displayed on the other side.

When the thumbImage slider is moved with the mouse, if slide is set to true, the foreground image slides along
as if being pulled by the slider to cover the background image. If slide is set to false, the foreground image does
not move, but is revealed in place, as if the slider is moving the background image off the foreground image.

If the tiled attribute is set to true and the background image is smaller than the slider control, the image will be
tiled either horizontally or vertically depending on the direction attribute. If the borderSize attribute is set to a
value greater than zero, the number specified will be the number of pixels from the left and right or top and
bottom of the image (again, depending on the direction attribute) that will be reserved for the borders of the
slider control. In this case, only the central portion of the image is used for tiling the remainder of the control.

The supported formats are BMP, JPG, PNG, and GIF (not including animated GIFs).

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element
SLIDER.foregroundImage
SLIDER.slide
SLIDER.thumbImage

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

SLIDER.borderSize
The borderSize attribute specifies or retrieves the border width in pixels.

Syntax

elementID.borderSize

Possible Values

This attribute is a read/write Number (long) representing the border width in pixels. The default value is zero.

Remarks

This attribute defines an offset from the beginning and end of the slider control—that is, from the left and right
if the direction attribute is set to "horizontal", and from the top and bottom if it is set to "vertical". These offset
positions dictate the minimum and maximum positions of the slider thumb, beyond which the foreground color
or image will not be applied.

If a background image is used with the tiled attribute set to true, the offset is applied to the image, dictating the
amount of the image (either from the left and right or from the top and bottom) to be used for the beginning and
end borders of the slider control, with the central portion of the image being tiled throughout the remainder. In
this way, a small background image can be used to cover the full length of a larger slider control.

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element
SLIDER.foregroundColor
SLIDER.foregroundImage
SLIDER.thumbImage
SLIDER.tiled

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.cursor
The cursor attribute specifies or retrieves a value indicating which cursor appears when the mouse is over the

Previous Next

Previous Next

slider control.

Syntax

elementID.cursor

Possible Values

This attribute is a read/write String.

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.direction

Value Description

system Platform-dependent cursor (usually an arrow).

hand Default. Hand.

help Arrow with question mark indicating Help is available.

sizeall Four-pointed arrow pointing north, south, east, and west.

sizenesw Double-pointed arrow pointing northeast and southwest.

sizens Double-pointed arrow pointing north and south.

sizenwse Double-pointed arrow pointing northwest and southeast.

sizewe Double-pointed arrow pointing west and east.

uparrow Vertical arrow pointing upward.

*.ani or *.cur Any .ani or .cur file (must be in the same directory as the .wms file or in
the .wmz file).

Previous Next

Previous Next

The direction attribute specifies or retrieves the direction that slider images are laid out.

Syntax

elementID.direction

Possible Values

This attribute is a read/write String.

Remarks

The fill or movement of the foregroundColor or foregroundImage is along the vertical or horizontal axis
according to the specified value.

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element
SLIDER.foregroundColor
SLIDER.foregroundImage

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.disabledColor
The disabledColor attribute specifies or retrieves the color of the slider control when it is disabled.

Syntax

elementID.disabledColor

Value Description

horizontal Default. The minimum position is at the left, and the maximum position
is at the right.

vertical The minimum position is at the bottom, and the maximum position is at
the top.

Previous Next

Previous Next

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value. It has no default
value.

Remarks

When the slider control is specified using foreground and background colors, the disabled color specifies the
color of the control when enabled is set to false.

Requirements

Windows Media Player version 7.0 or later.

See Also

Color Reference
SLIDER Element
AmbientAttributes.enabled

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.disabledImage
The disabledImage attribute specifies or retrieves the image of the slider that is used when the slider control is
disabled.

Syntax

elementID.disabledImage

Possible Values

This attribute is a read/write String containing the name of an image file.

Remarks

The disabledImage is optional. If it is not provided, the backgroundImage is used for all disabled states.
When a slider control is disabled, no foreground image is visible.

The supported formats are BMP, JPG, PNG, and GIF (not including animated GIFs).

Previous Next

Previous Next

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element
SLIDER.backgroundImage

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.foregroundColor
The foregroundColor attribute specifies or retrieves the foreground color of the slider control.

Syntax

elementID.foregroundColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value. The default value is
"white".

Remarks

A basic slider control can be constructed by specifying one of two pairs of attributes: the backgroundColor
and foregroundColor, or the backgroundImage and foregroundImage.

When you construct a slider control using the color attributes, the dimensions of the slider control define the
area filled by the background color. The foreground color covers the background color as the slider position
increases.

To make a gradient fill in the area occupied by the background or foreground color, specify the
backgroundEndColor or foregroundEndColor attributes.

Example

See the CUSTOMSLIDER.positionImage attribute for a sample illustrating how the attributes of the SLIDER
element are used.

Previous Next

Previous Next

Requirements

Windows Media Player version 7.0 or later.

See Also

Color Reference
SLIDER Element
SLIDER.backgroundColor
SLIDER.backgroundEndColor
SLIDER.foregroundEndColor
SLIDER.foregroundImage

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.foregroundEndColor
The foregroundEndColor attribute specifies or retrieves the foreground ending color of the slider control.

Syntax

elementID.foregroundEndColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value. It has no default
value.

Remarks

The foregroundEndColor is used in conjunction with a foregroundColor. The effect created is a gradient fade
from the foregroundColor to the foregroundEndColor.

Requirements

Windows Media Player version 7.0 or later.

See Also

Color Reference
SLIDER Element
SLIDER.foregroundColor

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.foregroundHoverImage
The foregroundHoverImage attribute specifies or retrieves the foreground image of the slider that appears
when hovering over it with the mouse.

Syntax

elementID.foregroundHoverImage

Possible Values

This attribute is a read/write String containing the name of an image file.

Remarks

The foregroundHoverImage is optional. If it is not provided, the backgroundImage is used.

The supported formats are BMP, JPG, PNG, and GIF (not including animated GIFs).

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

SLIDER.foregroundImage
The foregroundImage attribute specifies or retrieves the foreground image of the slider.

Syntax

elementID.foregroundImage

Possible Values

This attribute is a read/write String containing the name of an image file.

Remarks

This attribute is optional. When using images to construct a slider control, the backgroundImage is used for
the main slider image. The thumbImage represents the actual slider and can be moved using the mouse. At the
thumbImage slider there is an invisible line where the background image is displayed on one side of the line,
and the foreground image is displayed on the other side.

When the thumbImage slider is moved with the mouse, if slide is set to true, the foreground image slides along
as if being pulled by the slider to cover the background image. If slide is set to false, the foreground image does
not move, but is revealed in place, as if the slider is moving the background image off the foreground image.

If the tiled attribute is set to true and the foreground image is smaller than the foreground area of the slider
control, the image will be tiled either horizontally or vertically, depending on the direction attribute, to fill the
available space.

The supported formats are BMP, JPG, PNG, and GIF (not including animated GIFs).

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element
SLIDER.backgroundImage
SLIDER.slide
SLIDER.thumbImage
SLIDER.value

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

SLIDER.foregroundProgress
The foregroundProgress attribute specifies or retrieves the current position of the foreground progress bar as a
percentage of the slider area.

Syntax

elementID.foregroundProgress

Possible Values

This attribute is a read/write Number (float) ranging from 0 to 100.

Example

<SLIDER
 id="seek"
 backgroundColor="blue"
 foregroundColor="red"
 thumbImage="seekthumb.bmp"
 min="0"
 max="wmpprop:player.currentMedia.duration"
 value="wmpprop:player.controls.currentPosition"
 useForegroundProgress="true"
 foregroundProgress="wmpprop:player.network.downloadProgress"
 ondragend="player.controls.currentposition=value"
/>

Remarks

This attribute is used primarily to track the download progress of a media file while simultaneously tracking the
current play position of the file using the value attribute. The position of the slider thumb is constrained to the
area of the foreground progress. This allows interactive seeking to take place only within the available portion
of a downloading file.

To use this functionality, the useForegroundProgress attribute must be set to true.

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element
SLIDER.min
SLIDER.max
SLIDER.useForegroundProgress
SLIDER.value

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.max
The max attribute specifies or retrieves the maximum value of the range defined by the slider control.

Syntax

elementID.max

Possible Values

This attribute is a read/write Number (float) with a default value of 100.

Remarks

The value specified for max must be greater than the one for min.

Example

See the CUSTOMSLIDER.positionImage attribute for a sample illustrating how the attributes of the SLIDER
element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element
SLIDER.min
SLIDER.value

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

SLIDER.min
The min attribute specifies or retrieves the minimum value of the range defined by the slider control.

Syntax

elementID.min

Possible Values

This attribute is a read/write Number (float) with a default value of zero.

Remarks

The value specified for min must be less than the one for max.

Example

See the CUSTOMSLIDER.positionImage attribute for a sample illustrating how the attributes of the SLIDER
element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element
SLIDER.max
SLIDER.value

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.onDragBegin
The onDragBegin event handler handles an event that occurs when the user clicks and holds the left mouse
button down and begins to drag the mouse.

Syntax

onDragBegin

Previous Next

Previous Next

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.onDragEnd
The onDragEnd event handler handles an event that occurs when the left mouse button is released after a
dragging operation.

Syntax

onDragEnd

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.onPositionChange

Previous Next

Previous Next

Previous Next

Previous Next

The onPositionChange event handler handles an event that occurs when the position of the slider changes as a
result of the user clicking or dragging.

Syntax

onPositionChange

Remarks

If the position of the slider changes as a result of the value attribute being modified in script, this event is not
fired. To accommodate this possibility, implement the value_onchange event handler instead.

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.slide
The slide attribute specifies or retrieves a value indicating whether the foreground image slides over the
background image or is gradually revealed in a static position over the background image.

Syntax

elementID.slide

Possible Values

This attribute is a read/write Boolean.

Previous Next

Previous Next

Value Description

true Default. The foreground image slides over the background image.

false The foreground image is revealed in place over the background image.

Remarks

When the thumbImage slider is moved with the mouse, if slide is set to true, the foreground image slides along
as if being pulled by the slider to cover the background image. If slide is set to false, the foreground image does
not move, but is revealed in place, as if the slider is moving the background image off the foreground image.

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element
SLIDER.backgroundImage
SLIDER.foregroundImage

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.thumbDisabledImage
The thumbDisabledImage attribute specifies or retrieves the thumb image of the slider control that is used
when the control is disabled.

Syntax

elementID.thumbDisabledImage

Possible Values

This attribute is a read/write String containing the name of an image file.

Remarks

The thumbDisabledImage is optional. If it is not specified, thumbImage is used instead.

The supported formats are BMP, JPG, PNG, and GIF (not including animated GIFs).

Requirements

Windows Media Player version 7.0 or later.

Previous Next

Previous Next

See Also

SLIDER Element
AmbientAttributes.enabled
SLIDER.thumbImage

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.thumbDownImage
The thumbDownImage attribute specifies or retrieves the image representing the down state of the thumb.

Syntax

elementID.thumbDownImage

Possible Values

This attribute is a read/write String containing the name of an image file.

Remarks

The thumbDownImage is optional and is the image used to represent the down state of the thumbImage. If a
thumbDownImage is not provided, the slider will use the thumbImage.

The supported formats are BMP, JPG, PNG, and GIF (not including animated GIFs).

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element
SLIDER.thumbImage

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

SLIDER.thumbHoverImage
The thumbHoverImage attribute specifies or retrieves the image of the thumb that appears when hovering over
it with the mouse.

Syntax

elementID.thumbHoverImage

Possible Values

This attribute is a read/write String containing the name of an image file.

Remarks

The thumbHoverImage is optional. If it is not provided, the slider control will not change appearance when the
mouse hovers over it.

The supported formats are BMP, JPG, PNG, and GIF (not including animated GIFs).

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.thumbImage
The thumbImage attribute specifies or retrieves the image that will be used to represent the current position of

Previous Next

Previous Next

Previous Next

the slider.

Syntax

elementID.thumbImage

Possible Values

This attribute is a read/write String containing the name of an image file.

Remarks

The thumbImage specifies the image that will be used to represent current position, as well as indicate that the
user can take action with the control. If no thumb image is specified, the slider is non-interactive.

The thumb image is centered in the narrow dimension of the slider control. If the thumb image is narrower than
the control, the image appears in the middle of the background. If the thumb image is larger than the control, the
ends of the image are cut off.

The position of the slider is specified by the center of the thumb image. If borderSize is zero, only half the
thumb image will be visible at the beginning and end slider positions. To prevent this, set borderSize to a value
greater than or equal to half the width of the thumb image (or half the height if direction is set to "vertical").

The supported formats are BMP, JPG, PNG, and GIF (not including animated GIFs).

Example

See the CUSTOMSLIDER.positionImage attribute for a sample illustrating how the attributes of the SLIDER
element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element
SLIDER.borderSize
SLIDER.direction

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

SLIDER.tiled
The tiled attribute specifies or retrieves a value indicating whether the slider image will be tiled.

Syntax

elementID.tiled

Possible Values

This attribute is a read/write Boolean.

Remarks

This attribute applies only if you are using foreground and background images to define a slider control. If the
images are smaller than the defined area of the slider, and the tiled attribute is set to true, the images will be
repeated until they fill the entire length of the control.

You may wish to use this attribute in conjunction with the borderSize attribute. The borderSize attribute
allows you to define a border that is not repeated during tiling.

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element
SLIDER.backgroundImage
SLIDER.borderSize
SLIDER.foregroundImage

© 2000-2003 Microsoft Corporation. All rights reserved.

Value Description

true Default. The image bitmap will be repeated until it fills the entire region
of the control.

false The image will not be tiled.

Previous Next

Previous Next

SLIDER.toolTip
The toolTip attribute specifies or retrieves the ToolTip text for the slider control.

Syntax

elementID.toolTip

Possible Values

This attribute is a read/write String with a maximum length of 1024 characters. It has no default value.

Remarks

When this attribute is set to "" (empty string), no ToolTip is displayed.

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.transparencyColor
The transparencyColor attribute specifies or retrieves the transparent color of the slider control background
and foreground images.

Syntax

elementID.transparencyColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value. It has no default
value.

Previous Next

Previous Next

Remarks

Any part of the image containing the transparencyColor will allow the background to show through.

Because JPGs are lossy and therefore subject to unexpected color change, they are not recommended when
transparencyColor is used.

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element
Color Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.useForegroundProgress
The useForegroundProgress attribute specifies or retrieves a value indicating whether the foreground progress
bar will be used.

Syntax

elementID.useForegroundProgress

Possible Values

This attribute is a read/write Boolean.

Remarks

This attribute allows the use of the foregroundProgress attribute, which is used primarily to track the
download progress of a media file while simultaneously tracking the current play position of the file using the

Previous Next

Previous Next

Value Description

true Use foreground progress.

false Default. Do not use foreground progress.

value attribute.

Requirements

Windows Media Player version 7.0 or later.

See Also

SLIDER Element
SLIDER.foregroundProgress
SLIDER.value

© 2000-2003 Microsoft Corporation. All rights reserved.

SLIDER.value
The value attribute specifies or retrieves the current position of the slider.

Syntax

elementID.value

Possible Values

This attribute is a read/write Number (float) with a default value of min.

Remarks

The value should always be greater than or equal to min and less than or equal to max. If you specify a value
outside this range, value and the position of the slider are not changed.

Example

See the CUSTOMSLIDER.positionImage attribute for a sample illustrating how the attributes of the SLIDER
element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

Previous Next

Previous Next

SLIDER Element
SLIDER.min

© 2000-2003 Microsoft Corporation. All rights reserved.

BALANCESLIDER
This is a predefined SLIDER with the following default values.

toolTip="Balance"
max="100"
min="-100"
value="wmpprop:player.settings.balance"
value_onchange="jscript:player.settings.balance=value;"

Remarks

This creates a SLIDER control that sets the audio balance. The ToolTips are localized. All properties of this
SLIDER can be overridden by explicitly specifying them.

Requirements

Windows Media Player 7.0 or later.

See Also

SLIDER Element

© 2000-2003 Microsoft Corporation. All rights reserved.

SEEKSLIDER

Previous Next

Previous Next

Previous Next

Previous Next

This is a predefined SLIDER with the following default values.

toolTip="Seek"
foregroundProgress="wmpprop:player.network.downloadProgress"
max="wmpprop:player.currentMedia.duration"
min="0"
value="wmpprop:player.controls.currentPosition"
onDragEnd="jscript:player.controls.currentPosition=value;"
useForegroundProgress="true"

Remarks

This creates a SLIDER control that seeks the media file to any position. The ToolTips are localized. All
properties of this SLIDER can be overridden by explicitly specifying them.

Requirements

Windows Media Player 7.0 or later.

See Also

SLIDER Element

© 2000-2003 Microsoft Corporation. All rights reserved.

VOLUMESLIDER
This is a predefined slider with the following default values.

toolTip="Volume"
max="100"
min="0"
value="wmpprop:player.settings.volume"
value_onchange="jscript:player.settings.volume=value;
player.settings.mute=false;"

Remarks

This creates a SLIDER control that sets the audio volume. The ToolTips are localized. All properties of this
SLIDER can be overridden by explicitly specifying them.

Requirements

Previous Next

Previous Next

Windows Media Player 7.0 or later.

See Also

SLIDER Element

© 2000-2003 Microsoft Corporation. All rights reserved.

SUBVIEW Element
The SUBVIEW element provides a way to manipulate a portion of a skin, for example, to provide a control
panel that can be hidden when it is not being used. SUBVIEW elements are always children of parent VIEW
elements, and can contain other skin element except for VIEW, THEME, and other SUBVIEW elements.

The SUBVIEW element supports the following attributes, which are defined under the VIEW element.

The SUBVIEW element supports the ambient attributes, except where noted. For more information, see
Ambient Attributes.

The SUBVIEW element can implement the following ambient event handlers: onendmove and onresize.

Previous Next

Previous Next

Attribute Description

backgroundColor Specifies or retrieves the background color of the SUBVIEW
control. The default value is "none".

backgroundImage Specifies or retrieves the background image of the SUBVIEW
control.

backgroundImageHueShift Specifies or retrieves the amount by which the hue of the
background image is shifted.

backgroundImageSaturation Specifies or retrieves the saturation value of the background image.

backgroundTiled Specifies or retrieves a value indicating whether the background
image of the SUBVIEW control is tiled.

resizeBackgroundImage Specifies or retrieves a value indicating whether the background
image can be resized.

transparencyColor Specifies or retrieves the transparency color of the background
image.

See Also

Skin Programming Reference
VIEW Element

© 2000-2003 Microsoft Corporation. All rights reserved.

TEXT Element
The TEXT element provides a way to create and control the appearance of text within a skin by using the
following attributes. Predefined TEXT elements are also provided for convenience.

The TEXT element supports the following attributes.

Previous Next

Previous Next

Attribute Description

backgroundColor Specifies or retrieves the background color for the Text control.

cursor Specifies or retrieves a value indicating which cursor appears when the
mouse is over the Text control.

disabledBackgroundColor Specifies or retrieves the background color used for the Text control
when it is disabled.

disabledFontStyle Specifies or retrieves the font style used for the Text control when it is
disabled.

disabledForegroundColor Specifies or retrieves the text color used when the Text control is
disabled.

fontFace Specifies or retrieves the typeface for the Text control.

fontSize Specifies or retrieves the font size for the Text control.

fontSmoothing Specifies or retrieves a value indicating whether font smoothing is
enabled.

fontStyle Specifies or retrieves the font style for the Text control.

foregroundColor Specifies or retrieves the text color for the Text control.

hoverBackgroundColor Specifies or retrieves the background color used for the Text control
when the mouse cursor hovers over it.

hoverFontStyle Specifies or retrieves the font style used for the Text control when the

The TEXT element supports the ambient attributes and can implement the ambient event handlers. For more
information, see Ambient Attributes and Ambient Event Handlers.

Predefined text elements are normal TEXT elements with various common attribute settings specified by
default. The following predefined text elements are available.

See Also

Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

mouse cursor hovers over it.

hoverForegroundColor Specifies or retrieves the text color used for the Text control when the
mouse cursor hovers over it.

justification Specifies or retrieves the alignment of the text within the Text control.

scrolling Specifies or retrieves a value indicating whether the text scrolls.

scrollingAmount Specifies or retrieves the number of pixels that the text moves during
each scrolling movement.

scrollingDelay Specifies or retrieves the time delay between scrolling movements.

scrollingDirection Specifies or retrieves the direction of the scrolling text.

textWidth Retrieves the width in pixels of the string contained in the value
attribute.

toolTip Specifies or retrieves the ToolTip text for the text control.

value Specifies or retrieves the text that is displayed in the Text control.

wordWrap Specifies or retrieves a value indicating whether word wrapping is
enabled or disabled.

Predefined TEXT Description

CURRENTPOSITIONTEXT A TEXT element with a built in listener for
player.controls.currentPositionString.

DURATIONTEXT A TEXT element with a built in listener for
player.currentMedia.DurationString.

STATUSTEXT A TEXT element with a built in listener for player.status.

TRACKNAMETEXT A TEXT element with a built in listener for
player.currentMedia.name.

Previous Next

TEXT.backgroundColor
The backgroundColor attribute specifies or retrieves the background color for the Text control.

Syntax

elementID.backgroundColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value or the value "none".
It has a default value of "none", which means the background is transparent.

Remarks

The background color is set for the height and width of the control. If height and width are not set, the
background color is set to the height and width of the text.

When you use alphaBlend or alphaBlendTo with a TEXT element that does not have the backgroundColor
specified, a background color of black will be used. If the foreground color is also black (which is the default
value for the foregroundColor attribute), your text may become unreadable. In order to prevent this, always
specify the backgroundColor attribute, or set foregroundColor to a color other than black.

Example

See the value attribute for a sample illustrating how the attributes of the TEXT element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

AmbientAttributes.alphaBlend
AmbientAttributes.alphaBlendTo
Color Reference
TEXT Element
TEXT.foregroundColor

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

TEXT.cursor
The cursor attribute specifies or retrieves a value indicating which cursor appears when the mouse is over the
Text control.

Syntax

elementID.cursor

Possible Values

This attribute is a read/write String.

Example

See the value attribute for a sample illustrating how the attributes of the TEXT element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

TEXT Element

Previous Next

Value Description

system Default. Platform-dependent cursor (usually an arrow).

hand Hand.

help Arrow with question mark indicating Help is available.

sizeall Four-pointed arrow pointing north, south, east, and west.

sizenesw Double-pointed arrow pointing northeast and southwest.

sizens Double-pointed arrow pointing north and south.

sizenwse Double-pointed arrow pointing northwest and southeast.

sizewe Double-pointed arrow pointing west and east.

uparrow Vertical arrow pointing upward.

*.ani or *.cur Any .ani or .cur file (must be in the same directory as the .wms file or in
the .wmz file).

© 2000-2003 Microsoft Corporation. All rights reserved.

TEXT.disabledBackgroundColor
The disabledBackgroundColor attribute specifies or retrieves the background color used for the Text control
when it is disabled.

Syntax

elementID.disabledBackgroundColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value.

Remarks

If the disabledBackgroundColor is not specified, the backgroundColor is used.

Example

See the value attribute for a sample illustrating how the attributes of the TEXT element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

Color Reference
TEXT Element
TEXT.backgroundColor

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

TEXT.disabledFontStyle
The disabledFontStyle attribute specifies or retrieves the font style used for the Text control when it is
disabled.

Syntax

elementID.disabledFontStyle

Possible Values

This attribute is a read/write String containing one or more of the following values.

Remarks

Any combination of the values can be used, separated with spaces. The Normal style has priority over all other
values, and any others specified along with Normal will be ignored.

If disabledFontStyle is not specified, fontStyle is used.

Example

See the value attribute for a sample illustrating how the attributes of the TEXT element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

TEXT Element
TEXT.fontStyle

Previous Next

Value Description

Bold Bold font style.

Italic Italic font style.

Underline Underline font style.

Strikeout Strikeout font style.

Normal Normal font style.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

TEXT.disabledForegroundColor
The disabledForegroundColor attribute specifies or retrieves the text color used for the Text control when it is
disabled.

Syntax

elementID.disabledForegroundColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value.

Remarks

If disabledForegroundColor is not specified, foregroundColor is used.

Example

See the value attribute for a sample illustrating how the attributes of the TEXT element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

Color Reference
TEXT Element
TEXT.foregroundColor

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

TEXT.fontFace
The fontFace attribute specifies or retrieves the typeface for the Text control.

Syntax

elementID.fontFace

Possible Values

This attribute is a read/write String.

Remarks

This attribute can be the name of any valid font available on Windows. Windows Media Player will not support
installing fonts, so choose a font that you know will be on the intended system.

If the fontFace specified is not available on the user's system, the Text control defaults to the Windows system
font.

Example

See the value attribute for a sample illustrating how the attributes of the TEXT element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

TEXT Element
TEXT.fontSize

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

TEXT.fontSize
The fontSize attribute specifies or retrieves the font size for the Text control.

Syntax

elementID.fontSize

Possible Values

This attribute is a read/write Number (long) specifying the font size in points. It has a default value of 10.

Example

See the value attribute for a sample illustrating how the attributes of the TEXT element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

TEXT Element
TEXT.fontFace

© 2000-2003 Microsoft Corporation. All rights reserved.

TEXT.fontSmoothing
The fontSmoothing attribute specifies or retrieves a value indicating whether font smoothing is enabled.

Syntax

elementID.fontSmoothing

Possible Values

This attribute is a read/write Boolean.

Previous Next

Previous Next

Value Description

Remarks

Font smoothing uses the anti-aliasing feature of the operating system. If font smoothing is enabled and the
operating system supports anti-aliasing, the control attempts to anti-alias the text. Not all fonts support anti-
aliasing.

Operating Systems that support anti-aliasing:

Windows 98
Windows 2000
Windows 95 with Plus!
Windows NT® 4.0

Warning Font smoothing over a transparent color may cause the transparent color to blend into the characters.
It is not recommended that you use fontSmoothing if the text will display over a transparency.

Example

See the value attribute for a sample illustrating how the attributes of the TEXT element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

TEXT Element

© 2000-2003 Microsoft Corporation. All rights reserved.

TEXT.fontStyle
The fontStyle attribute specifies or retrieves the font style for the Text control.

Syntax

elementID.fontStyle

true Font smoothing is enabled.

false Default. Font smoothing is disabled.

Previous Next

Previous Next

Possible Values

This attribute is a read/write String containing one or more of the following values.

Remarks

Any combination of the values can be used, separated with spaces. The Normal style has priority over all other
values, and any others specified along with Normal will be ignored.

Example

See the value attribute for a sample illustrating how the attributes of the TEXT element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

TEXT Element

© 2000-2003 Microsoft Corporation. All rights reserved.

TEXT.foregroundColor
The foregroundColor attribute specifies or retrieves the text color for the Text control.

Syntax

elementID.foregroundColor

Value Description

Bold Bold font style.

Italic Italic font style.

Underline Underline font style.

Strikeout Strikeout font style.

Normal Default. Normal font style.

Previous Next

Previous Next

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value. The default value is
"black".

Example

See the value attribute for a sample illustrating how the attributes of the TEXT element are used.

When you use alphaBlend or alphaBlendTo with a TEXT element that does not have the backgroundColor
specified, a background color of black will be used. If the foreground color is also black (which is the default
value for the foregroundColor attribute), your text may become unreadable. In order to prevent this, always
specify the backgroundColor attribute, or set foregroundColor to a color other than black.

Requirements

Windows Media Player version 7.0 or later.

See Also

AmbientAttributes.alphaBlend
AmbientAttributes.alphaBlendTo
Color Reference
TEXT Element
TEXT.backgroundColor

© 2000-2003 Microsoft Corporation. All rights reserved.

TEXT.hoverBackgroundColor
The hoverBackgroundColor attribute specifies or retrieves the background color used for the Text control
when the mouse cursor hovers over it.

Syntax

elementID.hoverBackgroundColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value.

Remarks

Previous Next

Previous Next

If hoverBackgroundColor is not specified, the backgroundColor is used.

Example

See the value attribute for a sample illustrating how the attributes of the TEXT element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

Color Reference
TEXT Element
TEXT.backgroundColor

© 2000-2003 Microsoft Corporation. All rights reserved.

TEXT.hoverFontStyle
The hoverFontStyle attribute specifies or retrieves the font style used for the Text control when the mouse
cursor hovers over it.

Syntax

elementID.hoverFontStyle

Possible Values

This attribute is a read/write String containing one or more of the following values.

Previous Next

Previous Next

Value Description

Bold Bold font style.

Italic Italic font style.

Underline Underline font style.

Strikeout Strikeout font style.

Normal Normal font style.

Remarks

Any combination of the values can be used, separated with spaces. The Normal style has priority over all other
values, and any others specified along with Normal will be ignored.

If hoverFontStyle is not specified, fontStyle is used.

Example

See the value attribute for a sample illustrating how the attributes of the TEXT element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

TEXT Element
TEXT.fontStyle

© 2000-2003 Microsoft Corporation. All rights reserved.

TEXT.hoverForegroundColor
The hoverForegroundColor attribute specifies or retrieves the text color used for the Text control when the
mouse cursor hovers over it.

Syntax

elementID.hoverForegroundColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value.

Remarks

If hoverForegroundColor is not specified, foregroundColor is used.

Example

Previous Next

Previous Next

See the value attribute for a sample illustrating how the attributes of the TEXT element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

Color Reference
TEXT Element
TEXT.foregroundColor

© 2000-2003 Microsoft Corporation. All rights reserved.

TEXT.justification
The justification attribute specifies or retrieves the alignment of the text within the Text control.

Syntax

elementID.justification

Possible Values

This attribute is a read/write String.

Example

See the value attribute for a sample illustrating how the attributes of the TEXT element are used.

Requirements

Windows Media Player version 7.0 or later.

Previous Next

Previous Next

Value Description

Left Default. Aligns the text to the left of the Text control.

Right Aligns the text to the right of the Text control.

Center Aligns the text to the horizontal center of the Text control.

See Also

TEXT Element

© 2000-2003 Microsoft Corporation. All rights reserved.

TEXT.scrolling
The scrolling attribute specifies or retrieves a value indicating whether the text scrolls.

Syntax

elementID.scrolling

Possible Values

This attribute is a read/write Boolean.

Remarks

The scrolling feature provides a two-space buffer between the end of the text and the beginning of the repeated
line.

The justification attribute specifies where the text first appears before the scrolling begins.

Example

See the value attribute for a sample illustrating how the attributes of the TEXT element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

Previous Next

Previous Next

Value Description

true Scrolling is enabled.

false Default. Scrolling is disabled.

TEXT Element
TEXT.justification
TEXT.scrollingAmount
TEXT.scrollingDelay
TEXT.scrollingDirection

© 2000-2003 Microsoft Corporation. All rights reserved.

TEXT.scrollingAmount
The scrollingAmount attribute specifies or retrieves the number of pixels that the text moves during each
scrolling movement.

Syntax

elementID.scrollingAmount

Possible Values

This attribute is a positive read/write Number (int) with a default value of 6.

Remarks

For smooth scrolling, scrollingAmount should be small. For fast drawing with big gaps, the scrollingAmount
should be larger. If scrolling="false", scrollingAmount is ignored.

Example

See the value attribute for a sample illustrating how the attributes of the TEXT element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

TEXT Element
TEXT.scrolling

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

TEXT.scrollingDelay
The scrollingDelay attribute specifies or retrieves the time delay between scrolling movements.

Syntax

elementID.scrollingDelay

Possible Values

This attribute is a read/write Number (int) specifying the delay in milliseconds. It has a minimum value of 30,
and a default value of 85. If a value less than the minimum is specified, the default is used.

Remarks

If scrolling is set to false, scrollingDelay is ignored.

Example

See the value attribute for a sample illustrating how the attributes of the TEXT element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

TEXT Element
TEXT.scrolling

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

TEXT.scrollingDirection
The scrollingDirection attribute specifies or retrieves the direction of the scrolling text.

Syntax

elementID.scrollingDirection

Possible Values

This attribute is a read/write String.

Remarks

If scrolling is set to false, scrollingDirection is ignored.

Example

See the value attribute for a sample illustrating how the attributes of the TEXT element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

TEXT Element
TEXT.scrolling

© 2000-2003 Microsoft Corporation. All rights reserved.

TEXT.textWidth
The textWidth attribute retrieves the width in pixels of the text contained in the value attribute.

Value Description

Left Default. Scroll from right to left.

Right Scroll from left to right.

Previous Next

Previous Next

Syntax

elementID.textWidth

Possible Values

This attribute is a read-only Number (int).

Remarks

The value returned is based on the fontFace, fontSize, and fontStyle attributes as well as on the actual
characters in the value attribute string.

Example

See the value attribute for a sample illustrating how the attributes of the TEXT element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

TEXT Element
TEXT.fontFace
TEXT.fontSize
TEXT.fontStyle
TEXT.value

© 2000-2003 Microsoft Corporation. All rights reserved.

TEXT.toolTip
The toolTip attribute specifies or retrieves the ToolTip text for the text control.

Syntax

elementID.toolTip

Possible Values

This attribute is a read/write String with a maximum length of 1024 characters. It has no default value.

Previous Next

Previous Next

Remarks

If this attribute is not specified, and the text in the value attribute is truncated in the Text control, or wordWrap
is set to true, the ToolTip will display the full text of the value attribute.

When this attribute is set to "" (empty string), no ToolTip is displayed.

Example

See the value attribute for a sample illustrating how the attributes of the TEXT element are used.

Requirements

Windows Media Player version 7.0 or later.

See Also

TEXT Element
TEXT.value
TEXT.wordWrap

© 2000-2003 Microsoft Corporation. All rights reserved.

TEXT.value
The value attribute specifies or retrieves the text that is displayed in the Text control.

Syntax

elementID.value

Possible Values

This attribute is a read/write String.

Remarks

If the width of the Text control is insufficient to contain the text provided, the text is cropped, and an ellipsis is
shown to illustrate the fact. If the toolTip attribute has not been set, the complete text will then appear as a
ToolTip when the cursor hovers over the control.

Previous Next

Previous Next

If a width is not specified, the default width for the control is the width of the string.

If the height of the control is not specified, the default height is one line.

If the wordWrap attribute is set to true and the height of the control is enough to accommodate another line of
text, the text wraps to a subsequent line. Wrapping only occurs between words. Line breaks may also be forced,
as explained under wordWrap.

Example

The following sample is a complete skin definition file that illustrates how the attributes of the TEXT element
are used. It can be found in the Samples directory that was installed with the SDK.

<THEME>
 <VIEW
 height = "175"
 >
 <TEXT
 width = "150"
 fontSize = "30"
 hoverFontStyle = "Bold"
 hoverForegroundColor = "red"
 disabledForegroundColor = "#CCCCCC"
 justification = "Center"
 value = "Play"
 cursor = "hand"
 enabled = "wmpenabled:player.controls.play"
 onClick = "JScript: player.URL='http://proseware.com/laure.wma';"
 />
 <TEXT
 top = "50"
 width = "150"
 fontSize = "30"
 hoverFontStyle = "Bold"
 hoverForegroundColor = "red"
 disabledForegroundColor = "#CCCCCC"
 justification = "Center"
 value = "Stop"
 cursor = "hand"
 enabled = "wmpenabled:player.controls.stop"
 onClick = "JScript: player.controls.stop();"
 />
 <TEXT
 top = "100"
 width = "150"
 fontSize = "30"
 hoverFontStyle = "Bold"
 hoverForegroundColor = "red"
 justification = "Center"
 value = "Close"
 cursor = "hand"
 onClick = "JScript: view.close();"
 />
 <TEXT
 top = "30"
 left = "120"
 width = "200"
 fontSize = "20"
 fontStyle = "Underline"
 justification = "Center"

 value = "Volume"
 />
 <TEXT
 top = "60"
 left = "120"
 width = "200"
 fontSize = "40"
 justification = "Center"
 value = "wmpprop:player.settings.volume"
 />
 <TEXT
 top = "65"
 left = "142"
 width = "40"
 fontSize = "30"
 hoverFontStyle = "Bold"
 hoverForegroundColor = "red"
 justification = "Center"
 value = "-"
 cursor = "hand"
 toolTip = "decrease volume"
 onClick = "player.settings.volume = player.settings.volume - 5"
 />
 <TEXT
 top = "65"
 left = "260"
 width = "40"
 fontSize = "30"
 hoverFontStyle = "Bold"
 hoverForegroundColor = "red"
 justification = "Center"
 value = "+"
 cursor = "hand"
 toolTip = "increase volume"
 onClick = "player.settings.volume = player.settings.volume + 5"
 />
 <TEXT
 top = "155"
 width = "300"
 height = "30"
 fontFace = "System"
 backgroundColor = "blue"
 foregroundColor = "white"
 justification = "Center"
 scrolling = "true"
 scrollingAmount = "1"
 scrollingDelay = "50"
 value = "wmpprop:player.status"
 />
 </VIEW>
</THEME>

Requirements

Windows Media Player version 7.0 or later.

See Also

TEXT Element
TEXT.toolTip
TEXT.wordWrap

© 2000-2003 Microsoft Corporation. All rights reserved.

TEXT.wordWrap
The wordWrap attribute specifies or retrieves a value indicating whether word wrap is enabled or disabled.

Syntax

elementID.wordWrap

Possible Values

This attribute is a read/write Boolean.

Remarks

The Text control does not split words apart. If a word extends beyond the width of the control, word wrap is
employed to move the word to the next line. If a single word is longer than the control width, that word is
clipped and occupies a single line.

If the width attribute is not specified, wordWrap is ignored and the Text control will resize rather than
wrapping the text.

If line breaks are desired in particular locations, they must be explicitly specified in value using "" or "\r".
If the latter form is used when specifying the value directly, the string must be prefixed with "JScript:" and the
actual value must be surrounded by single quotes, as shown below. This is not necessary if the value is set
dynamically from within an event handler.

If wordWrap is set to true and toolTip is not specified, the ToolTip will display the full text of the value
attribute. If no ToolTip is desired, set toolTip to "" (empty string).

Example

<THEME>
 <VIEW>

Previous Next

Previous Next

Value Description

true Word wrap is enabled.

false Default. Word wrap is disabled. If the text does not fit within the
control, the text is cropped.

 <TEXT
 width = "50"
 height = "200"
 wordWrap = "true"
 backgroundColor = "blue"
 foregroundColor = "white"
 value = "This is a test.It is only a test."
 />
 <TEXT
 width = "50"
 height = "200"
 left = "100"
 wordWrap = "true"
 backgroundColor = "green"
 foregroundColor = "white"
 value = "JScript:'This is a test.\r\rIt is only a test.'"
 />
 </VIEW>
</THEME>

Requirements

Windows Media Player version 7.0 or later.

See Also

AmbientAttributes.width
TEXT Element
TEXT.toolTip
TEXT.value

© 2000-2003 Microsoft Corporation. All rights reserved.

CURRENTPOSITIONTEXT
This is a predefined TEXT element with the following default values.

value="wmpprop:player.controls.currentPositionString"
tabstop="true"
justification="right"

Remarks

This will create a TEXT element that will display the current time of the media being played. All properties of
this TEXT element can be overridden by explicitly specifying them.

Previous Next

Previous Next

Requirements

Windows Media Player 7.0 or later.

See Also

TEXT Element

© 2000-2003 Microsoft Corporation. All rights reserved.

DURATIONTEXT
This is a predefined TEXT element with the following default values.

value="wmpprop:player.currentMedia.DurationString"
tabstop="true"
justification="right"

Remarks

This will create a TEXT element that will display the duration of the media being played. All properties of this
TEXT element can be overridden by explicitly specifying them.

Requirements

Windows Media Player 7.0 or later.

See Also

TEXT Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

STATUSTEXT
This is a predefined TEXT element with the following default values.

value="wmpprop:player.status"
tabstop="true"

Remarks

This will create a TEXT element that will display the playback status. All properties of this TEXT element can
be overridden by explicitly specifying them.

Requirements

Windows Media Player 7.0 or later.

See Also

TEXT Element

© 2000-2003 Microsoft Corporation. All rights reserved.

TRACKNAMETEXT
This is a predefined TEXT element with the following default values.

value="wmpprop:player.currentMedia.name"
tabstop="true"

Remarks

This will create a TEXT element that will display the name of the current media. All properties of this TEXT
element can be overridden by explicitly specifying them.

Requirements

Windows Media Player 7.0 or later.

See Also

Previous Next

Previous Next

TEXT Element

© 2000-2003 Microsoft Corporation. All rights reserved.

THEME Element
The THEME element is the parent-level element of a skin, and contains one or more VIEW elements, which in
turn contain all other elements within a skin. Within script code, the THEME element is accessed through the
theme global attribute rather than through a name specified by an id attribute, which is not supported by the
THEME element.

The THEME element supports the following attributes.

The THEME element supports the following methods.

Previous Next

Previous Next

Attribute Description

author Specifies or retrieves the name of the author of the skin.

authorVersion Specifies or retrieves the version number of the skin as assigned by the
author.

copyright Specifies or retrieves the copyright string for the skin.

currentViewID Specifies or retrieves the currently displayed VIEW.

title Specifies or retrieves the title of the skin.

version Specifies or retrieves the Windows Media Player version number for
which the skin was authored. Can only be set at design time.

Method Description

closeView Closes an open VIEW.

loadPreference Loads a preference from the registry.

logString Logs a user-defined string to the error file, if logging is enabled.

openDialog Opens a file dialog box.

openView Opens a VIEW in a new window.

openViewRelative Opens a VIEW in a new window at a specified initial position relative to

The THEME element does not support event handlers.

See Also

Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

THEME.author
The author attribute specifies or retrieves the name of the author of the skin.

Syntax

theme.author

Possible Values

This attribute is a read/write String with no default value.

Requirements

Windows Media Player version 7.0 or later.

See Also

0THEME Element
THEME.authorVersion

© 2000-2003 Microsoft Corporation. All rights reserved.

the upper-left corner of the skin.

playSound Plays the specified sound file.

savePreference Saves a preference in the registry.

showErrorDialog Displays the standard error dialog box.

Previous Next

Previous Next

Previous Next

THEME.authorVersion
The authorVersion attribute specifies or retrieves the version number of the skin as assigned by the author.

Syntax

theme.authorVersion

Possible Values

This attribute is a read-only String with no default value.

Requirements

Windows Media Player version 7.0 or later.

See Also

THEME Element
THEME.author

© 2000-2003 Microsoft Corporation. All rights reserved.

THEME.closeView
The closeView method closes an open VIEW.

Syntax

theme.closeView(theView)

Parameters

 theView

Previous Next

Previous Next

Previous Next

A String specifying the id of the VIEW to close.

Return Values

This method does not return a value.

Example Code

<THEME>
 <VIEW>
 <TEXT value="open"
 onclick="jscript:theme.openView('newView')"/>
 <TEXT top="30" value="close"
 onclick="jscript:theme.closeView('newView')"/>
 </VIEW>
 <VIEW id="newView"/>
</THEME>

Requirements

Windows Media Player version 7.0 or later.

See Also

THEME Element
THEME.openView

© 2000-2003 Microsoft Corporation. All rights reserved.

THEME.copyright
The copyright attribute specifies or retrieves the copyright string for the skin.

Syntax

theme.copyright

Possible Values

This attribute is a read/write String with no default value.

Requirements

Previous Next

Previous Next

Windows Media Player version 7.0 or later.

See Also

THEME Element

© 2000-2003 Microsoft Corporation. All rights reserved.

THEME.currentViewID
The currentViewID attribute specifies or retrieves the currently displayed VIEW.

Syntax

theme.currentViewID

Possible Values

This attribute is a read/write String specifying the id of the current VIEW. It has no default value.

Example

<THEME currentViewID="startView">
 <VIEW>
 <TEXT value="this would have been the default view"/>
 </VIEW>
 <VIEW id="startView">
 <TEXT value="go to new view"
 onclick="jscript:theme.currentViewID='newView'"/>
 </VIEW>
 <VIEW id="newView">
 <TEXT value="new view"/>
 </VIEW>
</THEME>

Remarks

Specifying currentViewID automatically closes the existing currentView (pointed to by the view global
attribute) and opens the specified VIEW.

Requirements

Windows Media Player version 7.0 or later.

Previous Next

Previous Next

See Also

THEME Element

© 2000-2003 Microsoft Corporation. All rights reserved.

THEME.loadPreference
The loadPreference method loads a preference from the registry.

Syntax

theme.logString(theKey)

Parameters

 theKey

A String specifying the key of the preference value to load.

Return Values

This method returns a String.

Remarks

A preference is a key/value pair that can be stored in the registry in order to retain information about the state of
the Windows Media Player between runs. This feature can be used, for example, to save customization settings
so that they won't have to be re-entered each time Windows Media Player is started.

Preferences are not encrypted and therefore are not a secure method for persisting data. Do not use preferences
to store private data.

Requirements

Windows Media Player version 7.0 or later.

See Also

THEME Element
THEME.savePreference

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

THEME.logString
The logString method logs a user-defined string to the error file, if logging is enabled.

Syntax

theme.logString(message)

Parameters

 message

A String specifying the message to log.

Return Values

This method does not return a value.

Requirements

Windows Media Player version 7.0 or later.

See Also

THEME Element

© 2000-2003 Microsoft Corporation. All rights reserved.

THEME.openDialog

Previous Next

Previous Next

Previous Next

Previous Next

The openDialog method opens a file dialog box.

Syntax

theme.openDialog(dialogType, parameters)

Parameters

 dialogType

A String that specifies the type of dialog box. Must be set to "FILE_OPEN".

 parameters

A String that can be used for additional information. Must be set to "FILES_ALLMEDIA".

Return Values

This method returns a String containing the URL of the selected file or "" (empty string) if the user clicks
cancel.

Remarks

This method can be used for files on the local hard drives or on network drives.

Example Code

<THEME>
 <VIEW id="View1"
 backgroundImage="greenstone.bmp"
 width=500 height=300 author="Microsoft Corp.">
 <BUTTON
 id="Open"
 image="Open.png"
 onclick="jscript:
 player.URL = theme.openDialog('FILE_OPEN','FILES_ALLMEDIA')">
 </BUTTON>
 </VIEW>
</THEME>

Requirements

Windows Media Player version 7.0 or later.

See Also

THEME Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

THEME.openView
The openView method opens a VIEW in a new window.

Syntax

theme.openView(view)

Parameters

 view

A String specifying the id of the VIEW to open.

Return Values

This method does not return a value.

Example Code

<THEME>
 <VIEW>
 <TEXT value="open"
 onclick="jscript:theme.openView('newView')"/>
 <TEXT top="30" value="close"
 onclick="jscript:theme.closeView('newView')"/>
 </VIEW>
 <VIEW id="newView"/>
</THEME>

Requirements

Windows Media Player version 7.0 or later.

See Also

THEME Element
THEME.closeView
THEME.openViewRelative

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

THEME.openViewRelative
The openViewRelative method opens a VIEW in a new window at a specified initial position relative to the
upper-left corner of the skin.

Syntax

theme.openView(view, left, top)

Parameters

 view

A String specifying the id of the VIEW to open.

 left

A Number (long) specifying the initial distance in pixels of the left border of the VIEW from the left border of
the skin. A negative value indicates an initial position to the left of the skin border.

 top

A Number (long) specifying the initial position of the top border of the VIEW relative to the top border of the
skin. A negative values indicates an initial position above the skin border.

Return Values

This method does not return a value.

Remarks

The position specified for the VIEW is used the first time this method is called, after which the user can drag
the VIEW to another location. The new position is saved, and on subsequent calls, the most recent position is
used.

Example Code

<THEME>
 <VIEW>
 <TEXT value="open"
 onclick="jscript:theme.openViewRelative('newView', 50, 50)"/>
 <TEXT top="30" value="close"
 onclick="jscript:theme.closeView('newView')"/>
 </VIEW>
 <VIEW id="newView"/>
</THEME>

Previous Next

Requirements

Windows Media Player 9 Series or later.

See Also

THEME Element
THEME.closeView
THEME.openView

© 2000-2003 Microsoft Corporation. All rights reserved.

THEME.playSound
The playSound method plays the specified sound file.

Syntax

theme.playSound(soundFile)

Parameters

 soundFile

A String specifying the name of the sound file to play.

Return Values

This method does not return a value.

Remarks

This method allows you to add sound effects to a skin—for example, when buttons are clicked. The sound is
played by the operating system directly and not by Windows Media Player. This means that the sound cannot be
controlled with Windows Media Player settings and methods, but it can be played while Windows Media Player
is playing another digital media file.

This method supports WAV files only.

Requirements

Previous Next

Previous Next

Windows Media Player 9 Series or later.

See Also

THEME Element

© 2000-2003 Microsoft Corporation. All rights reserved.

THEME.savePreference
The savePreference method saves a preference in the registry.

Syntax

theme.savePreference(theKey, theValue)

Parameters

 theKey

A String specifying the key of the preference value to save.

 theValue

A String specifying the value to save.

Return Values

This method does not return a value.

Remarks

A preference is a key/value pair that can be stored in the registry in order to retain information about the state of
Windows Media Player between runs. This feature can be used, for example, to save customization settings so
that they won't have to be re-entered each time Windows Media Player is started.

Preferences are not encrypted and therefore are not a secure method for persisting data. Do not use preferences
to store private data.

Example Code

Previous Next

Previous Next

<THEME>
 <VIEW
 id="View1"
 onclose="jscript:theme.savePreference('drawer1','open');
 theme.savePreference('drawer2','close')">
 </VIEW>
</THEME>

Requirements

Windows Media Player version 7.0 or later.

See Also

THEME Element
THEME.loadPreference

© 2000-2003 Microsoft Corporation. All rights reserved.

THEME.showErrorDialog
The showErrorDialog method displays the standard error dialog box.

Syntax

theme.showErrorDialog()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Remarks

If Settings.enableErrorDialogs is false, this method can be used to programmatically display the error dialog.
If there are no errors in the error queue, the error dialog box is not shown.

For Windows Media Player 9 Series or later, this method must be called from the error event handler. Windows
Media Player 9 Series clears the error queue for skins after the error event has been fired.

Previous Next

Previous Next

Requirements

Windows Media Player version 7.0 or later.

See Also

THEME Element
Settings.enableErrorDialogs

© 2000-2003 Microsoft Corporation. All rights reserved.

THEME.title
The title attribute specifies or retrieves the title of the skin.

Syntax

theme.title

Possible Values

This attribute is a read/write String with no default value.

Requirements

Windows Media Player version 7.0 or later.

See Also

THEME Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

THEME.version
The version attribute specifies or retrieves the Windows Media Player version number for which the skin was
authored.

Syntax

theme.version

Possible Values

This attribute is a Number (float). Specifying a value for this attribute at design time or run time has no effect.
The value is always 1.0.

Requirements

Windows Media Player version 7.0 or later.

See Also

THEME Element

© 2000-2003 Microsoft Corporation. All rights reserved.

VIDEO Element
The VIDEO element provides a way to manipulate a video window in a skin, using the following attributes and
events. A predefined VIDEO element is also provided for convenience.

The VIDEO element supports the following attributes.

Previous Next

Previous Next

Attribute Description

backgroundColor Specifies or retrieves the background color of the Video control.

cursor Specifies or retrieves the cursor value that is used when the mouse is
over a clickable area of the video.

fullScreen Specifies or retrieves a value indicating whether the video is displayed in
full-screen mode. Can only be set at run time.

The VIDEO element can implement the following event handlers.

The VIDEO element supports the ambient attributes and can implement the ambient event handlers, except
where noted. For more information, see Ambient Attributes and Ambient Event Handlers.

Predefined video elements are normal VIDEO elements with various common attribute settings specified by
default. The following predefined video elements are available.

See Also

Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

maintainAspectRatio Specifies or retrieves a value indicating whether the video will maintain
the aspect ratio when trying to fit within the width and height defined for
the control.

shrinkToFit Specifies or retrieves a value indicating whether the video will shrink to
the width and height defined for the Video control.

stretchToFit Specifies or retrieves a value indicating whether the video will stretch
itself to the width and height defined for the Video control.

toolTip Specifies or retrieves the ToolTip text for the video window.

windowless Specifies or retrieves a value indicating whether the Video control will
be windowed or windowless; that is, whether the entire rectangle of the
control will be visible at all times or can be clipped. Can only be set at
design time.

zoom Specifies the percentage by which to scale the video.

Event handler Description

onvideoend Handles an event that occurs when the video stops rendering and is
unloaded.

onvideostart Handles an event that occurs when the video is loaded and begins to
render.

Predefined VIDEO Description

WMPVIDEO A VIDEO element that stretches the video when resized.

Previous Next

VIDEO.backgroundColor
The backgroundColor attribute specifies or retrieves the background color of the Video control.

Syntax

elementID.backgroundColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value or the value "none".
It has a default value of "none", which means that if there is no video associated with the video control, the
Video control is transparent and the background shows through.

Remarks

When the video is smaller than the window and stretchToFit is false, the background color appears around the
video.

Requirements

Windows Media Player version 7.0 or later.

See Also

Color Reference
VIDEO Element
VIDEO.stretchToFit

© 2000-2003 Microsoft Corporation. All rights reserved.

VIDEO.cursor
The cursor attribute specifies or retrieves the cursor value that is used when the mouse is over a clickable area
of the video.

Previous Next

Previous Next

Previous Next

Syntax

elementID.cursor

Possible Values

This attribute is a read/write String.

Remarks

For rendering purposes, system is the default cursor. The default value retrieved from this attribute is "" (empty
string).

Requirements

Windows Media Player version 7.0 or later.

See Also

VIDEO Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Value Description

system Platform-dependent cursor (usually an arrow).

hand Hand.

help Arrow with question mark indicating Help is available.

sizeall Four-pointed arrow pointing north, south, east, and west.

sizenesw Double-pointed arrow pointing northeast and southwest.

sizens Double-pointed arrow pointing north and south.

sizenwse Double-pointed arrow pointing northwest and southeast.

sizewe Double-pointed arrow pointing west and east.

uparrow Vertical arrow pointing upward.

*.ani or *.cur Any .ani or .cur file (must be in the same directory as the .wms file or in
the .wmz file).

Previous Next

Previous Next

VIDEO.fullScreen
The fullScreen attribute specifies or retrieves a value indicating whether the video is displayed in full-screen
mode.

Syntax

elementID.fullScreen

Possible Values

This attribute is a read/write Boolean.

Remarks

This property can be specified only at run time, after a file has been loaded. It must therefore be set within a
script event handler. The escape button is used to return to normal viewing.

Requirements

Windows Media Player version 7.0 or later.

See Also

VIDEO Element
VIDEO.maintainAspectRatio
VIDEO.shrinkToFit
VIDEO.stretchToFit

© 2000-2003 Microsoft Corporation. All rights reserved.

VIDEO.maintainAspectRatio
The maintainAspectRatio attribute specifies or retrieves a value indicating whether the video will maintain its

Value Description

true Video displays in full-screen mode.

false Default. Video does not display in full-screen mode.

Previous Next

Previous Next

aspect ratio when trying to fit within the width and height defined for the control.

Syntax

elementID.maintainAspectRatio

Possible Values

This attribute is a read/write Boolean.

Requirements

Windows Media Player version 7.0 or later.

See Also

VIDEO Element

© 2000-2003 Microsoft Corporation. All rights reserved.

VIDEO.onvideoend
The onvideoend event handler handles an event that occurs when the video stops rendering and is unloaded.

Syntax

onvideoend

Requirements

Windows Media Player version 7.0 or later.

See Also

VIDEO Element

Value Description

true Default. Video maintains its aspect ratio when resizing.

false Video does not maintain its aspect ratio when resizing.

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

VIDEO.onvideostart
The onvideostart event handler handles an event that occurs when the video is loaded and begins to render.

Syntax

onvideostart

Requirements

Windows Media Player version 7.0 or later.

See Also

VIDEO Element

© 2000-2003 Microsoft Corporation. All rights reserved.

VIDEO.shrinkToFit
The shrinkToFit attribute specifies or retrieves a value indicating whether the video will shrink to the width
and height defined for the Video control.

Syntax

elementID.shrinkToFit

Possible Values

Previous Next

Previous Next

Previous Next

Previous Next

This attribute is a read/write Boolean.

Remarks

If no width or height is specified, this attribute is ignored.

Requirements

Windows Media Player version 7.0 or later.

See Also

VIDEO Element

© 2000-2003 Microsoft Corporation. All rights reserved.

VIDEO.stretchToFit
The stretchToFit attribute specifies a value indicating whether the video will stretch to the width and height
defined for the Video control.

Syntax

elementID.stretchToFit

Possible Values

This attribute is a read/write Boolean.

Value Description

true Default. The video will shrink to fit the control.

false The video will not shrink to fit the control.

Previous Next

Previous Next

Value Description

true The video will stretch to fit the control.

false Default. The video will not stretch to fit the control.

Remarks

If no width or height is specified, this attribute is ignored.

Requirements

Windows Media Player version 7.0 or later.

See Also

VIDEO Element

© 2000-2003 Microsoft Corporation. All rights reserved.

VIDEO.toolTip
The toolTip attribute specifies or retrieves the ToolTip text for the video window.

Syntax

elementID.toolTip

Possible Values

This attribute is a read/write String, which must not exceed 1024 characters in length. It has no default value.

Remarks

When this attribute is set to "" (empty string), no ToolTip is displayed.

Requirements

Windows Media Player version 7.0 or later.

See Also

VIDEO Element

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

VIDEO.windowless
The windowless attribute specifies or retrieves a value indicating whether the Video control will be windowed
or windowless; that is, whether the entire rectangle of the control will be visible at all times or can be clipped.
Can only be set at design time.

Syntax

elementID.windowless

Possible Values

This attribute is a Boolean specified at design time and read-only thereafter.

Remarks

If a non-rectangular video window is desired, or if you want to cover any part of the video window with an
image, this attribute must be set to true. This sacrifices some performance in order to do the necessary clipping.

Video playback is optimized for unclipped playback. In this case, the windowless attribute is set to false, and
the entire video rectangle is always displayed. Any image covering the video window is ignored, and the video
window has the highest-level z-order.

Requirements

Windows Media Player version 7.0 or later.

See Also

VIDEO Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Value Description

true Video control will be windowless.

false Default. Video control will be windowed.

Previous Next

VIDEO.zoom
The zoom attribute specifies the percentage by which to scale the video.

Syntax

elementID.zoom

Possible Values

This attribute is a read/write Number (long) ranging from 1 to the maximum size accommodated by the width
and height of the Video control. It has a default value of 100.

Remarks

This attribute cannot be used in conjunction with the fullScreen attribute.

If width and height are specified, and the resulting video window is larger than the video being played, the
video can be enlarged by scaling up to the maximum size accommodated by the window. If width and height
are not specified, zoom is limited to values of 100 or less.

If the shrinkToFit property is false, the video will change proportion upon zooming in order to fit itself to the
available space. If shrinkToFit is true, the video will shrink to fit within the most restrictive dimension, while
retaining its original proportions.

Requirements

Windows Media Player version 7.0 or later.

See Also

VIDEO Element
VIDEO.fullScreen
VIDEO.shrinkToFit

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

WMPVIDEO
This is a predefined VIDEO element with the following default values.

backgroundColor="black"
horizontalAlignment="stretch"
verticalAlignment="stretch"

Remarks

This will create a VIDEO element that will stretch the video window when the skin is resized. Digital video
displayed in this window will stretch to fit the available space or will be scaled up or down according to the
settings on the Player View menu under Video Size. The View menu is displayed in the full mode of the Player
or when the VIEW.titleBar attribute is set to true in a skin.

All properties of this VIDEO element can be overridden by explicitly specifying them.

Requirements

Windows Media Player 7.0 or later.

See Also

VIDEO Element

© 2000-2003 Microsoft Corporation. All rights reserved.

VIDEOSETTINGS Element
The VIDEOSETTINGS element provides a way to modify various video settings, using the attributes and
method listed here.

The VIDEOSETTINGS element supports the following attributes.

Previous Next

Previous Next

Attribute Description

brightness Specifies or retrieves the brightness setting of the video.

contrast Specifies or retrieves the contrast setting of the video.

The VIDEOSETTINGS element supports the following method.

The VIDEOSETTINGS element can implement the attribute_onchange event handlers.

Note This element requires Windows Media Player for Windows XP or later.

See Also

Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

VIDEOSETTINGS.brightness
The brightness attribute specifies or retrieves the brightness setting of the video.

Syntax

elementID.brightness

Possible Values

This attribute is a read/write Number (long) with a value ranging from –127 to +127 and a default value of 0.

Requirements

Windows Media Player version for Windows XP or later.

See Also

VIDEOSETTINGS Element

hue Specifies or retrieves the hue setting of the video.

saturation Specifies or retrieves the saturation setting of the video.

Method Description

reset Resets all attributes to their default values.

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

VIDEOSETTINGS.contrast
The contrast attribute specifies or retrieves the contrast setting of the video.

Syntax

elementID.contrast

Possible Values

This attribute is a read/write Number (long) with a value ranging from -127 to +127 and a default value of 0.

Requirements

Windows Media Player version for Windows XP or later.

See Also

VIDEOSETTINGS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

VIDEOSETTINGS.hue
The hue attribute specifies or retrieves the hue setting of the video.

Syntax

elementID.hue

Previous Next

Previous Next

Previous Next

Previous Next

Possible Values

This attribute is a read/write Number (long) with a value ranging from -127 to +127 and a default value of 0.

Requirements

Windows Media Player version for Windows XP or later.

See Also

VIDEOSETTINGS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

VIDEOSETTINGS.saturation
The saturation attribute specifies or retrieves the saturation setting of the video.

Syntax

elementID.saturation

Possible Values

This attribute is a read/write Number (long) with a value ranging from -127 to +127 and a default value of 0.

Requirements

Windows Media Player version for Windows XP or later.

See Also

VIDEOSETTINGS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

VIDEOSETTINGS.reset
The reset method resets all attributes to their default values of zero.

Syntax

elementID.reset()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Requirements

Windows Media Player version for Windows XP or later.

See Also

VIDEOSETTINGS Element

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW Element
The VIEW element contains the user interface details of a skin, and uses the attributes, methods, and event
handlers shown in the following tables.

Multiple VIEW elements can be defined as children of the THEME element of a skin to provide different
interfaces for different situations. VIEW elements cannot be specified as children of any other element, and
they contain all other skin elements. Note that each view has its own variable scope, which means it cannot
share attribute values with other views.

Previous Next

Previous Next

Previous Next

The view global attribute can be used to reference a specific VIEW element from anywhere within it. This is an
alternative to using its id attribute, which must be used from within other VIEW elements or from within the
THEME element.

The VIEW element supports the following attributes. Attributes marked with an asterisk (*) are also supported
by the SUBVIEW element.

Attribute Description

backgroundColor * Specifies or retrieves the background color of the VIEW or
SUBVIEW.

backgroundImage * Specifies or retrieves the background image of the VIEW or
SUBVIEW.

backgroundImageHueShift Specifies or retrieves the amount by which the hue of the
background image is shifted.

backgroundImageSaturation Specifies or retrieves the saturation value of the background image.

backgroundTiled * Specifies or retrieves a value indicating whether the background
image of the VIEW or SUBVIEW is tiled.

category Specifies or retrieves the category for which the user interface will
appear.

focusObjectID Specifies or retrieves a value indicating which element has keyboard
focus.

maxHeight Specifies or retrieves the maximum height of the VIEW when
resizing.

maxWidth Specifies or retrieves the maximum width of the VIEW when
resizing.

minHeight Specifies or retrieves the minimum height of the VIEW when
resizing.

minWidth Specifies or retrieves the minimum width of the VIEW when
resizing.

resizable Specifies or retrieves a value indicating whether the VIEW can be
resized.

resizeBackgroundImage Specifies or retrieves a value indicating whether the background
image can be resized.

scriptFile Specifies the file names of accompanying JScript files.

timerInterval Specifies or retrieves the interval, in milliseconds, at which the
timer fires events to the ontimer event handler.

title Specifies or retrieves the title of the VIEW. Can only be set at
design time.

titleBar Specifies or retrieves a value indicating whether the window title
bar is shown.

transparencyColor * Specifies or retrieves the transparency color of the background

The VIEW element supports the following methods.

The VIEW element can implement the following event handlers.

The VIEW element supports the ambient attributes and can implement the ambient event handlers, except
where noted. For more information, see Ambient Attributes and Ambient Event Handlers,

See Also

Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.backgroundColor

image.

Method Description

close Closes the VIEW.

maximize Maximizes the VIEW.

minimize Minimizes the VIEW.

restore Restores the VIEW.

returnToMediaCenter Returns the user to the full mode of Windows Media Player.

size Resizes the VIEW on a specified edge.

Event handler Description

onclose Handles an event that occurs when the VIEW is about to be
closed.

onerror Handles an error event if Settings.enableErrorDialogs is set to
false.

onload Handles an event that occurs when the VIEW is first displayed.

ontimer Handles timer events.

Previous Next

Previous Next

The backgroundColor attribute specifies or retrieves the background color of the VIEW or SUBVIEW.

Syntax

elementID.backgroundColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value or the value "none".
It has a default value of "white" for VIEW elements or "none" for SUBVIEW elements.

In a Windows Media Download (WMD) package, if you specify the backgroundImage attribute for a VIEW
element, then you must also specify the backgroundColor attribute for that element.

Requirements

Windows Media Player version 7.0 or later.

See Also

Color Reference
VIEW Element

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.backgroundImage
The backgroundImage attribute specifies or retrieves the background image of the VIEW or SUBVIEW.

Syntax

elementID.backgroundImage

Possible Values

This attribute is a read/write String.

Remarks

The supported formats are BMP, JPG, GIF, and PNG. If the image is an 8-bit BMP file, its hue and saturation
values can be changed dynamically using the backgroundImageHueShift and backgroundImageSaturation
attributes.

Previous Next

Previous Next

In a Windows Media Download (WMD) package, if you specify the backgroundImage attribute for a VIEW
element, then you must also specify the backgroundColor attribute for that element.

Requirements

Windows Media Player version 7.0 or later.

See Also

VIEW Element
VIEW.backgroundImageHueShift
VIEW.backgroundImageSaturation

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.backgroundImageHueShift
The backgroundImageHueShift attribute specifies or retrieves the amount by which the hue of the background
image is shifted.

Syntax

elementID.backgroundImageHueShift

Possible Values

This attribute is a read/write Number (float) with a value ranging from 0.0 to 360.0 with a default value of 0.0.

Remarks

This attribute changes the hue value of the images specified by the backgroundImage attribute if it has been
specified and it refers to an 8-bit BMP image.

Requirements

Windows Media Player 9 Series or later.

See Also

VIEW Element
VIEW.backgroundImage

Previous Next

Previous Next

VIEW.backgroundImageSaturation

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.backgroundImageSaturation
The backgroundImageSaturation attribute specifies or retrieves the saturation value of the background image.

Syntax

elementID.backgroundImageSaturation

Possible Values

This attribute is a read/write Number (float) with a value ranging from 0.0 to 2.0 with a default value of 1.0.

Remarks

This attribute changes the saturation value of the images specified by the backgroundImage attribute if it has
been specified and it refers to an 8-bit BMP image.

Requirements

Windows Media Player 9 Series or later.

See Also

VIEW Element
VIEW.backgroundImage
VIEW.backgroundImageHueShift

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

VIEW.backgroundTiled
The backgroundTiled attribute specifies or retrieves a value indicating whether the background image of the
VIEW or SUBVIEW is tiled.

Syntax

elementID.backgroundTiled

Possible Values

This attribute is a read/write Boolean.

Requirements

Windows Media Player version 7.0 or later.

See Also

VIEW Element

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.category
The category attribute specifies or retrieves the category for which the VIEW is intended.

Syntax

elementID.category

Possible Values

Value Description

true The image is repeated horizontally and vertically.

false Default. The image is not repeated.

Previous Next

Previous Next

This attribute is a read/write String containing one of the following values.

Requirements

Windows Media Player version 7.0 or later.

See Also

VIEW Element

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.close
The close method closes the VIEW.

Syntax

elementID.close()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Requirements

Value Description

All Default. Theme for all types of media

Radio The UI for Radio Playback

CD The UI for CD playback

DVD The UI for DVD playback

Music The UI for MP3, WAV, MIDI, WMA

Video The UI for Video playback

Previous Next

Previous Next

Windows Media Player version 7.0 or later.

See Also

VIEW Element

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.focusObjectID
The focusObjectID attribute specifies or retrieves a value indicating which element has keyboard focus. Can
only be set at run time.

Syntax

elementID.focusObjectID

Possible Values

This attribute is a read/write String specifying the id of the element that has focus. It has no default value.

Requirements

Windows Media Player version 7.0 or later.

See Also

VIEW Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

VIEW.maxHeight
The maxHeight attribute specifies or retrieves the maximum height in pixels of the VIEW when resizing.

Syntax

elementID.maxHeight

Possible Values

This attribute is a read/write Number (long) with a value of zero or greater. It has a default value of zero, which
means there is no restriction on the maximum height of the VIEW.

Requirements

Windows Media Player version 7.0 or later.

See Also

VIEW Element
VIEW.minHeight

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.maximize
The maximize method maximizes the VIEW.

Syntax

elementID.maximize()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Previous Next

Previous Next

Example

<THEME>
 <VIEW id="View1">
 <BUTTON id="Open" Image="Open.png"
 onclick="jscript:View1.maximize()">
 </BUTTON>
 </VIEW>
</THEME>

Requirements

Windows Media Player version 7.0 or later.

See Also

VIEW Element
VIEW.minimize

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.maxWidth
The maxWidth attribute specifies or retrieves the maximum width in pixels of the VIEW when resizing.

Syntax

elementID.maxWidth

Possible Values

This attribute is a read/write Number (long) with a value of zero or greater. It has a default value of zero, which
means there is no restriction on the maximum width of the VIEW.

Requirements

Windows Media Player version 7.0 or later.

See Also

VIEW Element
VIEW.minWidth

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.minHeight
The minHeight attribute specifies or retrieves the minimum height in pixels of the VIEW when resizing.

Syntax

elementID.minHeight

Possible Values

This attribute is a read/write Number (long) with a value of zero or greater. It has a default value of zero, which
means there is no restriction on the minimum height of the VIEW.

Requirements

Windows Media Player version 7.0 or later.

See Also

VIEW Element
VIEW.maxHeight

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.minimize
The minimize method minimizes the VIEW.

Syntax

Previous Next

Previous Next

Previous Next

Previous Next

elementID.minimize()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Example

<THEME>
 <VIEW id="View1">
 <BUTTON id="Open" image="Open.png"
 onclick="jscript:View1.minimize()">
 </BUTTON>
 </VIEW>
</THEME>

Requirements

Windows Media Player version 7.0 or later.

See Also

VIEW Element
VIEW.maximize

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.minWidth
The minWidth attribute specifies or retrieves the minimum width in pixels of the VIEW when resizing.

Syntax

elementID.minWidth

Possible Values

This attribute is a read/write Number (long) with a value of zero or greater. It has a default value of zero, which
means there is no restriction on the minimum width of the VIEW.

Previous Next

Previous Next

Requirements

Windows Media Player version 7.0 or later.

See Also

VIEW Element
VIEW.maxWidth

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.onclose
The onclose event handler handles an event that occurs when the VIEW is about to be closed.

Syntax

onclose

Requirements

Windows Media Player version 7.0 or later.

See Also

VIEW Element

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.onerror

Previous Next

Previous Next

Previous Next

Previous Next

The onerror event handles an error event if Settings.enableErrorDialogs is set to false.

Syntax

onerror

Requirements

Windows Media Player version 7.0 or later.

See Also

VIEW Element

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.onload
The onload event handler handles an event that occurs when the VIEW is first displayed.

Syntax

onload

Requirements

Windows Media Player version 7.0 or later.

See Also

VIEW Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

VIEW.ontimer
The ontimer event handles timer events.

Syntax

ontimer

Remarks

The timerInterval attribute specifies the interval at which timer events will be fired.

Requirements

Windows Media Player version 7.0 or later.

See Also

VIEW Element
VIEW.timerInterval

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.resizable
The resizable attribute retrieves a value indicating whether the VIEW can be resized.

Syntax

elementID.resizable

Possible Values

This attribute is a read-only Boolean with a default value equal to the titlebar attribute.

Previous Next

Previous Next

Previous Next

Remarks

If there is no titlebar, and therefore no window or border, you must use the size method to resize the VIEW
element.

Requirements

Windows Media Player version 7.0 or later.

See Also

VIEW Element

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.resizeBackgroundImage
The resizeBackgroundImage attribute specifies or retrieves a value indicating whether the background image
can be resized.

Syntax

elementID.resizeBackgroundImage

Possible Values

This attribute is a read/write Boolean.

Remarks

Values Description

true View can be resized.

false View cannot be resized.

Previous Next

Previous Next

Values Description

true The background image can be resized.

false Default. The background image cannot be resized.

If you set this attribute to true, the background image will resize to fit the current values of the width and
height attributes.

Requirements

Windows Media Player 9 Series or later.

See Also

VIEW Element
VIEW.backgroundImage

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.restore
The restore method restores the VIEW.

Syntax

elementID.restore()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Example

<THEME>
 <VIEW id="View1">
 <BUTTON id="Open" image="Open.png"
 onclick="jscript:View1.restore()">
 </BUTTON>
 </VIEW>
</THEME>

Requirements

Windows Media Player version 7.0 or later.

Previous Next

Previous Next

See Also

VIEW Element

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.returnToMediaCenter
The returnToMediaCenter method returns the user to the full mode of Windows Media Player.

Syntax

elementID.returnToMediaCenter()

Parameters

This method takes no parameters.

Return Values

This method does not return a value.

Example

<THEME>
 <VIEW id="View1" backgroundImage="greenstone.bmp">
 <BUTTON id="Open" image="Open.png"
 onclick="jscript:View1.returnToMediaCenter()">
 </BUTTON>
 </VIEW>
</THEME>

Requirements

Windows Media Player version 7.0 or later.

See Also

VIEW Element

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.scriptFile
The scriptFile attribute specifies the file names of accompanying JScript files.

Syntax

elementID.scriptFile

Possible Values

This attribute is a write-only String with no default value. The file names of multiple JScript files are delimited
with semicolons. Leading and following spaces and semicolons should not be present.

Example

<VIEW id="theView" scriptFile="theScript.js">
</VIEW>

Remarks

The code in the specified files can be used by any event handler in the View. Code that is used by event
handlers in multiple Views can be placed in a file with the same name as the skin definition file but with a .js
extension instead of a .wms extension. This file is loaded automatically and need not be specified in the skin
definition file.

Requirements

Windows Media Player version 7.0 or later.

See Also

VIEW Element

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

VIEW.size
The size method resizes the VIEW on a specified edge.

Syntax

elementID.size(handle)

Parameters

 handle

String specifying the edge or corner to move when sizing. This string must have one of the following eight
values.

Return Values

This method does not return a value.

Example

<THEME>
 <VIEW id="View1" backgroundImage="greenstone.bmp">
 <BUTTON id="sizer" horizontalAlignment="right"
 verticalAlignment="bottom" image="Open.png"
 onmousedown="jscript:View1.size('bottomright')">
 </BUTTON>
 </VIEW>
</THEME>

Remarks

This method is typically called from within an onmousedown handler. It takes care of resizing while the mouse
is dragged and stops resizing when the mouse button is released. If the size of the VIEW is restricted, you
cannot drag the mouse to resize the View beyond the restricted bounds.

Requirements

Previous Next

Edge Corner

top topright

right bottomright

bottom bottomleft

left topleft

Windows Media Player version 7.0 or later.

See Also

VIEW Element

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.timerInterval
The timerInterval attribute specifies or retrieves the interval, in milliseconds, at which the timer fires events to
the ontimer event handler.

Syntax

elementID.timerInterval

Possible Values

This attribute is a read/write Number (long) with a default value of 1000.

Any value below 50 (including negative numbers, but not including zero) generates an error and the previous
value is maintained.

Remarks

This will not fire automatically if no ontimer event handler is implemented. Thus there is no performance
degradation even though the default value is non-zero.

Requirements

Windows Media Player version 7.0 or later.

See Also

Previous Next

Previous Next

Value Description

0 The timer event does not fire.

50 and above The interval in milliseconds.

VIEW Element
VIEW.ontimer

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.title
The title attribute specifies or retrieves the title of the VIEW.

Syntax

elementID.title

Possible Values

This attribute is a String specified at design time and read-only thereafter. It can be up to 255 characters long
and has no default value.

Remarks

The title specified or retrieved is the display name for the theme.

Requirements

Windows Media Player version 7.0 or later.

See Also

VIEW Element
VIEW.titleBar

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

VIEW.titleBar
The titleBar attribute retrieves a value indicating whether the window title bar is shown.

Syntax

elementID.titleBar

Possible Values

This attribute is a read-only Boolean.

Remarks

If the title bar is shown, the control box, minimize, and close buttons will be shown. The title of the window
will be the title of the VIEW element.

If titleBar is set to true and the user attempts to change the value of Video.zoom, the change will not take place
unless the skin monitors zoom and takes appropriate action to resize itself.

Requirements

Windows Media Player version 7.0 or later.

See Also

VIEW Element
VIEW.title
VIDEO.zoom

© 2000-2003 Microsoft Corporation. All rights reserved.

VIEW.transparencyColor

Value Description

true Default. The window title bar is shown.

false The window title bar is not shown.

Previous Next

Previous Next

The transparencyColor attribute specifies or retrieves the transparency color of the background image.

Syntax

elementID.transparencyColor

Possible Values

This attribute is a read/write String containing any Microsoft Internet Explorer color value. It has no default
value.

Because JPGs are lossy and therefore subject to unexpected color change, they are not recommended when
transparencyColor is used.

Requirements

Windows Media Player version 7.0 or later.

See Also

VIEW Element
Color Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Miscellaneous
This section documents specialized attributes and other miscellaneous topics for use in creating skins.

The following topics are covered.

Previous Next

Previous Next

Topic Description

Color Reference A chart of colors, color names, and hexadecimal values for colors
supported by skins.

Global Attributes Global attributes are attributes that provide easy access to certain player
elements or objects from anywhere within a skin.

Listening Attributes Attributes used to connect one attribute to another so that its value
changes every time the value of the other attribute changes.

See Also

Skin Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Color Reference
The following colors are supported for use with skins. Every attribute that takes a color value can be specified
using one of the following color names or hexadecimal values. Any six-digit hexadecimal number can be used,
but only the ones on this chart have valid names.

Some attributes will also accept a value of "none". For transparencyColor attributes, "none" means that no
transparency is used. For other color attributes as appropriate, "none" means that transparency is used instead of
a color.

Previous Next

Previous Next

aliceblue
(#F0F8FF)

antiquewhite
(#FAEBD7)

aqua
(#00FFFF)

aquamarine
(#7FFFD4)

azure
(#F0FFFF)

beige
(#F5F5DC)

bisque
(#FFE4C4)

black
(#000000)

blanchedalmond
(#FFEBCD)

blue
(#0000FF)

blueviolet
(#8A2BE2)

brown
(#A52A2A)

burlywood
(#DEB887)

cadetblue
(#5F9EA0)

chartreuse
(#7FFF00)

chocolate
(#D2691E)

coral
(#FF7F50)

cornflowerblue
(#6495ED)

cornsilk
(#FFF8DC)

crimson
(#DC143C)

cyan
(#00FFFF)

darkblue
(#00008B)

darkcyan
(#008B8B)

darkgoldenrod
(#B8860B)

darkgray
(#A9A9A9)

darkgreen
(#006400)

darkkhaki
(#BDB76B)

darkmagenta
(#8B008B)

darkolivegreen
(#556B2F)

darkorange
(#FF8C00)

darkorchid
(#9932CC)

darkred
(#8B0000)

darksalmon
(#E9967A)

darkseagreen
(#8FBC8B)

darkslateblue
(#483D8B)

darkslategray
(#2F4F4F)

darkturquoise
(#00CED1)

darkviolet
(#9400D3)

deeppink
(#FF1493)

deepskyblue
(#00BFFF)

dimgray dodgerblue firebrick floralwhite

(#696969) (#1E90FF) (#B22222) (#FFFAF0)
forestgreen
(#228B22)

fuchsia
(#FF00FF)

gainsboro
(#DCDCDC)

ghostwhite
(#F8F8FF)

gold
(#FFD700)

goldenrod
(#DAA520)

gray
(#808080)

green
(#008000)

greenyellow
(#ADFF2F)

honeydew
(#F0FFF0)

hotpink
(#FF69B4)

indianred
(#CD5C5C)

indigo
(#4B0082)

ivory
(#FFFFF0)

khaki
(#F0E68C)

lavender
(#E6E6FA)

lavenderblush
(#FFF0F5)

lawngreen
(#7CFC00)

lemonchiffon
(#FFFACD)

lightblue
(#ADD8E6)

lightcoral
(#F08080)

lightcyan
(#E0FFFF)

lightgoldenrodyellow
(#FAFAD2)

lightgreen
(#90EE90)

lightgrey
(#D3D3D3)

lightpink
(#FFB6C1)

lightsalmon
(#FFA07A)

lightseagreen
(#20B2AA)

lightskyblue
(#87CEFA)

lightslategray
(#778899)

lightsteelblue
(#B0C4DE)

lightyellow
(#FFFFE0)

lime
(#00FF00)

limegreen
(#32CD32)

linen
(#FAF0E6)

magenta
(#FF00FF)

maroon
(#800000)

mediumaquamarine
(#66CDAA)

mediumblue
(#0000CD)

mediumorchid
(#BA55D3)

mediumpurple
(#9370DB)

mediumseagreen
(#3CB371)

mediumslateblue
(#7B68EE)

mediumspringgreen
(#00FA9A)

mediumturquoise
(#48D1CC)

mediumvioletred
(#C71585)

midnightblue
(#191970)

mintcream
(#F5FFFA)

mistyrose
(#FFE4E1)

moccasin
(#FFE4B5)

navajowhite
(#FFDEAD)

navy
(#000080)

oldlace
(#FDF5E6)

olive
(#808000)

olivedrab
(#6B8E23)

orange
(#FFA500)

orangered
(#FF4500)

orchid
(#DA70D6)

palegoldenrod
(#EEE8AA)

palegreen
(#98FB98)

paleturquoise
(#AFEEEE)

palevioletred
(#DB7093)

papayawhip
(#FFEFD5)

peachpuff
(#FFDAB9)

peru
(#CD853F)

pink
(#FFC0CB)

plum
(#DDA0DD)

powderblue
(#B0E0E6)

purple
(#800080)

red
(#FF0000)

rosybrown
(#BC8F8F)

royalblue
(#4169E1)

saddlebrown
(#8B4513)

salmon
(#FA8072)

sandybrown
(#F4A460)

seagreen
(#2E8B57)

seashell
(#FFF5EE)

sienna
(#A0522D)

silver
(#C0C0C0)

skyblue
(#87CEEB)

slateblue
(#6A5ACD)

slategray
(#708090)

snow
(#FFFAFA)

springgreen
(#00FF7F)

steelblue tan teal thistle

For more information, see the Color Table article in Microsoft MSDN® Online.

See Also

Miscellaneous

© 2000-2003 Microsoft Corporation. All rights reserved.

Global Attributes
Global attributes are attributes that provide easy access to certain player elements or objects from anywhere
within a skin.

The player global attribute is a reference to the Player object, and is used to access the primary functionality of
Windows Media Player. The following example uses player to begin digital media playback.

<BUTTON
 onclick="jscript:player.controls.play();"
/>

The theme global attribute is a reference to the THEME element. This is the proper way to access THEME
attributes, rather than by specifying an ID within the THEME element. The following example uses theme to
open a new view.

<TEXT
 value="open"
 onclick="jscript:theme.openView('newView');"
/>

The view global attribute is a reference to the current VIEW. This can be used instead of the ID specified
within the various VIEW elements. The following example uses view to close the current view.

<BUTTON
 id="quitbutton"
 onclick="jscript:view.close();"

(#4682B4) (#D2B48C) (#008080) (#D8BFD8)
tomato

(#FF6347)
turquoise

(#40E0D0)
violet

(#EE82EE)
wheat

(#F5DEB3)
white

(#FFFFFF)
whitesmoke
(#F5F5F5)

yellow
(#FFFF00)

yellowgreen
(#9ACD32)

Previous Next

Previous Next

/>

The event global attribute is used to access ambient event attributes from within event handlers. The following
example uses event to determine whether the ALT key is pressed when a button is clicked.

<BUTTON
 onclick="jscript:if (event.altKey == true) myText.value='ALT';"
/>

The playerApplication global attribute is a reference to the PlayerApplication object, and is used by skin files
provided as custom user interfaces for remoted Player controls. The Player control can be embedded in remote
mode only in C++ programs that implement the IWMPRemoteMediaServices interface. The following
example uses playerApplication to switch to the full mode of the Player.

<BUTTON
 onclick="jscript:playerApplication.switchToPlayerApplication();"
/>

For more information, see Ambient Event Attributes.

See Also

Miscellaneous

© 2000-2003 Microsoft Corporation. All rights reserved.

Listening Attributes
A listening attribute is used to connect one attribute to another so that its value changes every time the value of
the other attribute changes.

The listening attribute wmpprop: is the most useful. If the value of one attribute is specified to be the
wmpprop: of a second attribute, the first value will be automatically updated to reflect the second value each
time the second value changes.

Example:

<TEXT
 value="wmpprop:mySlider.value"
/>

In this way, the value of mySlider, shown by the position of the slider control, can also be shown as a number
within a text box.

Previous Next

Previous Next

The two other listening attributes, wmpenabled: and wmpdisabled:, can be used to change the enabled
attribute of a control depending on whether its functionality is currently available in the player. These attributes
can listen only to methods of the Controls object.

Example:

<BUTTON
 id="play"
 enabled="wmpenabled:player.controls.play"
/>

See Also

Miscellaneous

© 2000-2003 Microsoft Corporation. All rights reserved.

Windows Media Player Plug-ins
Microsoft Windows Media Player exposes interfaces that allow you to extend functionality in several ways. The
following sections detail the supported plug-in architectures:

Previous Next

Previous Next

Section Description

Windows Media Player Custom Visualizations Windows Media Player visualizations are COM
objects used to display visual imagery that is
synchronized to the audio portion of the media
playback of the player. Custom visualizations can be
created using Visual C++.

Windows Media Player User Interface Plug-ins Windows Media Player user interface plug-ins add
new functionality to the Now Playing pane of the full
mode Player. You can create plug-ins that use the
visualization area, a separate window, the settings
area, the metadata area, or background plug-ins that
expose no visible user interface.

Windows Media Player DSP Plug-ins Windows Media Player DSP plug-ins modify or
process audio and video data before it is rendered by
the Player. DSP plug-ins are DirectX Media Objects
(DMO) that connect to the Player through COM
interfaces.

See Also

Windows Media Player 9 Series SDK

© 2000-2003 Microsoft Corporation. All rights reserved.

Windows Media Player Custom Visualizations
Microsoft Windows Media Player provides visualizations that enable the user to see visual imagery that is
synchronized to the sound of the media content as it plays. Several standard visualizations are included with
Windows Media Player, including Spikes, Bars, and DotPlane. This section of the SDK provides programming
information that will enable you to create your own visualizations.

The custom visualization documentation is divided into three sections:

See Also

Windows Media Player Plug-ins

Windows Media Player Rendering Plug-ins Windows Media Player rendering plug-ins decode (if
necessary) and render custom data contained in a
Windows Media format stream. Rendering plug-ins
are DirectX Media Objects (DMO) that connect to the
Player through COM interfaces.

Previous Next

Previous Next

Section Description

About Custom Visualizations Discusses the architecture of custom visualizations in abstract terms.
You should read this section to understand how visualizations relate to
Windows Media Player.

Custom Visualization
Programming Guide

Explains what you need to do to create a custom visualization. This
section contains useful hints and tips that will help you create interesting
visualizations.

Custom Visualization
Programming Reference

Provides a reference for the interface you must implement as well as
other technical reference information.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

About Custom Visualizations
Windows Media Player provides an interface to create custom visualizations. This section provides an overview
of the architecture of visualizations, information about how they relate to Windows Media Player, and the
technical details you will need to create custom visualizations.

Note that several places in the code, you will see the word Effect. Visualizations are effects.

Custom visualizations are described in greater detail in the following topics.

See Also

Windows Media Player Custom Visualizations

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Topic Description

User Overview Describes visualizations from a user perspective.

Developer Overview Describes visualizations from a developer
perspective.

Building a Visualization Describes how to create a visualization project.

Implementing Your Code Describes how to modify the sample code generated
by the visualization plug-in wizard.

Installing Visualizations Describes how to install a visualization on a user's
computer.

Submitting Your Visualization Describes how to publicly distribute your completed
visualization.

Previous Next

Previous Next

User Overview
To the user, visualizations are images that dance in time to the music. They provide additional entertainment to
enhance musical experiences. The more entertaining a visualization is, the better!

Here is what a typical visualization looks like:

Standard Visualizations

Windows Media Player includes several visualizations, such as:

Ambience
Plenoptic
Spike

Standard Presets

In addition, each visualization comes with specific presets that alter how the visualization is displayed. For
example, the Spike visualization comes in two presets:

Spike
Amoeba

Both effects are part of the same visualization, but have different presets. A preset is a set of values for the
attributes of a particular visualization.

Skin Attributes

If you create skins for Windows Media Player, you can display the standard visualizations in your skins using
the Effects element. For more details on using visualizations in skins, see Windows Media Player Skins.

See Also

About Custom Visualizations

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Developer Overview
From the developer's point of view, visualizations are software programs that take audio data provided by
Windows Media Player and convert that data to graphics that will please the eye of the user. The main subjects
a developer needs to understand in order to create a new visualization are:

Visualization Packaging

Visualizations are COM controls that Windows Media Player uses to turn audio waveforms into animated
graphics in Microsoft Windows. The COM controls are packaged as Microsoft Windows dynamic-link libraries
(DLLs) and must be registered in the Windows registry. When Windows Media Player runs, registered custom
visualizations are loaded and viewed in accordance with the instructions of the skin that Windows Media Player
is using.

Audio Input

Windows Media Player provides your code with snapshots of audio frequency and waveform data at timed
intervals measured in fractions of a second. The snapshot interval is internally determined by the Windows
Media Player.

Graphical Output

The graphical output from your visualization is a Microsoft Windows device context. This is a standard
Windows drawing surface that you can draw upon every time an audio snapshot is provided. All of the
background Windows technology is taken care of for you. You just have to draw on the device context with the
audio data provided.

Drawing Tools

You can draw on the device context with standard Microsoft Windows Graphics Device Interface (GDI)
functions, using pens and brushes to create designs that are modified by the audio data supplied to you by
Windows Media Player. GDI provides a rich set of drawing tools that can create many kinds of visual effects.

Programming Language

Microsoft Visual C++ 5.0 and higher is the only supported language for creating custom visualizations.

Plug-in Wizard

Windows Media Player provides a COM wizard that you can add to Visual C++ 6.0 that will generate the
underlying code needed for your visualization. Not only are all source files provided, but a sample skin is
generated to make it easy to test your visualization. The generated code creates a visualization similar to Bars,
with two presets. You can then modify the code to create your own visualization. A registry file is also
generated to register your visualization so that Windows Media Player can load it.

The following topic describes how visualization code processes audio data:

Flow of Control

See Also

About Custom Visualizations

© 2000-2003 Microsoft Corporation. All rights reserved.

Flow of Control

Audio data comes into Windows Media Player continuously through a file or a stream. That data is passed to
your visualization. You draw on a defined surface and pass that surface back to Windows Media Player. This
interchange happens several times a second, and to the user, the result is a pleasing animation that moves in
time to the music.

Here is the specific sequence of the visualization program flow:

1. At a timed interval, Windows Media Player takes a snapshot of the audio that is playing.
2. Windows Media Player supplies the data from that snapshot to your visualization through the Render

function and the RenderWindowed function.
3. You must write code that will run when Render and RenderWindowed is called. Your code draws by

using a device context defined by Windows Media Player when rendering windowless, or by using a
window that you create when rendering windowed.

4. In a region specified by the current skin, Windows Media Player displays what your code drew.
5. This process repeats several times a second, creating graphical animations that are timed to the music.

When the music stops playing, the visualization stops.

See Also

Developer Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Building a Visualization
You must have three things to build a custom visualization:

Previous Next

Previous Next

Previous Next

Previous Next

1. Microsoft Visual C++ 6.0, or Microsoft Visual C++ .NET. These are the only compilers supported.
Included with Visual C++ is the Microsoft Windows Platform SDK which will provide detailed
instructions on using the Graphical Device Interface (GDI) drawing functions.

2. The Windows Media Player SDK. Included with the SDK is the documentation you are reading right
now, as well as the Windows Media Player Plug-in Wizard.

3. Windows Media Player. You will not be able to test your custom visualization without it. It is also a great
way to listen to music while you are coding!

The following sections tell you what you need to know to create a visualization using the plug-in wizard:

Getting Started with Visualizations
Using the Visualization Plug-in Wizard with Visual C++ 6.0
Using the Visualization Plug-in Wizard with Visual C++ .NET

See Also

About Custom Visualizations

© 2000-2003 Microsoft Corporation. All rights reserved.

Getting Started with Visualizations
To set up your development environment for creating custom visualizations, you must install the following
items:

Microsoft Visual C++ 6.0, or Microsoft Visual C++ .NET.
Windows Media Player 9 Series or later.
Windows Media Player 9 Series SDK or later
Windows Media Player Plug-in Wizard

Installing Visual C++

Be sure you install Microsoft Visual C++ 6.0 or later. Follow the instructions that come with the compiler.
Include the Platform SDK for 32-bit Windows because you will need specific information about the Graphics
Display Interface (GDI) functions.

Installing Windows Media Player

Install Windows Media Player 9 Series or later. It will be needed to test your visualization.

Installing the Windows Media Player SDK

Previous Next

Previous Next

Besides reading the programming information, you will need the SDK to get the Windows Media Player Plug-
in Wizard. Make sure that the SDK is at the same version level as Windows Media Player, or later.

Installing the Wizard

There are separate versions of the Windows Media Player plug-in wizard for Microsoft Visual C++ 6.0 and
Microsoft Visual C++ .NET.

Once you have installed the Windows Media Player SDK, you can find the Windows Media Player Plug-in
Wizard for Visual C++ 6.0 in this directory:

\wizards\wmpplugin

The wizard file is named wmpwiz.awx.

Copy the wizard to this directory on your hard disk:

\Program Files\Microsoft Visual Studio\Common\MSDev98\Bin\IDE

You can also install it in this directory:

\Program Files\Microsoft Visual Studio\Common\MSDev98\Template

If you installed Microsoft Visual Studio 6.0 (which contains Microsoft Visual C++) in another directory, find
the corresponding directory. If you are not sure where you installed it, you can search for other COM wizards
with the .awx file name extension.

If you are using Microsoft Visual C++ .NET, the Windows Media Player plug-in wizard is installed and
configured automatically for you when you install this SDK. If you install Visual C++ .NET after installing this
SDK, you should remove the SDK and reinstall it.

See Also

Building a Visualization

© 2000-2003 Microsoft Corporation. All rights reserved.

Using the Visualization Plug-in Wizard with Visual
C++ 6.0
After you have installed the necessary components, creating a sample visualization plug-in is easy. The

Previous Next

Previous Next

following steps will guide you:

1. Start Visual C++ 6.0.
2. From the File menu, click New.
3. On the Projects tab, click Windows Media Player Plug-in Wizard.
4. In the Project name box, type a name for your visualization plug-in.
5. In the Location box, provide the location of a folder where the wizard can save the files it generates. You

can accept the default, type a new path, or browse to an existing location.
6. Click OK.
7. Visual C++ displays a dialog box to allow you to choose the type of plug-in you want to create.

Visualization should be selected by default, or select it yourself. Click Next.
8. Choose whether your plug-in project should provide code to support a property page.
9. Choose whether your plug-in project should provide code to handle events.

10. Provide a Friendly name and Description for your visualization.
11. Click Finish.
12. Visual C++ displays a dialog box showing you what will be created. You will see that you will be

creating a DLL for Win32 and you will be told what kinds of files will be created as source files. You will
also see that your project will be placed in the location you specified earlier.

13. Click OK to complete the process.

Do a Test Build

From the Build menu, select Build projectname.dll, where projectname is the project name you chose. Your
visualization will be built, and you can watch the progress of the build at the bottom of the screen.

Run Windows Media Player

Start a song in Windows Media Player and click through the visualizations. The presets that are automatically
built for you are called projectname Bars and projectname Wave, where projectname is the name of your
project.

See Also

Building a Visualization

© 2000-2003 Microsoft Corporation. All rights reserved.

Using the Visualization Plug-in Wizard with Visual
C++ .NET
Once you have installed the Plug-in Wizard, start up Microsoft Visual C++ .NET. The plug-in wizard can

Previous Next

Previous Next

generate all the code you need to get started. The following steps will guide you:

1. Start up Visual C++.
2. From the File menu, point to New and then click Project.
3. In Project Types, click Visual C++ Projects if it isn't already selected.
4. In Templates, click Windows Media Player Plug-in Wizard to select it.
5. Type a name for your project.
6. Specify a location for your project. This is the folder to which your project files will be copied.
7. Click OK to start the wizard.
8. Visual C++ displays a dialog box to allow you to choose the type of plug-in you want to create.

Visualization should be selected by default, or select it yourself. Click Next.
9. Choose whether your plug-in project should provide code to support a property page.

10. Choose whether your plug-in project should provide code to handle events.
11. Provide a Friendly name and Description for your visualization.
12. Click Next.
13. Visual C++ creates a new visualization project for you. The wizard dialog box closes automatically.

Do a Test Build

From the Build menu, select Build projectname, where projectname is the project name you chose. Your
visualization will be built, and you can watch the progress of the build at the bottom of the screen.

Run Windows Media Player

Start a song in Windows Media Player and click through the visualizations. The presets that are automatically
built for you are called projectname Bars and projectname Wave, where projectname is the name of your
project.

See Also

Building a Visualization

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing Your Code
Once you have completed the build process, you will probably want to improve upon the code generated by the
wizard. Otherwise your visualization will look much like Bars. What you need to do is change the
implementation of the Render function, and possibly the RenderWindowed function.

The following sections provide details about how to modify the sample code generated by the plug-in wizard:

Previous Next

Previous Next

Implementing Render
Implementing Other Functions
Presets

See Also

About Custom Visualizations

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing Render
The easiest way to think of visualization programming is that you are creating a handler for a timed event. At
specific intervals, Windows Media Player takes a snapshot of the audio data it is playing, and provides the
snapshot data to the currently loaded visualization. This is similar to event-driven programming and is part of
the programming model of Microsoft Windows. You write code and wait for it to be called by a particular
event.

If your code is an implementation of the IWMPEffects::Render function for rendering in windowless mode, it
receives the following parameters:

TimedLevel

This is a structure that defines the audio data your code will be analyzing. The structure is composed of two
arrays. The first array is based on frequency information and contains a snapshot of the audio spectrum divided
into 1024 portions. Each cell of the array contains a value from 0 to 255. The first cell starts at 20 Hz and the
last at 22050 Hz. The array is two dimensional to represent stereo audio. The second array is based on
waveform information and corresponds to audio power, where the stronger the wave is, the larger the value. The
waveform array is a granular snapshot of the last 1024 slices of audio power taken at very small time intervals.
This array also is two dimensional to represent stereo audio.

HDC

This is a Microsoft Windows handle to a device context. This gives a way to identify the drawing surface to
Windows. You do not need to create it, you just need to use it for specific drawing function calls.

RECT

This is a Microsoft Windows rectangle that defines the size of a drawing surface. This is a simple rectangle with
four properties: left, right, top, and bottom. The actual values are supplied by Windows Media Player so that
you can determine how the user or skin developer has sized the window you will draw on. It also determines the
position on the HDC that the effect is supposed to render on.

Previous Next

Previous Next

If your code is an implementation of the IWMPEffects2::RenderWindowed function for rendering in a
window, it receives the following parameters:

TimedLevel

This is the same information that the Render function receives.

fRequiredRender

The fRequiredRender parameter informs you that your visualization must repaint itself—for example, when
another window is dragged over it. When this value is false, you can safely skip over the rendering code if the
current media item is stopped or paused. This lets you avoid consuming CPU cycles unnecessarily.

The sample plug-in generated by the Plug-in Wizard does not provide a custom implementation for
RenderWindowed. Instead, the sample plug-in code retrieves the device context from the parent window
provided by Windows Media Player in IWMPEffects2::Create, then retrieves the dimensions of the parent
window as a RECT structure, and then calls through to Render using the device context, the RECT, and the
timed level pointer from RenderWindowed.

The following sections provide more information about implementing Render:

Using Timed Levels
Using Device Contexts
Using Rectangles
Sample Render Code

See Also

Implementing Your Code

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Timed Levels

The TimedLevel structure is composed of two two-dimensional arrays, a state value, and a time stamp value.

Frequency Array

The frequency array is a two-dimensional array. The first dimension of each array corresponds to the stereo
audio channel (left or right), and the second corresponds to the frequency levels (in bytes) of the snapshot,
where the audio spectrum is divided up into 1024 regions.

Previous Next

Previous Next

You can get the frequency array data supplied from the Windows Media Player in the following manner:

TimedLevel *pLevels;
int snapshot = pLevels->frequency[0][0];

The value of snapshot is for the left channel and contains the value of the lowest part of the frequency spectrum.
For example, if snapshot has a large value, it indicates that the lowest 1024th part of the frequency spectrum is
rich in frequency. A value of zero indicates no low frequency values in that part of the spectrum for the left
channel. If you have a monophonic signal, only the first dimension has valid values.

If the signal is non-stereo, then the second array will contain a copy of the mono signal. That is, frequency[0][n]
and frequency[1][n] will contain the same data, where n is the index into a particular cell.

Waveform Array

The waveform array is also a two-dimensional array. The first dimension of the array corresponds to the
channel (left or right), and the second corresponds to the power levels (in bytes) of the snapshot, where the
audio power is broken up into 1024 continguous time segments.

You can get the waveform array data from Windows Media Player in the following manner:

TimedLevel *pLevels;
int snapshot = pLevels->waveform[0][0];

The value of snapshot is for the left channel and contains the first value of the quantized snapshot of the power
values. When a snapshot is taken, it consists of 1024 tiny incremental measurements of the audio power. The
lowest value of the array is generated by the first incremental measurement of audio power. Note that the values
of the power are measured from -128 to +127 but the values in the array range from 0 to 255. If you have a
monophonic wave, only the first dimension will have valid values.

If the signal is non-stereo, then the second array will contain a copy of the mono signal. That is, waveform[0][n]
and waveform[1][n] will contain the same data, where n is the index into a particular cell.

State

The state variable reflects the audio playback state of Windows Media Player. The PlayerState enumeration
values are

 stop_state = 0, // audio is currently stopped
 pause_state = 1, // audio is currently paused
 play_state = 2 // audio is currently playing

You can use this variable to take different actions depending on the audio playback state. For example, you can
play one kind of visualization when the audio is playing and another when it is stopped.

Time Stamp

The timeStamp variable reflects the current time when the snapshot is taken. This can be used to measure how
frequently the snapshots are taken.

You can use this variable to time your animations. If the snapshots are too frequent, you can gracefully degrade
your image to display in the manner you choose.

See Also

Implementing Render

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Device Contexts

The device context is a standard handle to a device context. You need this for many drawing functions so that
Microsoft Windows knows which window to draw in. For example, to draw a rectangle, you need to specify the
device context.

HDC hdc;
::Rectangle(hdc, 1, 1, 100, 100);

The device context is specified by Windows Media Player through the Render function. If your plug-in renders
using a window, you'll need to use the device context of that window. Use this device context for any drawing
tool that requires a device context.

See Also

Implementing Render

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Rectangles

Rectangles are used to specify rectangular areas in Microsoft Windows. You can create many rectangles in your
window, but Windows Media Player supplies the values of one rectangle through the IWMPEffects::Render
function. If your plug-in renders using a window, the rectangle is the client area of the window. This is called
the prc rectangle, and it defines the rectangle that Windows Media Player will display your visualization
through. Use this frequently to be sure you do not draw beyond the extents of the rectangle supplied by
Windows Media Player.

Previous Next

Previous Next

Previous Next

Previous Next

A rectangle has four values that define it. They are left, top, right, and bottom. The top, left corner of the
rectangle is defined by left and top, and the bottom, right corner of the rectangle is defined by bottom and right.

Use the following code to get the extents of your drawing rectangle. You need to do this because the user may
resize the window, and you want to be sure that you are always drawing in an area the user can see.

int leftside = prc->left;
int rightside = prc->right;
int topside = prc->top;
int bottomside = prc->bottom;

For example, to draw from left to right, along the top of the window, use code like this:

::MoveToEx(hdc, prc->left, prc->top, NULL);
::LineTo(hdc, prc->right, prc->top);

See Also

Implementing Render

© 2000-2003 Microsoft Corporation. All rights reserved.

Sample Render Code

Here is some sample code that uses the Render function to draw a line across the screen. The height of the line
is defined by the waveform value.

STDMETHODIMP CStock::Render(TimedLevel *pLevels, HDC hdc, RECT *prc)
{
 // Create new brushes and pens.
 HBRUSH hNewBrush = ::CreateSolidBrush(0);
 // Create a new solid pen the color of the foreground.
 HPEN hNewPen = ::CreatePen(PS_SOLID, 0, m_clrForeground);

 // Add the pen to the device context.
 HPEN hOldPen= static_cast<HPEN>(::SelectObject(hdc, hNewPen));

 // Fill the background with the black brush.
 ::FillRect(hdc, prc, hNewBrush);

 // Get the y value from the waveform.
 int y = pLevels->waveform[0][0];

 // Draw the line from left to right.
 ::MoveToEx(hdc, prc->left, y, NULL);
 ::LineTo(hdc, prc->right, y);

Previous Next

Previous Next

 // Delete your brush.
 if (hNewBrush)
 {
 ::DeleteObject(hNewBrush);
 }
 // Delete your pen.
 if (hNewPen)
 {
 ::SelectObject(hdc, hOldPen);
 ::DeleteObject(hNewPen);
 }

 // You're done for this round.
 return S_OK;
}

The Render function is where the main work of your code takes place. Every time Windows Media Player
takes a snapshot of the audio, it will call this function and your code will run.

This code performs the following tasks. Refer to the Microsoft Windows Platform SDK for 32-bit Windows for
more details about specific functions.

Creating Objects

Usually you will be using the drawing functions that come with the Microsoft Windows Graphical Display
Interface (GDI). You need to create pens to draw lines and brushes to fill areas.

A solid black brush is created to fill in the background.

A solid pen is created to draw a line. The color will be the foreground color as defined by the skin that is going
to display the visualization.

Adding the Object to the DC

You need to add the pen to the device context (DC). The DC is the portion of memory that all drawing data and
objects are stored in. Essentially the DC is the window traffic manager that keeps track of everything graphical.

You need to cast the pen object you created and store it as an old pen. Use this coding technique for all new
pens. This technique is required for 32-bit programming.

Filling in the Background

You now are ready to draw. The FillRect function will fill the rectangle of the window, as defined by the
parameters of the Render function. The rectangle is filled with a black brush.

Getting Audio Data

Next the code gets some audio data from Windows Media Player. By using the waveform array, you can get the
current value of the audio power at the moment the snapshot was taken. In this case, you are taking the audio
data of the left channel. The first value in the array is the first 1024th of the audio power snapshot.

This information will be used to display a line whose height will match the audio power shapshot.

Draw the Line

The line is drawn from left to right using the MoveToEx and LineTo GDI functions.

First you move the pen to the starting point. In this case, x and y are used to define the left-to-right and top-to-
bottom values the user will see on the screen. X is defined by the rectangle prc and specifically by the value of
prc->left. Y is defined as the value of the waveform data at that moment.

Then you draw a line to the other side of the window. The point you draw the line to is again an x, y value. X is
defined by the rectangle prc, but this time by prc->right. Y is still defined by the waveform data and is the same
as the point you started from, because you are drawing a straight line from left to right.

Clean up Everything

You must delete the objects you create. Specifically you must delete any and all brushes and pens you create. It
is good practice to delete pens and brushes as soon as you finish using them.

If you do not delete them before finishing your implementation of the Render function, your visualization will
crash in a minute or less. You must keep a count of your pens and brushes and destroy every single one. Be
especially careful not to create pens inside a code loop.

Use the coding technique given in the example to destroy your pens and brushes.

Important Destroy your pens and brushes!

When you have finished cleaning up, be sure to return S_OK so that Windows Media Player knows you are
finished drawing. Once you finish, your drawing will be transferred to the window, another snapshot will be
taken, Render will ask your code to draw again, and so on.

See Also

Implementing Render

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing Other Functions
You will definitely want to write your own implementation of the Render function. Several other functions that
are also member functions of the IWMPEffects interface are provided. Some will provide you with extra
information that you can choose to use and others will automatically provide Windows Media Player with
information that was generated by the wizard, such as the name of your visualization.

The IWMPEffects interface supports the following functions in addition to Render:

Previous Next

Previous Next

The IWMPEffects2 interface supports the following additional functions:

Function Description

DisplayPropertyPage Default implementation not supplied by wizard.

GetCapabilities Gets the capabilities of your visualization and passes them to Windows
Media Player.

GetCurrentPreset The wizard created two presets when it generated the code for your
visualization. This function is called when the skin developer wants to
get the index of the current preset. You will not want to change the
implementation of this function because it just uses information set by
other functions.

GetPresetCount The wizard created two presets when it generated the code for your
visualization. You can change the count by changing the implementation
of GetPresetCount. See Presets for more information about changing
the presets.

GetPresetTitle The wizard created two presets when it generated the code for your
visualization. You can change the titles used by changing the
implementation of GetPresetTitle. See Presets for more information
about changing the presets.

GetTitle Gets the title of your visualization and passes it to Windows Media
Player. The wizard used the name of your project to generate the name
that is passed back.

GoFullscreen Default implementation not supplied by wizard.

MediaInfo Retrieves the number of audio channels and the sample rate of the audio
currently playing.

RenderFullScreen Default implementation not supplied by wizard.

SetCurrentPreset The wizard created two presets when it generated the code for your
visualization. This function is called when the Windows Media Player
wants to change to a named preset.

Function Description

Create When rendering in a window, Windows Media Player calls this function
to allow you to create a new window for rendering.

Destroy When rendering in a window, Windows Media Player calls this function
to permit you to destroy the window you created when Create was
called.

NotifyNewMedia This function allows your visualization to respond when a new media
item has been loaded by the Player.

OnWindowMessage This function receives windows messages from the Player when
rendering in windowless mode.

RenderWindowed This function is called by the Player instead of IWMPEffects::Render
when the Player is rendering in windowed mode.

See Also

Implementing Your Code

© 2000-2003 Microsoft Corporation. All rights reserved.

Presets
Presets are provided as a way to have different effects coming from the same visualization. For example, you
could create a glow effect that was generated by one block of code, but use a preset to determine the color of the
glow. Your preset names might be Red, Green, and Blue.

The wizard defines two presets for the code it generates. One is called Bars and the other is called Wave. The
Bars preset displays bars that show the activity in the audio spectrum, and use the waveform data. The Wave
preset displays a wiggling line that shows the audio power of the waveform.

If you change any of the preset information, you must also change the following parts of the generated code.

Render function

The IWMPEffects::Render function is in the file projectname.cpp, where projectname is the project name you
chose when you ran the wizard.

The generated code in the Render function uses a switch statement to choose between two presets. The current
preset is whatever the user selects in Windows Media Player. If you want to change which code runs for a
particular preset or add or subtract a preset, modify the switch statement accordingly.

The two presets are defined by the PRESET_BARS and PRESET_SCOPE enumerations. The choice of
which preset will be called is defined by m_nPreset.

GetPresetTitle

The IWMPEffects::GetPresetTitle function is in the file projectname.cpp, where projectname is the project
name you chose when you ran the wizard.

The GetPresetTitle function sets up the relationships between the preset enumerations and the string resources.
The enumerations PRESET_BARS and PRESET_SCOPE are generated by the wizard and are using the
string resources IDS_BARSPRESETNAME and IDS_SCOPEPRESETNAME.

SetCore This function receives a pointer to the IWMPCore interface.

Previous Next

Previous Next

You need to change the enumerations and string resources if you add, subtract, or change presets.

Preset Enumerations

The preset enumeration is defined in the file projectname.h, where projectname is the project name you chose
when you ran the wizard.

The enumeration defines the current two presets and the count. If you add or subtract presets or change the
enumeration, be sure you change this enumeration so that the count and order of presets is correct. This
enumeration is used to make sure that you call the correct preset in the Render function.

Resource Header

You must set the resources for names of your preset in the resource.h header file. The current presets are
defined as:

#define IDS_BARSPRESETNAME 102
#define IDS_SCOPEPRESETNAME 103

If you add or subtract presets, you must change the resource header and the numbers for them.

Resource Strings

The actual names of the presets are defined in the resource file projectnamedll.rc, where projectname is the
project name you chose when you ran the wizard. You can edit this file by hand or use the resource editor
included with Microsoft Visual C++.

The names generated are the name of the visualization plus the specific preset. The resource file for the
generated code will define them as:

IDS_BARSPRESETNAME "projectname Bars"
IDS_SCOPEPRESETNAME "projectname Wave"

where projectname is the name of the project name you chose when you ran the wizard. This is where you will
change the actual names of the presets and this is how they will be referred to and displayed by Windows Media
Player.

See Also

Implementing Your Code

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Installing Visualizations
You must provide an installation process for the user of your visualization. You must also provide an uninstall
process for the user. The current version of Windows Media Player does not install visualizations from the user
interface.

Installing to the Visualization Folder

It is recommended that you install all visualizations in the Visualizations subfolder of the folder where
Windows Media Player is installed.

Registering Your Visualization

Visualizations are COM DLLs and follow all the normal rules of installation and deinstallation. You can use
regsvr32.exe or other installation tools to register your visualization.

See Also

About Custom Visualizations

© 2000-2003 Microsoft Corporation. All rights reserved.

Submitting Your Visualization
If you want to submit your visualization to the Windows Media Web site, do this:

Test Your Visualization

You may want to try installing your visualization on several machines to be sure that everything works the way
you want. Try every preset to make sure your code works correctly.

Sign Your Visualization

You must submit your visualization for code signing so that the user can decide whether or not to trust your
visualization before they install it. You can get full details about code signing here.

Distributing Your Visualization

Consult the Windows Media Web Gallery for more information on how to distribute your visualization.

Previous Next

Previous Next

See Also

About Custom Visualizations

© 2000-2003 Microsoft Corporation. All rights reserved.

Custom Visualization Programming Guide
Writing your own visualization is as simple as implementing the Render function, modifying preset
information, and building your DLL.

The following topic describes how to create a sample visualization.

See Also

Windows Media Player Custom Visualizations

© 2000-2003 Microsoft Corporation. All rights reserved.

The Glow Sample
This section describes how to create a simple visualization called Glow. Three presets are used: Red, Green, and
Blue. The Custom visualization wizard was run and the name Glow was chosen.

Glow simply changes color in time to the music. The glow flickers because the audio power of the waveform
sometimes crosses zero at the moment of the snapshot. This sample is chosen because it is one of the simplest

Previous Next

Previous Next

Topic Description

The Glow Sample Describes how to create a simple visualization.

Previous Next

Previous Next

samples possible.

The following sections will guide you:

Implementing Render
Changing Presets

See Also

Custom Visualization Programming Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing Render
The following code is used to implement the Render function:

STDMETHODIMP CGlow::Render(TimedLevel *pLevels, HDC hdc, RECT *prc)
{
 COLORREF mycolor;
 int mylevel = pLevels->waveform[0][0];

 switch (m_nPreset)
 {
 case PRESET_RED:
 {
 mycolor = RGB(mylevel, 0, 0);
 }
 break;
 case PRESET_GREEN:
 {
 mycolor = RGB(0, mylevel, 0);
 }
 break;
 case PRESET_BLUE:
 {
 mycolor = RGB(0, 0, mylevel);
 }
 break;
 }

 HBRUSH hNewBrush = ::CreateSolidBrush(mycolor);
 ::FillRect(hdc, prc, hNewBrush);

 if (hNewBrush)
 {

Previous Next

Previous Next

 ::DeleteObject(hNewBrush);
 }

 return S_OK;
}

Here is an explanation of the code:

A variable named mycolor is used for the color of the glow and is declared with COLORREF. All colors
should use the COLORREF data type.

A variable named mylevel is used for the audio waveform level snapshot. This value will depend on the actual
power level at the moment of the snapshot.

The switch statement is set by the preset that the user has chosen on Windows Media Player. The choice will
set mycolor to the desired color (red, green, or blue). However, the exact color will be determined by the audio
power level. For example, if the red preset is chosen, the color will be a solid red, but it will be lighter or darker
depending on the audio waveform at the moment of the snapshot. Be sure to use the RBG macro to create your
color.

A brush is created called hNewBrush, and it is used to fill the prc rectangle provided by Windows Media
Player. The drawing surface is the hdc device context provided by Windows Media Player.

The brush is deleted by DeleteObject. Always be sure to delete any pens or brushes you create.

Once the Render code is finished, Windows Media Player will display the hdc graphics in a window
determined by the skin being used.

See Also

The Glow Sample

© 2000-2003 Microsoft Corporation. All rights reserved.

Changing Presets
The following preset code sections were changed to allow three presets:

GetPresetTitle

This code was inserted in place of the generated preset code:

Previous Next

Previous Next

 switch (nPreset)
 {
 case PRESET_RED:
 bstrTemp.LoadString(IDS_REDPRESETNAME);
 break;

 case PRESET_GREEN:
 bstrTemp.LoadString(IDS_GREENPRESETNAME);
 break;

 case PRESET_BLUE:
 bstrTemp.LoadString(IDS_BLUEPRESETNAME);
 break;
 }

Enumerations

The following enumeration in Glow.h was changed to allow three presets:

enum {
 PRESET_RED = 0,
 PRESET_GREEN,
 PRESET_BLUE,
 PRESET_COUNT
};

Resource Header

The following resources were defined in Resource.h to allow three presets:

#define IDS_REDPRESETNAME 102
#define IDS_GREENPRESETNAME 103
#define IDS_BLUEPRESETNAME 104

Note that you must also change the resource number of _APS_NEXT_SYMED_VALUE to 106.

Resource File

The following strings must be changed in the Glowdll.rc file to allow three presets and give them names:

 IDS_REDPRESETNAME "Glow Red"
 IDS_GREENPRESETNAME "Glow Green"
 IDS_BLUEPRESETNAME "Glow Blue"

See Also

The Glow Sample

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Custom Visualization Programming Reference
The Custom Visualization Reference documents the following items.

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPEffects Interface
In addition to the methods inherited from IUnknown, the IWMPEffects interface exposes the following
methods, in IDL order.

Previous Next

Item Description

IWMPEffects Interface An interface to custom visualizations.

IWMPEffects2 Interface An interface that extends IWMPEffects, allowing
greater control over visualization behavior.

Visualization Structures and Enumeration Types Data types for use in manipulating custom
visualizations.

Previous Next

Previous Next

Method Description

Render Renders the visualization

MediaInfo Sends channel and sample-rate data to the visualization.

GetCapabilities Gets the capabilities of the visualization.

GetTitle Gets the display title of the visualization.

GetPresetTitle Gets the title of the current preset.

GetPresetCount Gets the preset count.

SetCurrentPreset Sets the current preset by number.

See Also

Custom Visualization Programming Reference
IWMPEffects2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPEffects::DisplayPropertyPage
The DisplayPropertyPage method displays the property page of a visualization, if it exists.

Syntax

HRESULT DisplayPropertyPage(
 [in] HWND hwndOwner
);

Parameters

 hwndOwner

[in] Handle to the dialog that will be displayed.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

Implement this method if you want to display a property page to the user to adjust any values of the
visualization.

Requirements

GetCurrentPreset Gets the current preset by number.

DisplayPropertyPage Displays the property page of a visualization, if it exists.

GoFullscreen Instructs the visualization to switch to full-screen mode.

RenderFullScreen Renders the visualization in full-screen mode.

Previous Next

Previous Next

Version: Windows Media Player version 7.0 or later.

Header: Defined in effects.idl; include effects.h.

See Also

IWMPEffects Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPEffects::GetCapabilities
The GetCapabilities method gets the capabilities of the visualization.

Syntax

HRESULT GetCapabilities(
 DWORD* pdwCapabilities
);

Parameters

 pwdCapabilities

[out] DWORD containing the capabilities.

The current values are as follows.

Previous Next

Previous Next

Value Description

EFFECT_CANGOFULLSCREEN = 0x00000001; The visualization is capable of full-screen
rendering.

EFFECT_HASPROPERTYPAGE = 0x00000002; The visualization has a property page.

EFFECT_VARIABLEFREQSTEP = 0x00000004; The visualization will use frequency data
with variable size steps. If this bit is set, step
size is based on the media sampling
frequency divided by BUFFER_SIZE. If this
bit is not set and media is played that was
sampled at a low frequency, the upper cells
will be empty. For example, if an 8KHz

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

A default implementation of this method is not included in the visualization wizard.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in effects.idl; include effects.h.

See Also

IWMPEffects Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPEffects::GetCurrentPreset
The GetCurrentPreset method gets the current preset, by number, from the visualization and provides it to
Windows Media Player.

sampled file is played and this bit is not set,
the upper half of the frequency array (from
8KHz to 22KHz) will be empty. If this bit is
set and an 8Khz sampled file is played, the
frequency array will range from 20Hz to
8KHz in BUFFER_SIZE steps.

EFFECT_WINDOWED_ONLY = 0x00000008 The visualization only renders in windowed
mode.

EFFECT2_FULLSCREENEXCLUSIVE = 0x00000010 The visualization uses exclusive mode when
rendering full-screen. The Player will not
resize the window to fill the screen. The
visualization must create a top level window
and handle resolution switching.

Previous Next

Previous Next

Syntax

HRESULT GetCurrentPreset(
 Long* currentpreset
);

Parameters

 currentpreset

[in] Long value specifying the current preset, by number.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in effects.idl; include effects.h.

See Also

IWMPEffects Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPEffects::GetPresetCount
The GetPresetCount method gets the preset count.

Syntax

HRESULT GetPresetCount(
 Long* count
);

Parameters

 count

Previous Next

Previous Next

[out] Long value specifying the preset count.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

Called by Windows Media Player to obtain the number of presets contained by the visualization.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in effects.idl; include effects.h.

See Also

IWMPEffects Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPEffects::GetPresetTitle
The GetPresetTitle method gets the title of the current preset.

Syntax

HRESULT GetPresetTitle(
 Long nPreset
 BSTR* bstrPresetTitle
);

Parameters

 nPreset

[in] Long preset number.

 bstrPresetTitle

[out] BSTR preset title.

Previous Next

Previous Next

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

Called by Windows Media Player to obtain the title of a given preset.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in effects.idl; include effects.h.

See Also

IWMPEffects Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPEffects::GetTitle
The GetTitle method gets the display title of the visualization.

Syntax

HRESULT GetTitle(
 BSTR* bstrTitle
);

Parameters

 bstrTitle

[out] String containing the title.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

Previous Next

Previous Next

This method allows the application to show the user a title when the visualization itself is displayed. The title
should be as unique as possible. Do not use titles of visualizations included with the Windows Media Player as
this will cause confusion to the user.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in effects.idl; include effects.h.

See Also

IWMPEffects Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPEffects::GoFullscreen
The GoFullscreen method instructs the visualization to switch to full-screen mode.

Syntax

HRESULT GoFullscreen(
 BOOL fFullscreen
);

Parameters

 fFullscreen

[in] Boolean indicating whether to switch to full-screen mode.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

This method is called when the visualization is to go full screen or leave full screen. If the full screen
capabilities flag is not returned through GetCapabilities, your visualization will not be asked to go or render
full screen. This method will be called before RenderFullScreen is called.

Previous Next

Previous Next

A default implementation of this method is not included in the visualization wizard.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in effects.idl; include effects.h.

See Also

IWMPEffects Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPEffects::MediaInfo
The MediaInfo method sends channel and sample rate data to the visualization.

Syntax

HRESULT MediaInfo(
 LONG lChannelCount,
 LONG lSampleRate,
 BSTR bstrTitle
);

Parameters

 lChannelCount

[in] Long integer containing the number of channels (one for mono, or two for stereo).

 lSampleRate

[in] Long integer containing the sample rate in hertz (Hz). For example, a value of 22500 would specify a rate
of 22.5KHz.

 bstrTitle

[in] String specifying the title.

Return Values

Previous Next

Previous Next

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in effects.idl; include effects.h.

See Also

IWMPEffects Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPEffects::Render
The Render method renders the visualization.

Syntax

HRESULT Render(
 TimedLevel* pLevels,
 HDC hdc,
 RECT* prc
);

Parameters

 pLevels

[in] Pointer to a TimedLevel structure.

 hdc

[in] Specifies a handle to a device context.

 prc

[in] Specifies the rectangle the visualization is to be rendered in.

Return Values

Previous Next

Previous Next

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

The device context is normalized by this method.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in effects.idl; include effects.h.

See Also

IWMPEffects Interface
TimedLevel

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPEffects::RenderFullScreen
The RenderFullScreen method renders the visualization in full-screen mode.

Syntax

HRESULT RenderFullScreen(
 TimedLevel* pLevels,
);

Parameters

 pLevels

[in] Pointer to a TimedLevel structure.

Return Values

If the method succeeds, your implementation should return S_OK. If it fails, return an HRESULT error code.

Remarks

The GoFullscreen method must be called with a True value before RenderFullScreen can be called.

Previous Next

Previous Next

The user can enter or leave full screen mode by pressing the Alt and Enter keys simultaneously.

A default implementation of this method is not included in the visualization wizard.

If your implementation returns an error from this method, then GoFullscreen(False) will be called to ask your
visualization to drop out of full screen mode.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in effects.idl; include effects.h.

See Also

IWMPEffects Interface
TimedLevel

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPEffects::SetCurrentPreset
The SetCurrentPreset method gets the current preset from Windows Media Player and sets it in the
visualization.

Syntax

HRESULT SetCurrentPreset(
 Long currentpreset
);

Parameters

 currentpreset

[out] Long value specifying the new preset index.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

Previous Next

Previous Next

This is called by the Windows Media Player to request that the given preset be displayed.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in effects.idl; include effects.h.

See Also

IWMPEffects Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPEffects2 Interface
In addition to the methods inherited from IWMPEffects, the IWMPEffects2 interface exposes the following
methods.

See Also

Custom Visualization Programming Reference
IWMPEffects Interface

Previous Next

Previous Next

Method Description

Create Called by Windows Media Player to instantiate a visualization window.

Destroy Called by Windows Media Player to destroy a visualization window
instantiated in the Create method.

NotifyNewMedia Called by Windows Media Player to inform the visualization that a new
media item has been loaded.

OnWindowMessage Called by Windows Media Player to pass window messages to a
visualization.

RenderWindowed Called by Windows Media Player to render a windowed visualization.

SetCore Called by Windows Media Player to provide visualization access to the
core Windows Media Player APIs.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPEffects2::Create
The Create method is called by Windows Media Player to instantiate a visualization window.

Syntax

HRESULT Create(
 HWND hwndParent
);

Parameters

 hwndParent

[in] HWND handle to the parent window hosting the visualization window.

Return Values

This method returns an HRESULT.

Remarks

A visualization that implements IWMPEffects2 is rendered in its own window unless it will be displayed in a
clipped device context, in which case it is rendered windowless. For a visualization that is rendered windowless,
Windows Media Player calls this method with a NULL value for the hwndParent parameter. If your
visualization does not support windowless mode (for example, when using Direct 3D), it should return a failure
HRESULT value. In this case, your visualization will not be available in skins that clip the display region.

If you create a visualization for Windows Media Player using the Direct3D® component of Microsoft
DirectX®, you must set the D3DCREATE_FPU_PRESERVE flag when calling IDirect3D8::CreateDevice.
Failure to set this flag for visualizations that use Direct3D may yield unexpected results.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in effects.idl; include effects.h.

See Also

IWMPEffects2 Interface

Previous Next

IWMPEffects2::Destroy

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPEffects2::Destroy
The Destroy method is called by Windows Media Player to destroy a visualization window instantiated in the
Create method.

Syntax

HRESULT Destroy();

Parameters

This method takes no parameters.

Return Values

This method returns an HRESULT.

Remarks

This method is used only by windowed visualizations. Windowless visualizations should simply return S_OK.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in effects.idl; include effects.h.

See Also

IWMPEffects2 Interface
IWMPEffects2::Create

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

IWMPEffects2::NotifyNewMedia
The NotifyNewMedia method is called by Windows Media Player to inform the visualization that a new media
item has been loaded.

Syntax

HRESULT NotifyNewMedia(
 IWMPMedia* pMedia
);

Parameters

 pMedia

[in] Pointer to an IWMPMedia interface that represents the new media item.

Return Values

This method returns an HRESULT.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in effects.idl; include effects.h.

See Also

IWMPEffects2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPEffects2::OnWindowMessage

Previous Next

Previous Next

Previous Next

The OnWindowMessage method is called by Windows Media Player to pass window messages to a
visualization.

Syntax

HRESULT OnWindowMessage(
 UINT msg,
 WPARAM WParam,
 LPARAM LParam,
 LRESULT* plResultParam
);

Parameters

 msg

[in] UINT that identifies the window message.

 WParam

[in] WPARAM specifying a window message parameter.

 LParam

[in] LPARAM specifying a window message parameter.

 plResultParam

[in] Pointer to an LRESULT specifying the result code for the window message.

Return Values

This method returns an HRESULT.

Remarks

Your implementation must only return S_OK if it has handled the window message. If it has not handled the
window message, it should return S_FALSE. If this method is not implemented, return E_NOTIMPL.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in effects.idl; include effects.h.

See Also

IWMPEffects2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

IWMPEffects2::RenderWindowed
The RenderWindowed method is called by Windows Media Player to render a windowed visualization.

Syntax

HRESULT RenderWindowed(
 TimedLevel* pData,
 BOOL fRequiredRender
);

Parameters

 pData

[in] Pointer to a TimedLevel structure specifying rendering information.

 fRequiredRender

[in] BOOL indicating whether the visualization must paint itself.

Return Values

This method returns an HRESULT.

Remarks

This method is used to render windowed visualizations. Windowless visualizations should return S_OK and use
the IWMPEffects::Render method instead.

The fRequiredRender parameter informs you that your visualization must repaint itself, for example, when
another window is dragged over it. When this value is false, you can safely skip over the rendering code if the
current media item is stopped or paused. This lets you avoid consuming CPU cycles unnecessarily.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in effects.idl; include effects.h.

See Also

IWMPEffects::Render
IWMPEffects2 Interface
TimedLevel

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPEffects2::SetCore
The SetCore method is called by Windows Media Player to provide visualization access to the core Windows
Media Player APIs.

Syntax

HRESULT SetCore(
 IWMPCore* pPlayer
);

Parameters

 pPlayer

[in] Pointer to an IWMPCore interface.

Return Values

This method returns an HRESULT.

Remarks

You can use this method to set or release a pointer to the IWMPCore interface. If pPlayer is NULL, the
visualization is being shut down and all stored references to the core should be released.

This method is not called when Windows Media Player instantiates the visualization for the purpose of
displaying its property page. This method can therefore be used as an entry point that will only be called when
the visualization is enabled and Windows Media Player loads it normally.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in effects.idl; include effects.h.

See Also

IWMPEffects2 Interface

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Visualization Structures and Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

PlayerState
The PlayerState enumeration type provides some basic states of Windows Media Player.

Syntax

typedef enum PlayerState{
 stop_state = 0,
 pause_state = 1,
 play_state = 2
};

Previous Next

Previous Next

Structure or Enumeration Description

PlayerState Provides some basic states of Windows Media Player.

TimedLevel Holds data returned from the spectrum filter.

Previous Next

Previous Next

Number Description

0 Stop state

1 Pause state

2 Play state

Remarks

This enumeration is used by the TimedLevel structure.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in effects.idl; include effects.h.

See Also

Visualization Structures and Enumeration Types
TimedLevel

© 2000-2003 Microsoft Corporation. All rights reserved.

TimedLevel
The TimedLevel structure holds data returned from the spectrum filter.

Syntax

typedef struct tagTimedLevel{
 unsigned char frequency[2][SA_BUFFER_SIZE];
 unsigned char waveform[2][SA_BUFFER_SIZE];
 int state;
 hyper timestamp;
} TimedLevel;

Members

 frequency

Provides a stereo snapshot of the frequency spectrum of the audio data at a time specified by the Plug-in
Manager. It can be used for frequency spectrum effects such as real-time analyzers. The frequency value of the
first cell is 20 Hz, and the frequency value of the last cell is 22050 Hz.

 waveform

Provides a stereo snapshot of the power value of the audio data at a time specified by the Plug-in Manager as
the first element; the next 1024 stereo power values fill out the rest of the array. It can be used for oscilloscope-

Previous Next

Previous Next

type effects.

 state

Specifies one member of the PlayerState enumeration type.

 timeStamp

Specifies the time the snapshot took place, in a 64-bit integer. The time value is provided in 100-nanosecond
units.

Remarks

The array dimension SA_BUFFER_SIZE is currently 1024.

The first dimension of each array corresponds to the channel: 0 is a monaural signal or the left channel of a
stereo signal, and 1 is the right channel of a stereo signal. If the signal is monaural, the values in the array that
would correspond to the right channel are undefined.

The second dimension contains the sampled levels. The frequency data ranges from 0 to 255. The waveform
data represents -128 to 127 but is stored as 0 to 255, so subtract 128 to get the correct value.

This structure is defined in the effects.idl file.

Requirements

Version: Windows Media Player version 7.0 or later.

Header: Defined in effects.idl; include effects.h.

See Also

PlayerState
Visualization Structures and Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

Windows Media Player User Interface Plug-ins
Microsoft Windows Media Player provides an architecture that enables the user to install and activate plug-in
programs that add user interface (UI) functionality to the full mode of the player. A typical UI plug-in might

Previous Next

Previous Next

allow a user to buy the CD that contains the currently playing track or to access additional information about the
artist. This section of the Windows Media Player Software Development Kit (SDK) provides you with the
programming information you need to create your own UI plug-in.

The UI plug-in documentation is divided into three sections:

See Also

Windows Media Player Plug-ins

© 2000-2003 Microsoft Corporation. All rights reserved.

About User Interface Plug-ins
Windows Media Player provides a variety of control panels that allow the user to modify various aspects of the
player such as the video and graphic equalizer settings. These control panels can enhance the multimedia
experience provided by Windows Media Player, but they do not necessarily provide all the functionality that the
user may be looking for.

Skins are one way to provide additional functionality, but they require the developer to recreate the entire user
interface (UI). As an alternative, Windows Media Player allows the creation of custom UI plug-ins that display
in the full mode of the player. This functionality is provided through a programming interface that follows
standard Microsoft Component Object Model (COM) guidelines. You can implement this interface in Microsoft
Visual C++ by using the Windows Media Player Plug-in Wizard to help you get started.

UI plug-ins are described in greater detail in the following topics.

Section Description

About User Interface Plug-ins Provides an overview of the architecture used for UI
plug-ins. Read this section to learn the general
concepts involved with this technology.

User Interface Plug-ins Programming Guide Explains what you need to do to create a UI plug-in.
This section contains example code and step-by-step
procedures.

User Interface Plug-ins Programming Reference Provides a detailed reference for the COM interface
and methods supported by the Windows Media
Player SDK for UI plug-ins.

Previous Next

Previous Next

See Also

Windows Media Player User Interface Plug-ins

© 2000-2003 Microsoft Corporation. All rights reserved.

UI Plug-in Overview
UI plug-ins can be installed, uninstalled, and configured using the Plug-ins tab of the Options dialog in
Windows Media Player.

There are five types of UI plug-ins supported by Windows Media Player. Three of these types correspond to
different areas of the Now Playing pane of the full mode of the player. The other two types are for plug-ins that
display in a separate window and for plug-ins that have no display (except perhaps a property page).

UI plug-ins are unloaded when they are closed or disabled. UI plug-ins that appear in the Now Playing pane are
also unloaded when the user chooses another plug-in of the same type or switches out of the Now Playing pane.
When the user switches to skin mode, all plug-ins remain loaded, but are not displayed. If separate window or
background plug-ins are running when Windows Media Player is closed, they will be automatically reloaded
the next time the player is started.

The following sections provide general information about Windows Media Player UI plug-ins:

Display Area Plug-ins
Settings Area Plug-ins
Metadata Area Plug-ins
Separate Window Plug-ins
Background Plug-ins
UI Plug-in Options
Displaying Modal User Interfaces

See Also

About User Interface Plug-ins

Topic Description

UI Plug-in Overview Provides an overview of UI plug-ins.

Building a UI Plug-in Provides the technical details needed to create a UI
plug-in.

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Display Area Plug-ins
Display area UI plug-ins are shown in the main area of the Now Playing pane, below the artist and track
information and to the left of the playlist area. Only one display area plug-in can be enabled at a time. When a
display area plug-in is enabled, the Player cannot enter full screen mode.

Display area plug-ins are useful for displaying large amounts of information. For example, a display area plug-
in can retrieve information about the currently playing media item and display related articles, interviews, and
reviews. A display area plug-in can host a Microsoft Internet Explorer browser window to display this
information using HTML.

Note A hosted browser window can embed the ActiveX version of Windows Media Player, but this is not
recommended because the embedded control cannot communicate with the standalone player that contains it.

Note Windows Media Player closes any open display area plug-in when the user plays content that contains
video.

See Also

UI Plug-in Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Settings Area Plug-ins
Settings area UI plug-ins are shown in the Tools area of the Now Playing pane below the main display area and
above the transport controls. Only one settings area plug-in can be enabled at a time.

Settings area plug-ins are useful for displaying custom control panels similar to the graphic equalizer or video

Previous Next

Previous Next

Previous Next

Previous Next

settings controls.

See Also

UI Plug-in Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Metadata Area Plug-ins
Metadata area UI plug-ins are shown in the metadata area of the Now Playing pane to the right of the main
visual area and the Tools pane, and below the playlist view (if it is enabled). Only one metadata area plug-in can
be enabled at a time.

Metadata area plug-ins are useful for displaying concise information about the currently playing media item,
simple controls, or hyperlinks to additional information.

See Also

UI Plug-in Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Separate Window Plug-ins
Separate window UI plug-ins are shown in their own windows. These windows can be fixed in size or can be
made resizable. Multiple separate UI plug-in windows can be open at the same time.

Separate window UI plug-ins are useful when you want the information or controls you provide to remain
visible when the user switches out of the Now Playing pane or loads another UI plug-in. Any separate window
UI plug-ins that are running when Windows Media Player is closed will be reloaded and displayed in the same

Previous Next

Previous Next

Previous Next

Previous Next

size and position when the player is started again.

See Also

UI Plug-in Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Background Plug-ins
Background UI plug-ins do not actually have user interfaces unless they implement property pages. When one
or more background plug-in is running, a special icon appears in the Windows Media Player display next to the
running track time. This icon can be clicked to display the background plug-ins options in the Options dialog
box. From there, the user can choose to open the property page of any plug-in that supports one.

Background plug-ins are useful for providing automatic services that do not require user input.

See Also

UI Plug-in Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

UI Plug-in Options
Any of the five UI plug-in types can have a property page where the user can modify plug-in settings. This
property page can be set to display automatically when a plug-in is loaded for the first time. It can also be
accessed from the Plug-ins tab of the Options dialog box.

A UI plug-in can be set to load automatically after installation when Windows Media Player is started. If it is
not started automatically, the user can load it by selecting it from the Plug-ins list on the Tools menu.

Previous Next

Previous Next

Previous Next

Previous Next

A display area plug-in can have multiple presets, which are different views that the plug-in can make available
to the user. The user can change the preset by selecting a different entry from the Visualizations and Views list
on the View menu, or by using the arrow buttons provided at the bottom of the Now Playing pane just above
the status message and transport controls.

Background and separate window UI plug-ins can be programmed to accept a media item or playlist that the
user sends to it. If a plug-in supports this feature, its name will appear on the Send to list available from the
shortcut menu of the playlist control or Media Library.

A UI plug-in can be programmed to intercept keyboard shortcuts when it has the keyboard focus. Keyboard
focus is required to prevent conflicts when multiple UI plug-ins that intercept the same keyboard shortcut are
loaded. Although this prevents conflicts, it can also cause confusion to end users. For this reason, the use of
keyboard shortcuts with UI plug-ins is not recommended. When they are used, however, they should not
intercept any keyboard shortcuts that are used by Windows Media Player. For a complete list of keyboard
shortcuts used by the Player, see Windows Media Player Help.

See Also

UI Plug-in Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Displaying Modal User Interfaces
UI plug-ins should not display modal dialog boxes or message boxes in response to method calls from Windows
Media Player. For example, do not display a message box from your implementation of
IWMPPluginUI::Create.

If you must display a dialog box or message box from a UI plug-in method implementation that is called by the
Player, you must follow these steps:

1. Register a new window message using RegisterWindowMessage.
2. Send the window message you registered to your UI plug-in window using PostMessage.
3. Show the dialog box or message box from the message handler for your new window message.

See Also

UI Plug-in Overview

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Building a UI Plug-in
Writing your own UI plug-in is easy if you understand Windows programming and have some familiarity with
the Microsoft Component Object Model (COM). Knowledge of the Active Template Library (ATL) is also
helpful.

UI Plug-ins are COM controls that are packaged as dynamic link libraries (DLLs). These controls must be
single-threaded apartment (STA) plug-in COM objects, and must be registered in the Windows registry to be
used. Windows Media Player must be notified during plug-in installation that the plug-in is available. When this
happens, the plug-in will load automatically if it has been configured to do so, and will appear in the Plug-ins
list on the Tools menu.

The Windows Media Player SDK provides wizards for Microsoft Visual C++ 6.0 and Microsoft Visual
C++ .NET that take care of these standard implementation details. In order to create a basic UI plug-in using a
wizard, all that is required is the implementation of a user interface and the modification of a few
IWMPPluginUI interface methods. Windows Media Player provides the plug-in with access to its core
functionality through the IWMPCore interface, and provides a parent window for whatever user interface
controls the plug-in requires.

The following sections explain what you need to know to create a UI plug-in using the wizard:

Getting Started with the UI Plug-in Wizard
Using the UI Plug-in Wizard with Visual C++ 6.0
Using the UI Plug-in Wizard with Visual C++ .NET
Compiling the UI Plug-in Project
Customizing the UI Plug-in

See Also

About User Interface Plug-ins

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Getting Started with the UI Plug-in Wizard
In order to develop a UI plug-in, you must install the following tools:

Microsoft Visual C++ 6.0 or later.
Windows Media Player 9 Series or later
Windows Media Player 9 Series SDK or later
Windows Media Player UI Plug-in Wizard

Installing the Wizard

There are separate versions of the Windows Media Player Plug-in Wizard for Microsoft Visual C++ 6.0 and
Microsoft Visual C++ .NET.

Once you have installed the Windows Media Player SDK, you can find the UI Plug-in Wizard for Visual C++
6.0 in the following directory:

\wizards\wmpplugin

The wizard file is named wmpwiz.awx.

Copy the wizard file to the following directory on your hard disk:

\Program Files\Microsoft Visual Studio\Common\MSDev98\Template

If you installed Microsoft Visual Studio 6.0 (which contains Microsoft Visual C++ 6.0) in another directory,
find the corresponding directory. If you are not sure where you installed it, you can search for other COM
wizards with the .awx file name extension.

If you are using Microsoft Visual C++ .NET, the Windows Media Player plug-in wizard is installed and
configured automatically for you when you install this SDK. If you install Visual C++ .NET after installing this
SDK, you should remove the SDK and reinstall it.

See Also

Building a UI Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

Using the UI Plug-in Wizard with Visual C++ 6.0

Previous Next

Previous Next

Once you have installed the necessary components, creating a sample UI plug-in is easy. The following steps
will guide you:

1. Start Microsoft Visual C++ 6.0.
2. From the File menu, click New
3. On the Projects tab, click Windows Media Player Plug-in Wizard.
4. In the Project name box, type a name for your UI plug-in.
5. In the Location box, provide the location of a folder where the wizard can save the files it generates. You

can accept the default, type a new path, or browse to an existing location.
6. Click OK.
7. Click UI Plugin. Click Next.
8. The wizard displays a list of UI plug-in types to choose from. Once you make your choice, click Next.
9. Provide a Friendly name and Description for your plug-in.

10. Specify various features to be included with your plug-in. These include listening to Windows Media
Player events, automatically loading the plug-in when it is installed, and providing a property page with
the option of automatic display the first time the plug-in is loaded.

11. Click Finish. You will be shown a dialog box containing information about your new project. When you
close this dialog box by clicking OK, the wizard will generate the source files needed to compile your
project.

The wizard generates a complete UI plug-in project.

See Also

Building a UI Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

Using the UI Plug-in Wizard with Visual C++ .NET
Once you have installed the necessary components, creating a sample UI plug-in is easy. The following steps
will guide you:

1. Start Microsoft Visual C++ .NET.
2. From the File menu, point to New, and then click Project.
3. In Project Types, click Visual C++ Projects if it isn't already selected.
4. In Templates, click Windows Media Player Plug-in Wizard to select it.
5. Type a name for your project.
6. Specify a location for your project. This is the folder to which your project files will be copied.
7. Click OK to start the wizard.
8. Click UI Plugin. Click Next.
9. The wizard displays a list of UI plug-in types to choose from. Once you make your choice, click Next.

Previous Next

Previous Next

10. Provide a Friendly name and Description for your plug-in.
11. Specify various features to be included with your plug-in. These include listening to Windows Media

Player events, automatically loading the plug-in when it is installed, and providing a property page with
the option of automatic display the first time the plug-in is loaded.

12. Click Next.

The wizard generates a complete UI plug-in project.

See Also

Building a UI Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

Compiling the UI Plug-in Project
Your project is now ready to compile. If you build the project now, Visual C++ will create the plug-in DLL file
and register it in the Windows registry. When you launch Windows Media Player, the plug-in will be available
for use, and will load automatically if it has been configured to do so.

The plug-in code that the wizard generates does just enough to demonstrate that it works by displaying its title
in the appropriate location for the specified plug-in type. If the plug-in has a property page, the text that is
displayed can be modified in the property page text box. If it is a background plug-in, the background plug-in
icon will appear next to the running track time display.

See Also

Building a UI Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

Customizing the UI Plug-in
At this point, your project is ready for customization. You can modify the wizard-generated implementation of
the IWMPPluginUI interface, you can add a user interface to the CPluginWindow class, and you can
implement a property page in the CPropertyDialog class. If your plug-in is configured to listen to Windows
Media Player events, the wizard will have generated default or empty implementations of all the necessary
event handlers, which you also modify or create.

The type of plug-in and the features it supports are indicated by a value which is stored in the Windows registry.
The wizard generates a file with a .rgs file name extension that contains the information to register the plug-in
with. The Capabilities value in this file is the decimal equivalent of a Boolean OR of the plug-in type constants
and plug-in flags defined in wmpplug.idl. Although this value is determined by the options you select in the
wizard, you must modify it if you want to create a plug-in with multiple presets or one that media items or
playlists can be sent to.

As you modify and extend your plug-in code, you can build and register your DLL in order to test your plug-in
in Windows Media Player.

See Also

Building a UI Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

User Interface Plug-ins Programming Guide
The code sample described in this section demonstrates the process of implementing a custom UI plug-in
starting with code generated by the Windows Media Player Plug-in Wizard.

The Search UI plug-in is a metadata area plug-in that provides a Search button. When this button is clicked, a
search page is launched in the default Web browser that contains information about the artist of the current
media item.

The first step in creating this plug-in is to start a new project in Microsoft Visual C++ by selecting Windows
Media Player Plug-in Wizard from the Projects tab. Name the project "Search", and click OK. Choose UI
Plug-in and click Next. Then choose the Metadata type from the options list and click Next. Finally, click the
check box for auto-run support so that the plug-in will load automatically, and then click Finish. The wizard
generates the required project files, including basic implementations of the CSearch class and the
IWMPPluginUI interface that it supports, and the CPluginWindow class that provides the user interface. This
is the code that will be modified to provide the plug-in functionality described in this section.

Previous Next

Previous Next

This section contains the following topics.

See Also

User Interface Plug-ins Programming Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing CSearch
The IWMPPluginUI interface has several methods that are called by Windows Media Player at different times
during the life cycle of a plug-in instance. The wizard provides basic implementations of these methods as well
as the class constructor and destructor and other class methods. The Search.h file must be modified so that
Windows Media Player can communicate with the user interface, which is described in the next section.

In order for the CPluginWindow class to have access to the private member variable m_spCore, a friend class
declaration must be made inside the CSearch class definition as shown in the following code snippet:

class ATL_NO_VTABLE CSearch :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CSearch, &CLSID_Search>,
 public IWMPPluginUI
{

friend class CPluginWindow;

// Rest of class definition...

}

See Also

User Interface Plug-ins Programming Guide

Topic Description

Implementing CSearch Describes the changes required to the CSearch class.

Implementing CPluginWindow Describes the changes required to the
CPluginWindow class.

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing CPluginWindow
The CPluginWindow class provides the user interface to the plug-in. In the case of the Search UI plug-in, this
class contains the code for the Search button and the code that launches the search page when the button is
clicked.

The wizard provides a basic implementation of CPluginWindow in the CPluginWindow.h header file. To keep
things simple, the Search UI plug-in will modify this file directly, although extensive additions would normally
be placed in a separate CPluginWindow.cpp file.

The following sections describe what you need to do to implement CPluginWindow:

The Message Map
The Constructor
The OnPaint Method
The OnCreate Method
The OnSearch Method
The LaunchPage Method

See Also

User Interface Plug-ins Programming Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

The Message Map
The plug-in window responds to various events by calling methods that are mapped to corresponding event
messages. The wizard provides a mapping so that OnPaint and OnEraseBackground will be called at the
appropriate times. In order to create the Search button and to respond to clicks from it, the message map section
is modified as follows:

Previous Next

Previous Next

Previous Next

BEGIN_MSG_MAP(CPluginWindow)
 MESSAGE_HANDLER(WM_PAINT, OnPaint)
 MESSAGE_HANDLER(WM_ERASEBKGND, OnEraseBackground)
 MESSAGE_HANDLER(WM_CREATE, OnCreate)
 COMMAND_ID_HANDLER(IDC_SEARCH, OnSearch)
END_MSG_MAP()

See Also

Implementing CPluginWindow

© 2000-2003 Microsoft Corporation. All rights reserved.

The Constructor
The constructor that the wizard provides stores a pointer to the main plug-in class in a member variable. The
wizard uses this reference to gain access to member variables declared in the CSearch class. No implementation
change is needed.

See Also

Implementing CPluginWindow

© 2000-2003 Microsoft Corporation. All rights reserved.

The OnPaint Method
The OnPaint method is called whenever the plug-in window should paint itself. This occurs when the plug-in
window receives a WM_PAINT message, which is mapped to the OnPaint method in the message map
described earlier. The wizard provides an implementation of this method that paints the background black and
places the name of the plug-in in the plug-in window. The only modification that is necessary for the Search UI
plug-in is the removal of the code that displays the text.

Previous Next

Previous Next

Previous Next

Previous Next

The following code is used to implement this method:

LRESULT OnPaint(UINT nMsg, WPARAM wParam,
 LPARAM lParam, BOOL& bHandled)
{
 PAINTSTRUCT ps;

 HDC hDC = BeginPaint(&ps);

 RECT rc;
 GetClientRect(&rc);

 HBRUSH hNewBrush = ::CreateSolidBrush(RGB(0, 0, 0));

 if (hNewBrush)
 {
 ::FillRect(hDC, &rc, hNewBrush);
 ::DeleteObject(hNewBrush);
 }

 EndPaint(&ps);
 return 0;
}

See Also

Implementing CPluginWindow

© 2000-2003 Microsoft Corporation. All rights reserved.

The OnCreate Method
The OnCreate method is called when the plug-in window is first created.

The following code is used to implement this method:

LRESULT OnCreate(UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL& bHandled)
{
 HWND hCtrl = ::CreateWindowEx(0L, _T("BUTTON"), _T("Search"),
 WS_CHILD | BS_PUSHBUTTON, 10, 10, 100, 30, m_hWnd,
 (HMENU)IDC_SEARCH, _Module.GetResourceInstance(), NULL);
 ::ShowWindow(hCtrl, SW_SHOW);
 return 0;
}

This method creates the Search button and associates it with the IDC_SEARCH command ID, which is defined

Previous Next

Previous Next

at the beginning of the file:

#define IDC_SEARCH 2000

This command ID is mapped to the OnSearch method in the message map section described previously.

See Also

Implementing CPluginWindow

© 2000-2003 Microsoft Corporation. All rights reserved.

The OnSearch Method
The OnSearch method is called by Windows Media Player when the Search button is clicked. This method
retrieves the current Media object and passes it to the LaunchPage method.

The following code is used to implement this method:

LRESULT OnSearch(WORD wNotifyCode, WORD wID, HWND hwndCtl, BOOL& fHandled)
{
 HRESULT hr;
 CComPtr<IWMPMedia> spMedia;

 if(m_pPlugin && m_pPlugin->m_spCore)
 {
 // Get a pointer to the current media item.
 hr = m_pPlugin->m_spCore->get_currentMedia(&spMedia);
 if (SUCCEEDED(hr) && spMedia)
 {
 LaunchPage(spMedia);
 }
 else
 {
 MessageBox(_T("There is no media loaded."), _T("Warn"), MB_OK | MB_ICONWARNING
 }
 }
 return 0;
}

See Also

Implementing CPluginWindow

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

The LaunchPage Method
The LaunchPage method provides the primary functionality of the plug-in, which is to launch a search page
containing information about the artist of the media item passed to the method.

This method is called by the OnSearch method using the current Media object.

The following code is used to implement this method:

void LaunchPage(IWMPMedia *pMedia)
{
 USES_CONVERSION;

 HRESULT hr;
 CComBSTR bstrType;
 CComBSTR bstrArtist;

 // Get the name of the artist.
 bstrType = _T("artist");
 hr = pMedia->getItemInfo(bstrType, &bstrArtist);
 if (SUCCEEDED(hr))
 {
 // Create the search URL.
 TCHAR szSearch[MAX_PATH];
 _stprintf(szSearch, _T("http://search.msn.com/results.asp?q=%s"), OLE2T(bstrArtist
 CComBSTR bstrURL = szSearch;

 // Launch the search page.
 m_pPlugin->m_spCore->launchURL(bstrURL);
 }
 else
 {
 MessageBox(_T("Failed to get artist information from media."), _T("Warn"), MB_OK |
 }
}

See Also

Implementing CPluginWindow

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

User Interface Plug-ins Programming Reference
The Microsoft Windows Media Player Software Development Kit (SDK) supports one interface for UI plug-ins.
The following section documents this in detail.

See Also

Windows Media Player User Interface Plug-ins

© 2000-2003 Microsoft Corporation. All rights reserved.

WMPNotifyPluginAddRemove
The WMPNotifyPluginAddRemove function notifies Windows Media Player that a plug-in has been installed
or uninstalled.

Syntax

BOOL WMPNotifyPluginAddRemove();

Parameters

This function takes no parameters.

Previous Next

Section Description

WMPNotifyPluginAddRemove An independent function used to notify Windows
Media Player that a plug-in has been installed or
uninstalled.

IWMPPluginUI Interface An interface to UI plug-ins.

Registration Flags A list of settings flags that affect the behavior of UI
plug-ins.

Previous Next

Previous Next

Return Values

This method returns a BOOL value that indicates whether the function call succeeded.

Remarks

This function is typically called by a user interface (UI) plug-in in its DllRegisterServer and
DllUnregisterServer methods. Windows Media Player Plug-in Wizard generates this code automatically, so it
is only necessary to add calls to this function to UI plug-ins created without the wizard.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpplug.idl; include wmpplug.h.

See Also

User Interface Plug-ins Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Registration Flags
When the Windows Media Player Plug-in Wizard creates a new UI plug-in project, it creates a key in the
registry that contains information about the plug-in. This key is created in the following location:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MediaPlayer\UIPlugins\{ClassId}

ClassId is the class id of the plug-in.

This key includes the following values.

Previous Next

Previous Next

Name Type Description

Capabilities REG_DWORD A DWORD value that consists of at
least one plug-in type flag that may
be combined with one or more
plug-in capabilities flags by using
binary OR operations.

For more information about the res protocol, see the Internet Development SDK.

The following table details the plug-in type flags.

The following table details the plug-in capabilities flags.

Description REG_SZ A string that contains the
description of the plug-in. The
plug-in wizard creates a string
resource and provides the URL of
the resource (using the res
protocol) for this value.

FriendlyName REG_SZ A string that contains the user-
readable name for the plug-in. The
plug-in wizard creates a string
resource and provides the URL of
the resource (using the res
protocol) for this value.

UninstallPath (optional) REG_SZ A string that contains the path to an
executable file that uninstalls the
plug-in.

Plug-in Type Flag Value Description

PLUGIN_TYPE_BACKGROUND 0x1 The UI plug-in does not display
a user interface.

PLUGIN_TYPE_SEPARATEWINDOW 0x20x2 The UI plug-in is a separate
window plug-in.

PLUGIN_TYPE_DISPLAYAREA 0x3 The UI plug-in is a display area
plug-in.

PLUGIN_TYPE_SETTINGSAREA 0x4 The UI plug-in is a settings
area plug-in.

PLUGIN_TYPE_METADATAAREA 0x5 The UI plug-in is a metadata
area plug-in.

Plug-in Capabilities Flag Value Description

PLUGIN_FLAGS_ACCEPTSMEDIA 0x10000000 The UI plug-in can accept Media object
pointer arrays when Windows Media Playe
calls IWMPPlugin::SetProperty.

PLUGIN_FLAGS_ACCEPTSPLAYLISTS 0x8000000 The UI plug-in can accept Playlist object
pointer arrays when Windows Media Playe
calls IWMPPluginUI::SetProperty.

PLUGIN_FLAGS_HASPRESETS 0x4000000 The UI plug-in uses presets. If the plug-in
specifies this flag, Windows Media Player
will query the plug-in for preset informatio

The following constants are defined in wmpplug.h. Do not change the values associated with these constants.

See Also

IWMPPluginUI::DisplayPropertyPage
IWMPPluginUI::GetProperty
IWMPPluginUI::SetProperty
User Interface Plug-ins Programming Reference

by calling IWMPPluginUI::GetProperty.

PLUGIN_FLAGS_HASPROPERTYPAGE 0x80000000 The UI plug-in provides a property page
dialog. Windows Media Player will call
WMPPluginUI::DisplayPropertyPage if
this flag is set when the property page is
invoked.

PLUGIN_FLAGS_HIDDEN 0x02000000 The background UI plug-in does not appear
on the Plug-ins menu that is accessed from
the View or Tools menus or the Select Now
Playing options button in Now Playing. It
does appear on the Plug-ins tab of the
Options dialog. It does cause the Backgroun
Plug-in Running icon to appear in the statu
bar.

This flag has no effect on plug-ins other tha
background UI plug-ins.

PLUGIN_FLAGS_INSTALLAUTORUN 0x40000000 Windows Media Player runs the UI plug-in
automatically when the plug-in is installed.

PLUGIN_FLAGS_LAUNCHPROPERTYPAGE 0x20000000 Windows Media Player calls
IWMPPluginUI::DisplayPropertyPage
when the UI plug-in runs for the first time.

If this flag is specified,
PLUGIN_FLAGS_HASPROPERTYPAG
should be specified also.

Name Description

PLUGIN_INSTALLREGKEY The location of the plug-in registry key.

PLUGIN_INSTALLREGKEY_FRIENDLYNAME The name of the friendly name value.

PLUGIN_INSTALLREGKEY_DESCRIPTION The name of the description value.

PLUGIN_INSTALLREGKEY_CAPABILITIES The name of the capabilities value.

PLUGIN_INSTALLREGKEY_UNINSTALL The name of the uninstall path value.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPluginUI Interface
The IWMPPluginUI interface manages the connection to Windows Media Player.

In addition to the methods inherited from IUnknown, the IWMPPluginUI interface exposes the following
methods.

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Method Description

Create Called by Windows Media Player to instantiate the
plug-in user interface.

Destroy Called by Windows Media Player to shut down the
plug-in user interface.

DisplayPropertyPage Called by Windows Media Player to request that the
plug-in display its property page.

GetProperty Called by Windows Media Player to retrieve
name/value property pairs from the plug-in.

SetCore Called by Windows Media Player to provide plug-in
access to the core Windows Media Player APIs.

SetProperty Called by Windows Media Player to set name/value
property pairs for the plug-in.

TranslateAccelerator Called as part of the Windows Media Player message
loop to allow the plug-in to intercept and respond to
keyboard events.

Previous Next

Previous Next

IWMPPluginUI::Create
The Create method is called by Windows Media Player to instantiate the plug-in user interface. This method is
passed a handle to a parent window of the plug-in window. A handle to the newly created window is then
passed back to the calling method.

Syntax

HRESULT Create(
 HWND hwndParent,
 HWND* phwndWindow
);

Parameters

 hwndParent

[in] HWND handle to a parent window of the plug-in window.

 phwndWindow

[out] Pointer to an HWND handle to the plug-in window after the content is filled in.

Return Values

This method returns an HRESULT.

Remarks

This method is called by Windows Media Player for all user interface plug-in types except the background type.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpplug.idl; include wmpplug.h.

See Also

IWMPPluginUI Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

IWMPPluginUI::Destroy
The Destroy method is called by Windows Media Player to shut down the plug-in user interface. This occurs
when the user closes a plug-in in a separate window, switches out of the Now Playing pane, or selects a
different display, settings, or metadata area plug-in to display in the Now Playing pane.

Syntax

HRESULT Destroy();

Parameters

This method takes no parameters.

Return Values

This method returns an HRESULT.

Remarks

This method is called by Windows Media Player for all user interface plug-in types except the background type.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpplug.idl; include wmpplug.h.

See Also

IWMPPluginUI Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPluginUI::DisplayPropertyPage
The DisplayPropertyPage method is called by Windows Media Player to request that the plug-in display its
property page. This method is passed a handle to a parent window of the plug-in property page dialog box.

Previous Next

Previous Next

Syntax

HRESULT DisplayPropertyPage(
 HWND hwndParent
);

Parameters

 hwndParent

[in] HWND handle to a parent window of the property page dialog box.

Return Values

This method returns an HRESULT.

Remarks

This method is called by Windows Media Player only for plug-ins that provide a property page.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpplug.idl; include wmpplug.h.

See Also

IWMPPluginUI Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPluginUI::GetProperty
The GetProperty method is called by Windows Media Player to retrieve name/value property pairs from the
plug-in.

Syntax

HRESULT GetProperty(
 const WCHAR* pswzName,
 VARIANT* pvarProperty

Previous Next

Previous Next

);

Parameters

 pswzName

[in] Pointer to a WCHAR NULL-terminated string constant containing the name of the property. Contains one
of the following values:

Value Description

PLUGIN_MISC_CURRENTPRESET =
L"CurrentPreset"

The out parameter is set to a Long (VT_I4)
value containing the index of the current preset.
This property is requested only for plug-ins that
have presets.

PLUGIN_MISC_PRESETCOUNT = L"PresetCount" The out parameter is set to a Long (VT_I4)
value indicating the number of presets available
in the plug-in. This property is requested only
for plug-ins that have presets.

PLUGIN_MISC_PRESETNAMES = L"PresetNames" The out parameter is set to an array of BSTR
(VT_ARRAY | BSTR) values containing the
names of the presets. This property is requested
only for plug-ins that have presets.

PLUGIN_MISC_QUERYDESTROY =
L"QueryDestroy"

The out parameter is set to a BSTR (VT_BSTR)
value that is displayed to the user when
Windows Media Player attempts to close a
separate window or background plug-in that is
engaged in operations that cannot be interrupted.

PLUGIN_SEPARATEWINDOW_DEFAULTHEIGHT
= L"DefaultHeight"

The out parameter is set to a Long (VT_I4)
value indicating the desired default opening
height of the plug-in window. This property is
requested only for plug-ins in separate windows.

PLUGIN_SEPARATEWINDOW_DEFAULTWIDTH
= L"DefaultWidth"

The out parameter is set to a Long (VT_I4)
value indicating the desired default opening
width of the plug-in window. This property is
requested only for plug-ins in separate windows.

PLUGIN_SEPARATEWINDOW_MAXHEIGHT =
L"MaxHeight"

The out parameter is set to a Long (VT_I4)
value indicating the desired maximum height of
the plug-in window. This property is requested
only for plug-ins in separate, resizable windows.

PLUGIN_SEPARATEWINDOW_MAXWIDTH =
L"MaxWidth"

The out parameter is set to a Long (VT_I4)
value indicating the desired maximum width of
the plug-in window. This property is requested
only for plug-ins in separate, resizable windows.

PLUGIN_SEPARATEWINDOW_MINHEIGHT =
L"MinHeight"

The out parameter is set to a Long (VT_I4)
value indicating the desired minimum height of
the plug-in window. This property is requested
only for plug-ins in separate, resizable windows.

 pvarProperty

[out] Pointer to a VARIANT to contain the value of the property.

Return Values

This method returns an HRESULT.

Remarks

Windows Media Player determines the type and capabilities of a plug-in by checking the Windows registry, and
will retrieve only properties that the plug-in supports.

When a user attempts to close a separate window or background UI plug-in, or to close Windows Media Player
when one of these plug-in types is active, this method is called with the PLUGIN_MISC_QUERYDESTROY
property specified. If the plug-in is engaged in an operation that cannot be interrupted, such as reading or
writing a file or waiting for user input in a modal dialog box, set the out parameter of this method to a non-
empty value. This value is displayed to the user to indicate the problem. A user who is attempting to close
Windows Media Player is then given the option of overriding the plug-in and closing the Player anyway.

When the plug-in is ready to close, set the out parameter to "" (empty string). When Windows Media Player
calls this method and receives an empty value in the out parameter, it closes the plug-in without further delay.

This method is not called when a display area, settings area, or metadata area plug-in is closed. Because these
plug-in types are displayed in the Now Playing pane, they must be ready to close at any time, such as when a
user switches to another pane.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpplug.idl; include wmpplug.h.

See Also

IWMPPluginUI Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

PLUGIN_SEPARATEWINDOW_MINWIDTH =
L"MinWidth"

The out parameter is set to a Long (VT_I4)
value indicating the desired minimum width of
the plug-in window. This property is requested
only for plug-ins in separate, resizable windows.

PLUGIN_SEPARATEWINDOW_RESIZABLE =
L"Resizable"

The out parameter is set to a Boolean
(VT_BOOL) value that indicates whether the
plug-in window is resizable. This property is
requested only for plug-ins in separate windows.

Previous Next

IWMPPluginUI::SetCore
The SetCore method is called by Windows Media Player to provide plug-in access to the core Windows Media
Player APIs.

Syntax

HRESULT SetCore(
 IWMPCore* pCore
);

Parameters

 pCore

[in] Pointer to an IWMPCore interface.

Return Values

This method returns an HRESULT.

Remarks

This method is called by Windows Media Player to allow the plug-in to set or release a pointer to the
IWMPCore interface. If pCore is NULL, the plug-in is being shut down and all stored references to the core
should be released.

This method is not called when Windows Media Player instantiates the plug-in for the purpose of displaying its
property page. This method can therefore be used as an entry point that will only be called when the plug-in is
enabled and Windows Media Player loads it normally.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpplug.idl; include wmpplug.h.

See Also

IWMPPluginUI Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

IWMPPluginUI::SetProperty
The SetProperty method is called by Windows Media Player to set name/value property pairs for the plug-in.

Syntax

HRESULT SetProperty(
 const WCHAR* pswzName,
 VARIANT* pvarProperty
);

Parameters

 pswzName

[in] Pointer to a WCHAR NULL-terminated string constant containing the name of the property. Contains one
of the following values:

 pvarProperty

[in] Pointer to a VARIANT containing the new value of the property.

Return Values

This method returns an HRESULT.

Remarks

Windows Media Player determines the type and capabilities of a plug-in by checking the Windows registry, and

Previous Next

Value Description

PLUGIN_MISC_CURRENTPRESET =
L"CurrentPreset"

The pvarProperty parameter contains a Long
(VT_I4) value that specifies the index of the plug-in
preset which is to be made current.

PLUGIN_ALL_MEDIASENDTO =
L"MediaSendTo"

The pvarProperty parameter contains an array of
IUnknown (VT_ARRAY | VT_UNKNOWN)
pointers for Media objects that are sent to the plug-in
from the Playlist control.

PLUGIN_ALL_PLAYLISTSENDTO =
L"PlaylistSendTo"

The pvarProperty parameter contains an array of
IUnknown (VT_ARRAY | VT_UNKNOWN)
pointers for Playlist objects that are sent to the plug-
in from the Media Library.

will specify only properties that the plug-in supports.

Media and Playlist objects are sent to the plug-in as arrays of IUnknown pointers. The plug-in can call
QueryInterface on these pointers to retrieve IWMPMedia or IWMPPlaylist interfaces.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpplug.idl; include wmpplug.h.

See Also

IWMPPluginUI Interface
Media Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPluginUI::TranslateAccelerator
The TranslateAccelerator method is called as part of the Windows Media Player message loop to allow the
plug-in to intercept and respond to keyboard events.

Syntax

HRESULT TranslateAccelerator(
 LPMSG lpmsg
);

Parameters

 lpmsg

[in] LPMSG structure containing message information from Windows Media Player that the plug-in can
respond to.

Return Values

This method returns an HRESULT.

Remarks

Previous Next

Previous Next

The plug-in can set up an accelerator table to reroute specific keyboard events to appropriate handler methods.
If the plug-in chooses not to respond to keyboard events, it should return S_FALSE.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpplug.idl; include wmpplug.h.

See Also

IWMPPluginUI Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Windows Media Player DSP Plug-ins
Microsoft Windows Media Player provides an architecture that enables the user to install and activate plug-in
programs that add digital signal processing (DSP) functionality. DSP plug-ins are Microsoft DirectX Media
Objects (DMOs) that connect to the Player by using COM interfaces. A typical DSP plug-in might be an audio
equalizer or a video tint control. This section of the SDK provides the programming information you need to
create your own DSP plug-in.

The DSP plug-in documentation is divided into three sections:

See Also

Windows Media Player Plug-ins

Previous Next

Previous Next

Section Description

About DSP Plug-ins Provides an overview of the architecture used for
DSP plug-ins. Read this section to learn the general
concepts involved with this technology.

DSP Plug-ins Programming Guide Explains what you need to do to create a DSP plug-
in. This section contains example code and step-by-
step procedures.

DSP Plug-ins Programming Reference Provides a detailed reference for the COM interfaces,
methods, and enumerated types supported by the
Windows Media Player SDK for DSP plug-ins.

© 2000-2003 Microsoft Corporation. All rights reserved.

About DSP Plug-ins
Microsoft Windows Media Player provides architecture for connecting add-on software that performs digital
signal processing (DSP) functions on the audio or video streams during playback. These add-on programs are
referred to as DSP plug-ins.

The following sections provide a conceptual overview of Windows Media Player DSP plug-ins.

See Also

Windows Media Player DSP Plug-ins

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Section Description

DSP Plug-in User Overview Describes DSP plug-ins from the end user's
perspective.

DSP Plug-in Developer Overview Provides general information you need to know
before you build a DSP plug-in for Windows Media
Player.

Building a DSP Plug-in Explains how to use the Windows Media Player plug-
in wizard to create a sample DSP plug-in.

Implementing Your DSP Code Discusses considerations for creating custom audio
and video DSP plug-ins for Windows Media Player.

Previous Next

Previous Next

DSP Plug-in User Overview
To the user, DSP plug-ins are add-on features that somehow change the way the user experiences the audio or
video that Windows Media Player is playing. The result of a DSP plug-in could be something obvious, like the
colors in the video image being reversed so it looks like a photographic negative, or something very subtle, like
a light reverb effect in the audio to add a feeling of spaciousness to the sound.

Users can install and uninstall DSP plug-ins by using the Plug-ins tab of the Options dialog box in Windows
Media Player. Users can then enable and disable installed plug-ins using the checkboxes provided on the Plug-
ins tab. DSP plug-ins may implement a property page, which users can also access from the Plug-ins tab. A
property page provides the user with a way to change settings that affect the way a DSP plug-in works. For
example, a property page might include a slider control that allows the user to change the decay time of a reverb
effect.

See Also

About DSP Plug-ins

© 2000-2003 Microsoft Corporation. All rights reserved.

DSP Plug-in Developer Overview
From the developer's perspective, DSP plug-ins are software programs that receive audio or video data provided
by Windows Media Player just before the rendering stage, then process that data and return the data to
Windows Media Player for rendering.

The following sections provide general information about Windows Media Player DSP plug-ins:

DSP Plug-in Packaging
Connecting to Windows Media Player
Data Input and Output
Format Negotiation
Providing a User Interface
DSP Plug-in Wizard
Required Interfaces
Registering DSP Plug-ins

See Also

About DSP Plug-ins

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

DSP Plug-in Packaging
Windows Media Player DSP plug-ins are based upon Microsoft DirectX Media Objects (DMOs). DMOs are
programming objects built using Microsoft Component Object Model (COM) technology. They are designed to
provide a lightweight container for audio or video processing algorithms that can be used by a variety of digital
media applications. It is common to think of a DMO as being analogous to a filter object in Microsoft
DirectShow®. In fact, a DMO can be inserted into a DirectShow filter graph by using a DMO Wrapper filter.

The DMO documentation can be found in the DirectShow section of the Microsoft DirectX 8 Software
Development Kit (SDK) or any later version of the SDK. If you plan to create your own DSP plug-ins for
Windows Media Player, you should install the entire DirectX SDK because it includes header and library files
that you will need. You can download the DirectX SDK from the Microsoft Web site.

Windows Media Player DSP plug-ins are packaged and distributed as self-registering .dll files.

DSP plug-in objects must not be created as singletons. Windows Media Player must be able to create multiple
separate instances of a particular DSP plug-in object.

See Also

DSP Plug-in Developer Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Connecting to Windows Media Player
Windows Media Player automatically connects to DSP plug-ins that have been installed and properly registered.
DSP plug-ins must call IWMPMediaPluginRegistrar::WMPRegisterPlayerPlugin to create the registry
entries necessary to allow Windows Media Player to recognize the plug-in and to list it on the Plug-ins tab of

Previous Next

Previous Next

Previous Next

Previous Next

the Options dialog box. To remove the registry entries created by
IWMPMediaPluginRegistrar::WMPRegisterPlayerPlugin, the plug-in calls
IWMPMediaPluginRegistrar::WMPUnRegisterPlayerPlugin.

See Also

DSP Plug-in Developer Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Data Input and Output
Windows Media Player provides audio or video data to DSP plug-ins through an input buffer allocated by
Windows Media Player. DSP plug-ins return processed data to Windows Media Player through an output buffer
that is also allocated by Windows Media Player. Windows Media Player manages the process of passing data
between itself and the DSP plug-in by calling methods implemented by the plug-in. The process works as
follows:

1. Windows Media Player calls IMediaObject::ProcessInput, passing a pointer to an IMediaBuffer object
to the DSP plug-in.

2. The DSP plug-in keeps a reference count on the input buffer object. The DSP plug-in returns an
appropriate success or failure HRESULT.

3. Windows Media Player calls IMediaObject::ProcessOutput, passing a pointer to an array of
DMO_OUTPUT_DATA_BUFFER structures (which contain output buffers) to the DSP plug-in.

4. The DSP plug-in processes the data in the input buffer and then copies the data to the appropriate output
buffer. The DSP plug-in releases the reference count on the input buffer object when all the data in the
buffer has been processed. The DSP plug-in then returns an appropriate success or failure HRESULT.

Note Do not write code that writes data to the input buffer or reads data from the output buffer. Incorrectly
accessing data buffers may yield unexpected results.

5. Windows Media Player renders the content in the output buffer.

This process repeats continuously while the plug-in is enabled and Windows Media Player has content to
render.

See Also

DSP Plug-in Developer Overview

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Format Negotiation
In order for Windows Media Player and a DSP plug-in to be able to share data, both programs must agree on the
data format they are processing. Windows Media Player only plays content that exists in a format that it can
process, but it needs a way to verify that a DSP plug-in supports the format of the current media before it can
provide data to the plug-in. The IMediaObject interface provides methods that a DSP plug-in implements in
order to provide Windows Media Player with information about the types of media supported by the plug-in and
to enable Windows Media Player to specify media types for input and output. These methods use the
DMO_MEDIA_TYPE structure, defined in mediaobj.h, to identify particular media types. For more
information about format negotiation, see About IMediaObject.

DSP plug-ins can process audio of a variety of bit depths. In general, Windows Media Player will only load
DSP plug-ins that can process the same bit depth as the digital audio. For instance, if the digital audio is 20-bit,
the plug-in must be written to process 20-bit audio. For CD audio, DSP plug-ins must support 20-bit processing.

During format negotiation of multi-channel content on a computer configured for use with stereo speakers,
Windows Media Player first attempts to connect to an audio DSP plug-in using the existing input and output
format by calling IMediaObject::SetInputType and IMediaObject::SetOutputType. Once this initial
negotiation occurs, the Player then enumerates the formats the plug-in supports and attempts to negotiate the
best format combination for the Player and the plug-in. If the plug-in accepts stereo audio (defined by a
WAVEFORMATEX structure) as the input format during the initial negotiation, and then subsequently
accepts only multi-channel audio (defined by a WAVEFORMATEXTENSIBLE structure), the Player will
provide multi-channel audio as the input format to the plug-in. This behavior during format negotiation is
available for use in the Microsoft Windows XP operating system. It may be altered or unavailable in subsequent
versions.

See Also

DSP Plug-in Developer Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Providing a User Interface
DSP plug-ins can provide a property page in order to create a user interface. To do this, the plug-in must include
a property page object that provides an implementation of an IPropertyPage interface. The DSP plug-in object
must implement ISpecifyPropertyPages::GetPages, which allows Windows Media Player to locate and
identify the correct property page for the plug-in.

Displaying a Status Graphic

DSP plug-ins can display a small graphic, or series of graphics, in the Windows Media Player status area to
notify the user that a plug-in is active. To support this feature, the plug-in must implement the IPropertyBag
interface. Windows Media Player calls IPropertyBag::Read, providing a pointer to the requested property
name "IconStreams", which is case-sensitive, and a pointer to a VARIANT structure that receives the data for
the graphic. The plug-in creates an IStream object (or a SAFEARRAY of IStream objects if there are multiple
graphics), then loads the graphic data, including header information, into the stream, and then returns a pointer
to the IStream object using the punkVal member of the VARIANT structure. If the plug-in only supplies one
graphic, it specifies the vt member of the VARIANT structure as VT_UNKNOWN. If the plug-in supplies
multiple graphic IStream objects using a SAFEARRAY, it specifies the vt member of the VARIANT structure
as VT_ARRAY.

Graphics can be stored in a variety of file formats, including:

BMP

Microsoft Windows Bitmap images are uncompressed.

JPEG

Compressed image format commonly used for Web pages. JPEG format files usually have .jpg file name
extensions.

GIF

Compressed image format commonly used for Web pages.

PNG

Compressed image format commonly used for Web pages.

The maximum dimensions for DSP plug-in graphics are 38 pixels wide and 14 pixels high.

The IStream byte stream containing the status graphic must include header information. Without header
information, Windows Media Player cannot properly identify the type of graphic and therefore will not load the
image.

See Also

DSP Plug-in Developer Overview

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

DSP Plug-in Wizard
The Windows Media Player SDK provides a COM wizard that you can add to Visual C++ 6.0 or Visual
C++ .NET that will generate the code for a DSP plug-in. This code includes sample method implementations
that scale the volume of the audio. You can compile and link this sample code and register the resulting DLL
file to try the sample DSP plug-in. You can then modify the generated code to create your own DSP plug-in.
For more information, see Building a DSP Plug-in.

See Also

DSP Plug-in Developer Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Required Interfaces
A Windows Media Player DSP plug-in must implement the IMediaObject interface and the
IWMPPluginEnable interface as a minimum requirement. The following sections provide an overview of
these interfaces.

In addition to these interfaces, the plug-in can implement any additional interfaces required to do the job. For
instance, DMOs can implement several interfaces specific to the DMO architecture. By implementing the DMO

Previous Next

Previous Next

Previous Next

Interface Description

About IMediaObject This is also the required interface for a DirectX
Media Object (DMO). Detailed documentation for
this interface is located in the DirectX 8 SDK.

About IWMPPluginEnable This interface stores a value indicating whether
Windows Media Player has enabled the plug-in.

interfaces as required, you can create a plug-in that functions both as a DMO and as a Windows Media Player
plug-in.

See Also

DSP Plug-in Developer Overview
DSP Plug-in Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

About IMediaObject

The IMediaObject interface is the required interface for DMOs. IMediaObject contains the methods that a
Windows Media Player DSP plug-in uses to get data from Windows Media Player, to process the data, and to
return the processed data to Windows Media Player. For complete documentation of the IMediaObject
interface, see the DirectX SDK.

The methods of IMediaObject can be categorized as follows:

Methods that Handle Format Negotiation

These are the methods that Windows Media Player calls to get information about the data formats supported by
the plug-in. These methods include:

GetInputMaxLatency
GetInputSizeInfo
GetInputStreamInfo
GetInputType
GetOutputSizeInfo
GetOutputStreamInfo
GetOutputType
GetStreamCount
SetInputMaxLatency
SetInputType
SetOutputType

Several of these methods, such as GetInputType and SetInputType, use the DMO_MEDIA_TYPE structure
to describe the format of the data used by a stream. When Windows Media Player calls these methods, it
provides a pointer to a DMO_MEDIA_TYPE structure. If a method such as SetInputType specifies the media
type information, the plug-in should copy the DMO_MEDIA_TYPE structure to a member variable and
inspect its data members to determine the type of data that Windows Media Player will provide in the input
buffer. If a method such as GetInputType retrieves the media type information, the plug-in should copy the
address of the member variable containing the DMO_MEDIA_TYPE structure to the pointer provided by

Previous Next

Previous Next

Windows Media Player in the parameter list.

Windows Media Player mainly uses two members of the DMO_MEDIA_TYPE structure:

majortype: A globally unique identifier (GUID) that specifies the overall category of the media, such as
audio or video.
subtype: A GUID that specifies a more detailed description of the media, such as PCM audio.

These GUIDs can be found in the header named uuids.h, which is included with the DirectX SDK.

Methods such as GetInputSizeInfo provide information to Windows Media Player about how much memory is
required to allocate the processing buffers. Methods such as GetStreamCount and GetOutputStreamInfo
provide information to Windows Media Player about the number and character of the streams supported by the
DSP plug-in.

GetInputMaxLatency and SetInputMaxLatency are implemented by DMOs in special cases. Windows
Media Player DSP plug-ins should return E_NOTIMPL.

Methods that Specify or Retrieve State Information

These are the methods that Windows Media Player calls to get or set values related to the current state of the
plug-in. These methods include:

GetInputCurrentType
GetInputStatus
GetOutputCurrentType

GetInputCurrentType and GetOutputCurrentType use the DMO_MEDIA_TYPE structure to return
information to Windows Media Player about the media types previously set for the input and output streams.
GetInputStatus returns a flag that tells Windows Media Player whether the DSP plug-in can accept input data.

Methods that Handle Buffering and Processing Data

These are the methods that Windows Media Player calls to initiate the various processes that the plug-in
performs to do the digital signal processing. These methods include:

AllocateStreamingResources
Discontinuity
Flush
FreeStreamingResources
Lock
ProcessInput
ProcessOutput

Windows Media Player calls AllocateStreamingResources and FreeStreamingResources to provide the DSP
plug-in with an opportunity to set up or release any additional buffers the plug-in may require for internal
processing.

Windows Media Player DSP plug-ins do not need to use the DMO Discontinuity method.

Windows Media Player calls Flush to direct the DSP plug-in to flush all internally buffered data. The plug-in
should release any references to IMediaBuffer interfaces, clear any values that specify the time stamp or
sample length for the media buffer, and reinitialize any internal states that depend upon the contents of the

media sample.

Windows Media Player calls ProcessInput to pass a pointer to an IMediaBuffer interface to the DSP plug-in.
This interface provides access to the input buffer allocated by Windows Media Player to supply data to the
plug-in. Windows Media Player subsequently calls ProcessOutput to pass a pointer to an IMediaBuffer
interface that provides access to the output buffer allocated by Windows Media Player to receive the processed
data from the DSP plug-in.

The IMediaObject interface includes a method named Lock. This method is designed to acquire or release a
lock on the DMO to keep the DMO serialized when performing multiple operations. The version of
IMediaObject::Lock in the wizard code overrides the ATL implementation of Lock. Because the sample code
is apartment threaded, the implementation of Lock simply returns S_OK. For details about how to create a
multi-threaded DMO, refer to the DirectX SDK.

See Also

Required Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

About IWMPPluginEnable

The IWMPPluginEnable interface is required for Windows Media Player DSP plug-ins. IWMPPluginEnable
contains two methods that store whether Windows Media Player has enabled the DSP plug-in. Windows Media
Player calls IWMPPluginEnable::SetEnable when it creates an instance of the DSP plug-in, passing a value
of TRUE if it has enabled the plug-in or FALSE otherwise.

DSP plug-ins may remain loaded even when the user chooses to disable them. When disabled, a plug-in must
copy data from the input buffer to the output buffer, performing only format conversion processing, if
applicable.

Windows Media Player also calls this method before it releases an instance of the DSP plug-in. This is useful to
allow clients of the plug-in to check whether the plug-in is currently enabled. For instance, a user interface plug-
in might change the appearance of its controls to alert the user that the DSP plug-in is not connected.

See Also

Required Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Registering DSP Plug-ins
Like other COM DLLs, you must register Windows Media Player DSP plug-ins to make them useable.
Typically, use the regsvr32.exe utility to manually perform registration tasks. The Windows Media Player Plug-
in Wizard creates files that contain registration scripts. These files have an .rgs file name extension. You can
also create a setup program that copies your files and registers the DLLs.

You must implement the registration methods on the IWMPMediaPluginRegistrar interface in the
implementation blocks of the DllRegisterServer and the DllUnregisterServer functions, which are functions
that are exported by COM DLLs. The Windows Media Player registration methods perform the necessary
registration housekeeping to allow Windows Media Player to recognize your DLL file as a Windows Media
Player plug-in so that it can be presented as an option to the user.

See Also

DSP Plug-in Developer Overview
IWMPMediaPluginRegistrar

© 2000-2003 Microsoft Corporation. All rights reserved.

Building a DSP Plug-in
You can create a Windows Media Player DSP Plug-in by using the Windows Media Player Plug-in Wizard. The
Plug-in Wizard is included with the Windows Media Player SDK, which also includes this documentation. If
you haven't installed the entire Windows Media Player SDK, you should do so before proceeding.

The Windows Media Player Plug-in Wizard is an add-in for Microsoft Visual C++ 6.0 or Microsoft Visual
C++ .NET that creates Visual C++ projects and generates sample code for each of the different types of plug-
ins supported by Windows Media Player.

The following sections explain what you need to know to create a DSP plug-in using the wizard:

Getting Started with DSP Plug-ins
Using the DSP Plug-in Wizard with Visual C++ 6.0

Previous Next

Previous Next

Previous Next

Using the DSP Plug-in Wizard with Visual C++ .NET
About the Sample Audio DSP Plug-in
About the Sample Video DSP Plug-in

See Also

About DSP Plug-ins

© 2000-2003 Microsoft Corporation. All rights reserved.

Getting Started with DSP Plug-ins
To set up your development environment for creating DSP plug-ins, you must install the following items:

Microsoft Visual C++ 6.0 or later
Windows Media Player 9 Series
Windows Media Player 9 Series SDK
Microsoft DirectX 8 SDK
Windows Media Player Plug-in Wizard

Installing Visual C++

You can install Visual C++ 6.0 or later by itself or as part of Microsoft Visual Studio. For help with installation,
refer to the instructions that come with the compiler.

Installing Windows Media Player

Install Windows Media Player 9 Series or any later version. You will need to use it to test your DSP plug-in.

Installing the Windows Media Player SDK

Be sure to install Windows Media Player 9 Series SDK or any later version of the SDK. In addition to this
documentation, it includes the Windows Media Player Plug-in Wizard, as well as useful samples.

Installing the Microsoft DirectX 8 SDK

Install version 8.0 or newer of the Microsoft DirectX SDK. You'll need this to get the proper DMO headers and
to link with msdmo.lib, which is a required library file for the code that the wizard generates.

Note The Windows XP SDK includes the DirectX 8 SDK files. If you have already installed the Windows XP
SDK, you don't have to install the DirectX 8 SDK.

Previous Next

Previous Next

Installing the Plug-in Wizard

There are separate versions of the Windows Media Player Plug-in Wizard for Microsoft Visual C++ 6.0 and
Microsoft Visual C++ .NET.

Once you have installed the Windows Media Player SDK, you can find the Windows Media Player Plug-in
Wizard for Visual C++ 6.0 in the following subfolder:

\wizards\wmpplugin

The wizard file is named wmpwiz.awx.

Copy the wizard file to the following subfolder:

\Program Files\Microsoft Visual Studio\Common\MSDev98\Bin\IDE

The preceding path assumes you installed Microsoft Visual Studio 6.0 to the default location. If you installed
the development environment to a different location, adjust the path accordingly. To quickly locate the correct
subfolder, you can use Windows Explorer to search for files with an .awx file name extension.

If you are using Microsoft Visual C++ .NET, the Windows Media Player plug-in wizard is installed and
configured automatically for you when you install this SDK. If you install Visual C++ .NET after installing this
SDK, you should remove the SDK and reinstall it.

See Also

Building a DSP Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

Using the DSP Plug-in Wizard with Visual C++ 6.0
Once you have installed the necessary components, creating a sample DSP plug-in is easy. The following steps
will guide you:

1. Start Microsoft Visual C++ 6.0.
2. From the File menu, click New…
3. On the Projects tab, click Windows Media Player Plug-in Wizard.
4. In the Project name box, type a name for your DSP plug-in.
5. In the Location box, provide the location of a folder where the wizard can save the files it generates. You

can accept the default, type a new path, or browse to an existing location.
6. Click OK.

Previous Next

Previous Next

7. Click DSP Plugin.
8. Click Audio or Video.
9. Click Finish.

10. Click OK.

The wizard generates a complete DSP plug-in project.

Before attempting to build the project, be sure to configure your development environment to point to the
folders named Include and Lib where you installed the DirectX 8 SDK. Your compiler and linker will need
access to some of the files in these folders. In Visual C++ 6.0, you can add these paths on the Directories tab of
the Options dialog box, which you can access from the Tools menu.

See Also

Building a DSP Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

Using the DSP Plug-in Wizard with Visual
C++ .NET
Once you have installed the necessary components, creating a sample DSP plug-in is easy. The following steps
will guide you:

1. Start Microsoft Visual C++ .NET.
2. From the File menu, point to New and then click Project.
3. In Project Types, click Visual C++ Projects if it isn't already selected.
4. In Templates, click Windows Media Player Plug-in Wizard to select it.
5. Type a name for your project.
6. Specify a location for your project. This is the folder to which your project files will be copied.
7. Click OK to start the wizard.
8. Click DSP Plug-in. Click Next.
9. Click Audio or Video.

10. Click Next.

The wizard generates a complete DSP plug-in project.

Before attempting to build the project, be sure to configure your development environment to point to the
folders named Include and Lib where you installed the DirectX 8 SDK. Your compiler and linker will need
access to some of the files in these folders. In Visual C++ .NET, you can add these paths on the VC++
Directories page of the Projects folder. The Projects folder is accessible from the Options dialog box, which

Previous Next

Previous Next

you can access from the Tools menu.

See Also

Building a DSP Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

About the Sample Audio DSP Plug-in
The sample audio DSP plug-in provides a simple processing implementation that scales the amplitude of the
audio by a factor provided by the user in the property page. The plug-in accepts values between zero and 1. The
default value is 1. A value of 1 has no effect upon the sound; other scale factors are multipliers for the audio
samples. For instance, a value of .5 would result in a 6 decibel decrease in volume. A value of zero results in
silence.

The sample audio DSP plug-in works with stereo or mono PCM audio.

See Also

Building a DSP Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

About the Sample Video DSP Plug-in
The sample video DSP plug-in provides a simple processing implementation that scales the color saturation of
the video by a factor provided by the user in the property page. The plug-in accepts values between zero and 1.
The default value is 1. A value of 1 has no effect upon the video image; other scale factors desaturate the image
color. For instance, a value of .5 would result in 50 percent color saturation. A value of zero results in grayscale
video.

Previous Next

Previous Next

Previous Next

Previous Next

The sample video DSP plug-in works with the following video formats:

YV12
YUY2
UYVY
RGB32
RGB24
RGB555
RGB565

See Also

Building a DSP Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing Your DSP Code
Once you have built the sample DSP plug-in, you can modify the code to create your own Windows Media
Player DSP plug-in. Which methods you change and which you can leave as they are depends upon the
following factors:

Whether your DSP plug-in will process audio or video. Since the sample plug-in processes audio, you
will have less code to modify to create an audio DSP plug-in than to create one that processes video. For
instance, in addition to changing the code that performs the data processing, creating a video DSP plug-in
will require you to alter the implementations of the methods that handle format negotiation between
Windows Media Player and the plug-in.
The number of properties you want to allow the user to change. You will certainly want to change the
default property page implementation to suit your needs, and you may need to add additional properties.
Whether your DSP plug-in needs to allocate any streaming resources. Your plug-in may require
additional buffers.
Whether your audio DSP plug-in needs to continue to output data after Windows Media Player has
stopped supplying data in the input buffer.

The following sections use the DSP plug-in sample code generated by the Windows Media Player Plug-in
Wizard to illustrate important concepts. You might find it helpful to open Microsoft Visual Studio and generate
the sample code first so you can refer to it as you read this section. For details about how to use the Windows
Media Player Plug-in Wizard, see Building a DSP Plug-in.

Previous Next

Previous Next

Section Description

See Also

About DSP Plug-ins

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing an Audio DSP Plug-in
To create a Windows Media Player DSP plug-in that processes audio, you'll need to modify the sample code in
the function named DoProcessOutput. DoProcessOutput is called each time Windows Media Player
successfully calls IMediaObject::ProcessOutput. It is the function that performs the digital signal processing
tasks that produce the audible result that the DSP plug-in is intended to produce.

Processing an audio stream is like handling a timed event. DoProcessOutput will be called repeatedly and at
specific intervals. Each time your code executes, it will need to process a specific number of bytes of data.
DoProcessOutput contains the following parameters:

The following sections provide details about how to modify the code generated by the Windows Media Player
Plug-in Wizard to create your own audio DSP plug-in:

Implementing DoProcessOutput
Adding Properties to the Sample Audio DSP Plug-in

Implementing an Audio DSP Plug-in Discusses what you need to know to create your own
audio DSP plug-in based on the sample generated by
the wizard.

Implementing a Video DSP Plug-in Discusses what you need to know to create your own
video DSP plug-in based on the sample generated by
the wizard.

Previous Next

Previous Next

Parameter Description

pbOutputData This is a BYTE pointer to the buffer where your
implementation of DoProcessOutput must copy its
processed data.

pbInputData This is a constant BYTE pointer to the buffer that
contains the data to be processed.

cbBytesToProcess This is a DWORD value that contains a count of the
number of bytes in the input buffer to be processed.

Implementing the Property Page for a DSP Plug-in
Changing the Sample Audio DSP Plug-in Property
About Discontinuity
About Allocating Streaming Resources

See Also

About DSP Plug-ins

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing DoProcessOutput

To process audio data, you'll need to perform several steps in DoProcessOutput. The following steps use the
plug-in wizard sample code as examples. If you want to create an audio DSP plug-in that processes media
content of the same type that the plug-in wizard sample code does, you'll only need to change the actual
processing code referred to in step 6. Following are all the steps implemented in DoProcessOutput:

1. If the plug-in is not currently enabled, simply copy the data unchanged into the output buffer. If your
plug-in converts the data into a different format, you must also do the conversion processing here.

// Test whether the plug-in is disabled by the user.
if (!m_bEnabled)
{
 // Just copy the data without changing it.
 memcpy(pbOutputData, m_pbInputData, *cbBytesProcessed);

 return S_OK;
}

2. Retrieve a pointer to the input format structure. You'll need to retrieve member data from this structure,
so copy the pointer from m_mtInput.pbformat to a local pointer variable of a type that matches the format
structure type. The following example stores a pointer to a WAVEFORMATEX input format structure:

WAVEFORMATEX *pWave = (WAVEFORMATEX*) m_mtInput.pbFormat;

3. Calculate the number of samples to process. The sample code that the plug-in wizard generates performs
this step by dividing the number of bytes to process by the nBlockAlign member of the
WAVEFORMATEX input format structure, and then multiplying the result by the number of channels,
which was stored in the nChannels member. The following example is from the plug-in wizard sample
code:

DWORD dwSamplesToProcess = (cbBytesProcessed / pWave->nBlockAlign) * pWave->nChannels

Previous Next

Previous Next

4. Determine the bit depth of the audio. The plug-in wizard sample code determines 8-bit or 16-bit audio by
inspecting the wBitsPerSample member of the WAVEFORMATEX structure. It then uses that value in
a switch statement to provide separate processing routines for each bit depth. You may need to use a
different technique when dealing with other format types and bit depths.

5. Create a loop to step through the audio samples in the input buffer.
6. Retrieve a sample from the input buffer. You do this by dereferencing the input data pointer and storing

the result in a variable of type int. For 16-bit audio, you must recast the BYTE pointer to a short pointer
to handle the greater audio sample precision. Once you have the value, you can immediately increment
the pbInputData pointer so that it points to the next sample. The following examples demonstrate this:

// For 8-bit audio.
int i = *pbInputData++;

-or-

// For 16-bit audio.
// Recast the pointer.
short *pwInputData = (short *) pbInputData;

// Enter the loop and then get the input sample.
int i = *pwInputData++;

7. Perform the processing. This is where you apply the algorithms that change the sample somehow. What
you do here is up to you.

8. Write the processed data to the output buffer. Immediately increment the pointer to the output buffer, as
in the following example:

*pwOutputData++ = i;

9. Repeat the loop until all the samples have been processed.
10. Return an appropriate HRESULT.

See Also

Implementing an Audio DSP Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

Adding Properties to the Sample Audio DSP Plug-in

The audio DSP sample code that the Windows Media Player Plug-in Wizard generates uses a single property
that represents the scale factor for the audio volume. Your plug-in may require more than one property. You can
easily add properties to your DSP plug-in in Visual Studio using the following steps:

Previous Next

Previous Next

1. Define the methods in the interface definition code in the project's main header file. For example, to add a
property called "color", you would create two accessor methods using the following syntax:

virtual HRESULT STDMETHODCALLTYPE get_color(COLORREF *pColor) = 0;
virtual HRESULT STDMETHODCALLTYPE put_color(COLORREF newColor) = 0;

2. Add the method declarations to the main class declaration in the header file:

STDMETHOD(get_color)(COLORREF *pColor);
STDMETHOD(put_color)(COLORREF newColor);

3. Add the method implementations to the project's main CPP file:

STDMETHODIMP CYourProject::get_color(COLORREF *pColor)
{
 if (NULL == pColor)
 {
 return E_POINTER;
 }

 *pColor = m_Color;

 return S_OK;
}

STDMETHODIMP CYourProject::put_color(COLORREF newColor)
{
 m_Color = newColor;

 return S_OK;
}

Finally, to make the properties accessible to the user, you'll want to make changes to the property page
implementation.

See Also

Implementing an Audio DSP Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing the Property Page for a DSP Plug-in

Windows Media Player can display a property page for each DSP plug-in to enable users to set values that
change the behavior of the plug-in. Users can access the property page from the Plug-ins tab of the Options
dialog box by clicking the name of the DSP plug-in to select it and then clicking Properties.

Previous Next

Previous Next

The Windows Media Player Plug-in Wizard sample code provides a default implementation of a property page
that includes a single edit box that receives from the user a value representing a scale factor for the audio
volume. When the user clicks Apply, the property page passes this value to the plug-in object so the plug-in can
change the value it uses to scale the volume during processing.

About the Property Page Object

The property page object is a COM object that implements the IPropertyPage interface. The sample code
generated by the plug-in wizard uses the ATL implementation of IPropertyPage, which is documented in the
Visual C++ documentation on MSDN. Your code at least should provide override implementations for
IPropertyPage::OnInitDialog, which handles the event that occurs when the property page opens, and
IPropertyPage::Apply, which handles the event that occurs when the user clicks Apply. The plug-in wizard
generates sample code for each of these event handlers. The sample implementation of OnInitDialog retrieves a
value from the registry in order to display the current scale factor setting. The sample implementation of Apply
validates the user input by testing to ensure that it falls within a specified range, then persists the value to the
registry, and then passes the value (if valid) to the DSP plug-in property put method, named put_scale.

Additionally, you will need to add code to handle the event that occurs when the user changes a value in a
control you provide in the property page. For example, the plug-in wizard implements a function named
OnChangeScale, which simply enables the Apply button when the user changes the text in the edit box on the
property page by calling the SetDirty method with an argument value of TRUE.

About the Property Page Dialog Resource

The user interface for the property page is stored as a dialog resource. You can easily view and edit the property
page dialog in Visual Studio by selecting the ResourceView tab in the Project Workspace window, then
opening the Dialog folder, and then double-clicking the property page resource name. The dialog resource
editor in Visual Studio provides you with the tools you need to add controls to the property page dialog and to
create event handlers that are mapped to the appropriate Windows messages. For details about how to use the
resource editor in Visual Studio, refer to Visual Studio Help.

About ISpecifyPropertyPages

If a DSP plug-in provides a property page, the plug-in must implement the ISpecifyPropertyPages interface.
This interface contains only one method: ISpecifyPropertyPages::GetPages. This is the method that associates
the property page with the DSP plug-in. Windows Media Player calls this method when the user invokes the
property page, passing a parameter of type CAUUID, which is a counted array of GUIDs. The sample plug-in
implementation of GetPages fills this structure with a single GUID that is the class id of the plug-in property
page object. Windows Media Player then uses the class id to create the property page object.

You might notice that the sample implementation of GetPages uses CoTaskMemAlloc to allocate memory for
the GUID structure. It is the responsibility of the caller, in this case Windows Media Player, to use
CoTaskMemFree to release the memory. For details about the CAUUID structure, see the Platform SDK
documentation.

See Also

Implementing an Audio DSP Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Changing the Sample Audio DSP Plug-in Property

You will probably want to change the property that the Windows Media Plug-in Wizard creates by default. The
following list details the items that might require changing:

The dialog resource. Click the ResourceView tab in the Project Workspace window. Expand the folder
list to open the Dialog folder. Double-click the dialog resource to open the resource editor. You can make
changes to the property page dialog to fulfill your needs. For instance, you could change the text in the
label or replace the edit control with a checkbox.
The property page object code. The default implementation uses a variable of type double to store the
scale factor. You might require a different type of data. This would also require you to change the code
that persists the data to the registry and reads the data from the registry (including the code that reads
from the registry in CProjectName::FinalConstruct).
The member variable that stores the property value. This variable is named m_fScaleFactor and is
declared as type double. You may want to change the name and type of this variable throughout the
project.
The property get and property put methods. You might want to change the names, parameters, and
implementations of these methods. Don't forget to also reflect those changes elsewhere in the project. For
instance, the property page Apply method calls CProjectName::put_scale.

See Also

Implementing an Audio DSP Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

About Discontinuity

At any time, Windows Media Player can signal a break in the input stream by calling the
IMediaObject::Discontinuity method. This occurs routinely at the start and end of a stream, and also prior to
each seek operation or when streaming content is interrupted for any reason. The sample DSP plug-in that the
Windows Media Player Plug-in wizard generates does not need to deal with discontinuities for the following
reasons:

PCM samples are atomic, meaning they can be processed without regard to the other samples in the
stream. Some video formats contain data that depends on key frames and compressed samples.

Previous Next

Previous Next

Previous Next

The sample code is written to always force the client to process all output before the plug-in will accept
more input.

The default implementation of IMediaObject::Discontinuity simply returns S_OK.

See Also

Implementing an Audio DSP Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

About Allocating Streaming Resources

The sample DSP plug-in generated by the Windows Media Player Plug-in Wizard does not require any
additional streaming buffers. However, you might want to allocate memory resources for your DSP plug-in. For
example, a plug-in that produces an echo effect would require a secondary buffer to create the necessary time
delay.

The IMediaObject interface contains two methods to handle this situation. Windows Media Player calls
IMediaObject::AllocateStreamingResources to give you an opportunity to create any buffers you require.
Windows Media Player later calls IMediaObject::FreeStreamingResources to allow you to free any memory
you allocated previously. The sample DSP plug-in implementation also calls FreeStreamingResources from
CProjectName::FinalRelease to ensure that all resources are freed before the plug-in object is destroyed.

See Also

Implementing an Audio DSP Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing a Video DSP Plug-in

Previous Next

Previous Next

Previous Next

Previous Next

Computer video display adapters support a set of video formats. Digital video codecs also support a set of video
formats. When attempting to play a particular video file, Windows Media Player must choose a format to use
for rendering. The Player attempts to find the best match between the formats supported by the video codec and
the formats supported by the video display adapter—that is, the one that yields the highest quality.

To create a Windows Media Player DSP plug-in that processes video, you'll first need to decide which video
formats you'd like your plug-in to process. The sample video DSP plug-in works with the following video
formats:

YV12
YUY2
UYVY
RGB32
RGB24
RGB555
RGB565

Which formats you choose to process is up to you. You can remove formats from the sample plug-in so that
they aren't supported any longer and you can add code to process additional formats.

The following sections provide additional information you should know before creating your own video DSP
plug-in for Windows Media Player:

Video Format Negotiation in the Sample Video DSP Plug-in
DoProcessOutput in the Sample Video DSP Plug-in
Processing the Video

See Also

Implementing Your DSP Code

© 2000-2003 Microsoft Corporation. All rights reserved.

Video Format Negotiation in the Sample Video DSP Plug-in

Before Windows Media Player inserts a video DSP plug-in into the signal chain, the Player must determine
whether the plug-in can process the video being played. The process by which the plug-in and the Player
communicate about supported video formats is called format negotiation.

Providing the Supported Input and Output Types

The Player makes a series of calls to IMediaObject::GetInputType and IMediaObject::GetOutputType to
query the plug-in about the formats it supports. In fact, the Player supplies an index value with each call so the

Previous Next

Previous Next

plug-in can respond with the media type that corresponds to the index value. The plug-in is not required to
support more than one format, but using this mechanism it can communicate to the Player the details of each
format that it supports. It does this by filling in a DMO_MEDIA_TYPE structure using a pointer provided by
the Player. When the Player provides an index number that exceeds the highest supported media type index
value for the plug-in, the plug-in returns E_NO_MORE_ITEMS.

The sample video plug-in generated by the Windows Media Player Plug-in Wizard stores the list of supported
video formats as an array of GUIDs. The following code is from the main header file:

static const GUID* k_guidValidSubtypes[] = {
 &MEDIASUBTYPE_YV12,
 &MEDIASUBTYPE_YUY2,
 &MEDIASUBTYPE_UYVY,
 &MEDIASUBTYPE_RGB32,
 &MEDIASUBTYPE_RGB24,
 &MEDIASUBTYPE RGB555,
 &MEDIASUBTYPE RGB565
};

These formats are added to the array in order of preference for the plug-in. When the Player calls
GetInputType, the plug-in returns the subtype that corresponds to the dwTypeIndex value requested by the
Player. The following code from the sample implementation of GetInputType demonstrates this:

::ZeroMemory(pmt, sizeof(DMO_MEDIA_TYPE));
pmt->majortype = MEDIATYPE_Video;
pmt->subtype = *k_guidValidSubtypes[dwTypeIndex];

The Player can call GetInputType and GetOutputType in any order, so the plug-in code must anticipate this.
The sample implementation of GetOutputType tests whether the input type has already been defined. If it has,
the plug-in only responds that it supports that type. Otherwise, the plug-in returns the type that corresponds to
the supplied index, as the following code demonstrates:

// If input type has been defined, then use that as output type.
if (GUID_NULL != m_mtInput.majortype)
{
 hr = ::MoCopyMediaType(pmt, &m_mtInput);
}
else // otherwise use default for this plug-in
{
 ::ZeroMemory(pmt, sizeof(DMO_MEDIA_TYPE));
 pmt->majortype = MEDIATYPE_Video;
 pmt->subtype = *k_guidValidSubtypes[dwTypeIndex];
}

Setting the Input and Output Types

When Windows Media Player is ready to set the media type for the plug-in, it calls
IMediaObject::SetInputType and IMediaObject::SetOutputType, passing to each function a pointer to a
DMO_MEDIA_TYPE structure that represents the requested media type. Note that there is no guarantee that
the Player will call format negotiation methods in any particular order, so plug-in code must handle any case.
For instance, if the Player calls SetOutputType before calling SetInputType, it is a valid course of action for
the plug-in to reject the proposed output media type. The following code from the sample implementation of
SetOutputType demonstrates this:

if(GUID_NULL != m_mtInput.majortype)
{
 // validate that the output media type matches our requirements

 // and matches our input type (if set)
 hr = ValidateMediaType(pmt, &m_mtInput);
}
else
{
 hr = DMO_E_TYPE_NOT_ACCEPTED;
}

The sample plug-in implementations of SetInputType and SetOutputType both call the custom function
named ValidateMediaType. This plug-in function performs a series of tests on the proposed media type
designed to ensure that the media type is well-formed and supported by the plug-in. ValidateMediaType
performs the following tests:

Verifies that the majortype and formattype members contain the correct values.
Verifies that the subtype member matches one of the supported formats.
Verifies that the information in the BITMAPINFOHEADER and VIDEOINFOHEADER or
VIDEOINFOHEADER2 structures contain valid values.
Tests whether the input and output media types match because the plug-in does not convert formats from
input to output.

If the proposed media type passes the validation tests, it is stored in a member variable: m_mtInput for the input
media type, m_mtOutput for the output media type.

See Also

Implementing a Video DSP Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

DoProcessOutput in the Sample Video DSP Plug-in

Because a video DSP plug-in typically supports several video formats, it is convenient to separate the
processing implementation code into a separate function for each format. This means that the implementation of
IMediaObject::DoProcessOutput for video DSP plug-ins is relatively simple. The implementation in the
sample plug-in first tests whether the user has enabled the plug-in. If the plug-in is disabled, the code copies the
data provided in the input buffer to the output buffer without changing it, as the following code demonstrates:

// Test whether the plug-in has been disabled by the user.
if (!m_bEnabled)
{
 // Just copy the data without changing it. You should
 // also do any neccesary format conversion here.
 memcpy(pbOutputData, pbInputData, m_dwBufferSize);
 *cbBytesProcessed = m_dwBufferSize;

Previous Next

Previous Next

 return S_OK;
}

If the plug-in is enabled, the code simply performs a series of checks on the input media type subtype member
to determine the current video format. When a match is found, the code calls the appropriate processing
function.

See Also

Implementing a Video DSP Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

Processing the Video

The details of processing video vary for each format; it is beyond the scope of this documentation to provide
these details. In a general sense, the goal of the plug-in is to change the color data in the input buffer and then
copy the data to the output buffer.

The sample plug-in processes two types of video formats: YUV and RGB. For YUV video, the red and blue
color information is encoded in the U and V values and the luminance level is represented by the Y value; the
green value is encoded and can be recovered by using an algorithm. The sample plug-in simply changes the U
and V values to affect the color level. Each U or V byte has a value between zero and 255. The plug-in first
adjusts each value to be represented by a range from -128 to 127, and then scales the value by the supplied scale
factor. Finally, the code adjusts the value again for the original zero-to-255 range and copies the data to the
output buffer. The following example code processes UYVY video. In this format, every other byte is a U or Y
value.

while(dwHeight--)
{
 DWORD x = dwWidth;

 while(x--)
 {
 // Scale the U and V bytes to 128.
 // Just copy the Y bytes.
 if(x%2)
 {
 pbTarget[x] = pbSource[x];
 }
 else
 {
 long temp = (long)((pbSource[x] - 128) * m_fScaleFactor);

 // Truncate if exceeded full scale.
 if (temp > 127)

Previous Next

Previous Next

 temp = 127;
 if (temp < -128)
 temp = -128;

 pbTarget[x] = temp + 128;
 }
 }

 // Move the pointers to the next row.
 pbSource += lStrideIn;
 pbTarget += lStrideOut;
}

For RGB video, the color and luminance information is encoded as separate red, green, and blue values. The
sample plug-in computes the average of the three values to determine the value for gray, and then adjusts each
color value by using the supplied scale factor. Once again, the values must be normalized for the -128 to 127
range before scaling. The following code from Process32Bit shows the process for RGB32:

while(dwHeight--)
{
 RGBQUAD* pPixelIn = (RGBQUAD*)pbSource;
 RGBQUAD* pPixelOut = (RGBQUAD*)pbTarget;

 for(DWORD x = 0; x < dwWidth; x++)
 {
 // Get the color bytes.
 long lBlue = (long) pPixelIn[x].rgbBlue;
 long lGreen = (long) pPixelIn[x].rgbGreen;
 long lRed = (long) pPixelIn[x].rgbRed;

 // Compute the average for gray.
 long lAverage = (lBlue + lGreen + lRed) / 3;

 // Scale the colors to the average.
 pPixelOut[x].rgbBlue = (BYTE)((lBlue - lAverage) * m_fScaleFactor + lAverage);
 pPixelOut[x].rgbGreen = (BYTE)((lGreen - lAverage) * m_fScaleFactor + lAverage);
 pPixelOut[x].rgbRed = (BYTE)((lRed - lAverage) * m_fScaleFactor + lAverage);
 pPixelOut[x].rgbReserved = pPixelIn[x].rgbReserved;
 }

 // Move the pointers to the next row.
 pbSource += lStrideIn;
 pbTarget += lStrideOut;
}

For more information about processing video, download the DirectX SDK from the Microsoft Web site. For
more information about video formats, see the FourCC Web site.

See Also

Implementing a Video DSP Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

DSP Plug-ins Programming Guide
This section describes how to modify the code generated by the Windows Media Player Plug-in Wizard to
create your own Windows Media Player DSP plug-in. This section contains the following topics:

See Also

Windows Media Player DSP Plug-ins

© 2000-2003 Microsoft Corporation. All rights reserved.

The Echo Sample
The Windows Media Player Plug-in Wizard can create a DSP plug-in project for Microsoft Visual C++ 6.0. The
default code generated by the wizard allows the user to provide a scale factor between 0 and 1, which is used by
the program as a multiplier for the audio samples. This is a very simple implementation that you can study to
understand how Windows Media Player interacts with DSP plug-ins. The information in the section named
About DSP Plug-ins can help you to understand the default implementation.

The sample described in this section is a bit more complex. This sample allows the user to specify a delay time,
in milliseconds, and an effect level. The code uses these values to generate an echo effect when playing files
that contain pulse code modulation (PCM) audio. Many of the file types that Windows Media Player renders
use PCM audio.

This guide is divided into the following sections:

Previous Next

Topic Description

The Echo Sample Explains how to create a DSP plug-in that adds an
echo effect to the audio.

Previous Next

Previous Next

Section Description

Echo Sample Overview Describes the general requirements and specifications

See Also

DSP Plug-ins Programming Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Echo Sample Overview
This guide builds a Windows Media Player DSP plug-in that creates an echo effect in PCM audio during
playback. The goals for the plug-in are as follows:

The plug-in processes 8-bit or 16-bit PCM audio only.
It supports a delay time between 10 milliseconds (ms) and 2000 ms (2 seconds). This represents a
practical range for most applications.
It supports mixing of the original signal with the delay signal.
It provides a property page implementation that allows the user to provide a value for the delay time and a
value for the percentage of delay signal relative to the overall audio signal level.
The code is created by modifying the Windows Media Player Plug-in Wizard audio DSP plug-in sample.

The Echo sample is not included with the Windows Media Player SDK; it is a sample that you create. To create
the Echo sample, you must start with the default project from the Windows Media Player Plug-in Wizard. You
can name the project whatever you like; this documentation assumes the project is named Echo. For details
about using the wizard, see Building a DSP Plug-in.

The following section provides an overview of how the sample creates an echo effect:

for the sample. Describes how the plug-in works.

Echo Sample Properties Describes how to modify the wizard code property
and add methods for the new property required for
the Echo sample.

Modifying the Echo Sample Property Page Shows how to modify the existing property page
implementation to work with the Echo sample.

Working with Streaming Resources Demonstrates adding code to allocate and free a
buffer required for the Echo sample.

Implementing CEcho::DoProcessOutput Describes how to implement the code that creates the
echo effect.

Using the Echo Sample DSP Plug-in Describes how to use the completed sample.

Previous Next

Previous Next

How the Echo Sample Works

See Also

The Echo Sample

© 2000-2003 Microsoft Corporation. All rights reserved.

How the Echo Sample Works

The code creates the echo effect by allocating a buffer large enough to contain exactly the amount of audio data
that can be rendered in the time frame specified by the delay time value. The size of the buffer is calculated, in
bytes, by the following formula:

buffer size = delay time * sample rate / 1000 * block alignment

The delay time is in milliseconds. The sample rate and block alignment values are given in a
WAVEFORMATEX structure. The sample rate is in samples per second; dividing by 1000 yields samples per
millisecond. The block alignment is equal to the product of the number of channels (1 for mono, 2 for stereo)
and the number of bits per sample (8 or 16) divided by 8 (bits per byte).

In addition to the pointer variable that points to the head of the delay buffer, the code creates a movable pointer
that steps through the data in the buffer in synchronization with the processing loop in the DoProcessOutput
function. When the movable pointer reaches the end of the delay buffer, it moves back to the head of the buffer.
A buffer used in this manner is called a circular buffer.

Once the delay buffer exists, and Windows Media Player has allocated an input buffer to supply audio data and
an output buffer to receive processed audio data, the echo processing proceeds like this:

1. Enter a loop that allows processing of each audio sample in the input buffer.
2. Retrieve a sample from the input buffer. Then, move the input buffer pointer forward to the next sample

to prepare for the next loop iteration.
3. Retrieve a sample from the delay buffer.
4. Copy the sample from the input buffer to the same location in the delay buffer from which the last delay

sample was retrieved.
5. Move the delay buffer pointer forward to the next sample. If the pointer moves past the end of the buffer,

move it to the head of the buffer.
6. Combine the sample from the input buffer with the sample from the delay buffer.
7. Copy the result to the output buffer. Then, move the output buffer pointer forward to the next unit to

prepare for the next loop iteration.
8. Repeat until all the samples are processed.

When an input sample retrieved in step 2 is copied to the delay buffer in step 4, it remains there until the

Previous Next

Previous Next

movable pointer steps through each sample in the delay buffer and finally returns to the same position. Because
the size of the delay buffer is designed to correspond to the delay time, the elapsed time between the sample
being copied to the delay buffer and the sample being retrieved once again equals the specified delay (plus any
latency introduced by the actual processing).

When a stream starts, no delay data is generated until the delay time has elapsed. Therefore, it is important that
the delay buffer initially contains silence. If the delay buffer contains random data, the user will hear white
noise until the plug-in generates enough delay data to overwrite the entire delay buffer.

See Also

Echo Sample Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Echo Sample Properties
The Echo sample exposes two properties: the delay time and the effect level (wet mix). The value for the dry
signal level (dry mix) is always derived from the wet mix value. You need to modify existing code and add
some new code to make these properties accessible.

The following sections explain how to modify the properties code:

How Properties Work
Variables to Store Properties
Modifying the Scale Property
Adding the Wet Mix Property

See Also

The Echo Sample

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

How Properties Work

Property values are stored in member variables.

Properties are made accessible by method pairs. One method provides the implementation to specify the
property value; its name starts with put_. The other method provides the implementation to retrieve the property
value; its name starts with get_. The interface definition and property method prototypes are in Echo.h. They are
implemented in Echo.cpp.

The next three sections will show you how to modify the existing property methods to suit your needs and how
to add the methods for an additional property.

Variables to Store Properties
Modifying the Scale Property
Adding the Wet Mix Property

See Also

Echo Sample Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

Variables to Store Properties

First, you will need a variable to store the delay time. The default sample created by the Windows Media Player
Plug-in Wizard provides a variable named m_fScaleFactor to store the scaling multiplier it uses for processing.
This sample no longer needs this variable, so you can change its name and type to store the delay time value.

1. Replace each instance of m_fScaleFactor in Echo.h and Echo.cpp with m_dwDelayTime.
2. Change the data type for m_fScaleFactor (now m_dwDelayTime) from double to DWORD in Echo.h.
3. In the constructor for CEcho, change the default delay time value to 1000.

m_dwDelayTime = 1000; // Default to a delay time of 1000 ms.

Next, declare two new member variables to store the percentage of effect signal and the percentage of source
signal to be mixed in the final output buffer. The term "wet" refers to the effect, and the term "dry" refers to the
source signal. Add the following declarations to Echo.h:

Previous Next

Previous Next

Previous Next

double m_fWetMix; // percentage of effect
double m_fDryMix; // percentage of dry signal

These values are stored as decimal representations of percentages so they can easily be used as scale factors.
For instance, a mixture of 50 percent effect and 50 percent source signal would be represented as a value of 0.50
for each variable. The sum of the values for m_fWetMix and m_fDryMix must not be more than 1.0 (100
percent). Eventually, these values will be accessible as properties.

Add the following code to the CEcho constructor to set the default values to 50 percent each:

m_fWetMix = 0.50; // default to 50 percent wet
m_fDryMix = 0.50; // default to 50 percent dry

See Also

Echo Sample Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

Modifying the Scale Property

The default wizard implementation exposes the scale property. You can change the existing implementation to
expose the delay time property instead.

First, use the following example to change the function prototypes for get_scale and put_scale in Echo.h.
Change the name of the methods and the data types for the parameters:

// IEcho methods
STDMETHOD(get_delay)(DWORD *pVal);
STDMETHOD(put_delay)(DWORD newVal);

Next, change the implementations of the get_scale and put_scale methods in Echo.cpp. Make the code match
the following examples:

// Formerly get_scale
STDMETHODIMP CEcho::get_delay(DWORD *pVal)
{
 if (NULL == pVal)
 {
 return E_POINTER;
 }

 *pVal = m_dwDelayTime;

 return S_OK;

Previous Next

Previous Next

}

// Formerly put_scale
STDMETHODIMP CEcho::put_delay(DWORD newVal)
{
 m_dwDelayTime = newVal;

 return S_OK;
}

The preceding example code changes the method names and the parameter data types. The member variable
name should have been changed previously. Remember to change the comments that introduce each method as
well.

Now, change the interface definition. The following code replaces the code in the IEcho interface declaration in
Echo.h:

virtual HRESULT STDMETHODCALLTYPE get_delay(DWORD *pVal) = 0;
virtual HRESULT STDMETHODCALLTYPE put_delay(DWORD newVal) = 0;

See Also

Echo Sample Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

Adding the Wet Mix Property

You must add the code to provide the additional property for the effect level.

The section Adding Properties to the Sample Audio DSP Plug-in provides details about how to add a new
property using Visual C++. This section shows you how to add the code manually. This entails adding code in
the same three places where you modified the code for the delay time property.

Add the prototypes for the get_wetmix and put_wetmix methods immediately following the other property
method prototypes in Echo.h. Use the following syntax:

STDMETHOD(get_wetmix)(double *pVal);
STDMETHOD(put_wetmix)(double newVal);

Now, add the implementation for each method immediately following the other property implementations in
Echo.cpp. The following example shows the code for both methods:

// Property get to retrieve the wet mix value by using the public interface.
STDMETHODIMP CEcho::get_wetmix(double *pVal)

Previous Next

Previous Next

{
 if (NULL == pVal)
 {
 return E_POINTER;
 }

 *pVal = m_fWetMix;

 return S_OK;
}

// Property put to store the wet mix value by using the public interface.
STDMETHODIMP CEcho::put_wetmix(double newVal)
{
 m_fWetMix = newVal;

 // Calculate m_fDryMix
 m_fDryMix = 1.0 - m_fWetMix;

 return S_OK;
}

Notice that the implementation of put_wetmix includes the code to calculate the correct value for m_fDryMix.
Each time a new value is specified for m_fWetMix, this calculation is required.

Add the following code in the interface definition just after the code for the delay methods in Echo.h:

virtual HRESULT STDMETHODCALLTYPE get_wetmix(double *pVal) = 0;
virtual HRESULT STDMETHODCALLTYPE put_wetmix(double newVal) = 0;

See Also

Echo Sample Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

Modifying the Echo Sample Property Page
The default property page implementation provided by the Windows Media Player Plug-in Wizard DSP plug-in
sample contains a single edit box control that receives the scale factor from the user. You need to modify the
property page to receive the two property values used by the Echo sample.

For an overview of DSP plug-in property pages, see Implementing an Audio DSP Plug-in.

The following sections step you through the process of modifying the sample property page:

Previous Next

Previous Next

Modifying the Echo Dialog Resource
Adding and Modifying the Events
How the Echo Sample Persists Data
Implementing CEchoPropPage::OnInitDialog
Implementing CEchoPropPage::Apply
Implementing CEcho::FinalConstruct

See Also

The Echo Sample

© 2000-2003 Microsoft Corporation. All rights reserved.

Modifying the Echo Dialog Resource

You need to change the dialog resource that is the user interface for the property page object. You can first
change the existing edit box and label to be useful for the delay time property and then add a second edit box
and label for the wet mix property.

To edit the dialog resource in Visual C++:

1. Click the ResourceView tab in the Project Workspace.
2. Expand the resources tree by opening the top level folder.
3. Open the Dialog folder.
4. Double-click the dialog resource name, IDD_ECHOPROPPAGE. The resource editor appears in the right

pane.

Changing the Existing Resources

To change the existing property page resources for the delay time property:

1. First, change the text in the existing static text control. Right-click the control and then choose
Properties. In the Caption field, type the new caption:

Delay time (0 to 2000):

2. Close the Text Properties dialog box.
3. Now, change the name of the edit box control. To do this, right-click the control and then choose

Properties. In the ID field, type a new name for the control:

IDC_DELAYTIME

4. Close the Edit Properties dialog box.

Previous Next

Previous Next

5. Save the resource.
6. Answer Yes if prompted to reload the file resource.h.
7. Click the FileView tab in the Project Workspace. Open resource.h
8. Locate the #define for the scale factor edit box resource (IDC_SCALEFACTOR) and delete it. It should

have the same id number as IDC_DELAYTIME.

Adding the New Resources

To add the new property page resources for the wet mix property:

1. Click the ResourceView tab in the Project Workspace to select it.
2. Double-click the name of the property page dialog box, IDD_ECHOPROPPAGE. The resource editor

appears in the right pane.
3. Use the toolbox to add a static text control and an edit box to the property page.
4. Right-click the static text control and choose Properties.
5. Type a new name for the static text control in the ID field:

IDC_MIXLABEL

6. Type a caption for the label:

Effect level (%):

7. Close the Text Properties dialog box.
8. Right-click the edit box and choose Properties.
9. Type a new name for the edit box in the ID field:

IDC_WETMIX

10. Close the Edit Properties dialog box.

When you save the project, you may be prompted to reload resource.h. Click Yes if this happens. The dialog
box resource editor should add the resource names and id numbers to resource.h for the items you added. If for
some reason this doesn't happen, you must open resource.h and type new entries for the label and edit box
control, and assign each a unique id number.

Modifying and Adding the String Resources

The plug-in wizard sample code specifies a string resource named IDS_SCALERANGEERROR that contains a
message to display when the user input is out of range. You can modify this resource to suit your needs for the
delay time value by following these steps in Visual C++:

1. Click the ResourceView tab.
2. Open the String Table folder.
3. Double-click the String Table icon to open the resource editor.
4. Double-click the name of the resource you want to edit, in this case, IDS_SCALERANGEERROR. The

String Properties dialog box appears.
5. Change the name in the ID field to IDS_DELAYRANGEERROR.
6. Change the text in the Caption field:

You must enter a delay time between 0 and 2000 milliseconds.

7. Close the String Properties dialog box.

Next, add a new string resource for the wet mix property error message.

8. Double-click the empty line at the bottom of the resource editor.
9. Change the name in the ID field to IDS_MIXRANGEERROR.

10. Add the following text to the Caption field:

You must enter an effect level between 0 and 100 percent.

11. Close the String Properties dialog box.

There are two other values you will want to change in the String Table. IDS_FRIENDLYNAME is the name
that appears in the Windows Media Player user interface to identify the plug-in. IDS_DESCRIPTION lets you
tell the user about your plug-in. Both of these strings are passed as parameters to the
IWMPMediaPluginRegistrar::WMPRegisterPlayerPlugin function, which is called in the DllRegisterServer
method in Echodll.cpp.

See Also

Modifying the Echo Sample Property Page

© 2000-2003 Microsoft Corporation. All rights reserved.

Adding and Modifying the Events

You need to supply event handlers for the EN_CHANGE events that occur when the user changes the text in
the property page edit boxes. These event handlers have a simple implementation that merely enables Apply in
the property page dialog box.

Modifying the Scale Factor Event Handler

You need to change the name of the existing event handler that the plug-in wizard provided for the scale factor
edit box. You should change the name from OnChangeScale to OnChangeDelay in three locations:

1. In EchoPropPage.h, change the name in the message map macro section. Replace the line that maps the
scale factor change event to the OnChangeScale method with the following code:

COMMAND_HANDLER(IDC_DELAYTIME, EN_CHANGE, OnChangeDelay)

2. In EchoPropPage.h, change the name in the line that prototypes the OnChangeScale function:

LRESULT (OnChangeDelay)(WORD wNotifyCode, WORD wID, HWND hWndCtl, BOOL& bHandled);

3. In EchoPropPage.cpp, change the name in the function header:

Previous Next

Previous Next

LRESULT CEchoPropPage::OnChangeDelay(WORD wNotifyCode, WORD wID, HWND hWndCtl, BOOL&

Adding the Wet Mix Event Handler

You can easily add the event handler for the EN_CHANGE event that is attached to the IDC_WETMIX edit
box control. From the dialog resource editor:

1. Right-click the IDC_WETMIX edit box and choose Events. The New Windows Message and Event
Handlers dialog box appears.

2. In the Class or object to handle box, click the name of the edit box resource, IDC_WETMIX.
3. In the New Windows messages/events box, click EN_CHANGE to select it.
4. Click Add Handler. The Add Member Function dialog box appears.
5. In the Member function name box, type the name OnChangeWetmix.
6. Click OK to close the Add Member Function dialog box.
7. Click OK to return to the dialog box resource editor.

Visual C++ automatically adds the code for the message map and for the event handler function to
EchoPropPage.h. The code it inserts provides a TODO comment where you can add the implementation in the
header for the function. This is a slightly different style than the Windows Media Player Plug-in Wizard sample
code uses, but is acceptable.

Whether you want to write your implementation in the header file or move it to EchoPropPage.cpp is up to you.
In either case, the implementation needs only a single additional line of code to enable Apply in the property
page dialog. Insert this line of code before the line that returns from the function:

SetDirty(TRUE); // Enable Apply.

See Also

Modifying the Echo Sample Property Page

© 2000-2003 Microsoft Corporation. All rights reserved.

How the Echo Sample Persists Data

When Windows Media Player enables a DSP plug-in, it may create and destroy many instances of the plug-in
object during the course of a session. The plug-in needs a way to persist its property values between instances.
The sample code generated by the Windows Media Player Plug-in Wizard stores these values in the registry and
retrieves them when the property page is invoked or when a new instance of the plug-in is created.

The default sample code in Echo.h includes two constants that store the default registry path and the scale factor
name string. You should keep the variable that specifies the path, but delete the line that specifies the scale
factor registry name. Then, add the following code to define constants for the delay time and wet mix property

Previous Next

Previous Next

names in the registry. The finished section should appear as follows:

// registry location for preferences
const TCHAR kszPrefsRegKey[] = _T("Software\\Echo\\DSP Plugin");
const TCHAR kszPrefsDelayTime[] = _T("DelayTime");
const TCHAR kszPrefsWetmix[] = _T("Wetmix");

You will use these constants when you modify the property page methods.

See Also

Modifying the Echo Sample Property Page

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing CEchoPropPage::OnInitDialog

The CEchoPropPage::OnInitDialog method is implemented in EchoPropPage.cpp. It executes when the
property page dialog box is invoked. The code in this method needs to retrieve the current property values and
display them in the correct edit box. The plug-in wizard sample code provides an implementation for a single
property. You can modify this code for one of the Echo sample properties, and then add code to retrieve the
second property value.

Declaring the OnInitDialog Method Variables

First, you must remove the declaration of fScaleFactor and replace it with the following variable declarations:

DWORD dwDelayTime = 1000; // Default delay time.
DWORD dwWetmix = 50; // Default wet mix DWORD.
double fWetmix = 0.50; // Default wet mix double.

Retrieving the Current Values from the Plug-in

The code should next attempt to retrieve the current property values from the Echo plug-in. The following
example attempts to retrieve each property:

if (m_spEcho)
{
 m_spEcho->get_delay(&dwDelayTime);
 m_spEcho->get_wetmix(&fWetmix);
 // Convert wet mix from double to DWORD.
 dwWetmix = (DWORD)(fWetmix * 100);
}

Previous Next

Previous Next

The dialog box displays the effects level value to the user as an integer, but the plug-in stores the value as a
floating point number. Therefore, the code converts the floating point value to a DWORD value.

Retrieving the Current Values from the Registry

If the property page cannot retrieve the current values from the plug-in, it must attempt to read them from the
registry. The following code reads each property value:

else // Otherwise, read values from registry
{
 CRegKey key;
 LONG lResult;

 lResult = key.Open(HKEY_CURRENT_USER, kszPrefsRegKey, KEY_READ);
 if (ERROR_SUCCESS == lResult)
 {
 DWORD dwValue = 0;

 // Read the delay time.
 lResult = key.QueryValue(dwValue, kszPrefsDelayTime);
 if (ERROR_SUCCESS == lResult)
 {
 dwDelayTime = dwValue;
 }

 // Read the wet mix value.
 lResult = key.QueryValue(dwValue, kszPrefsWetmix);
 if (ERROR_SUCCESS == lResult)
 {
 dwWetmix = dwValue;
 }
 }
}

Notice the use of the registry constants you created previously.

Displaying the Values to the User

Finally, the property page must display the values in the correct edit box controls. The following example code
demonstrates this:

TCHAR szStr[MAXSTRING];

// Display the delay time.
_stprintf(szStr, _T("%u"), dwDelayTime);
SetDlgItemText(IDC_DELAYTIME, szStr);

// Display the effect level.
_stprintf(szStr, _T("%u"), dwWetmix);
SetDlgItemText(IDC_WETMIX, szStr);

See Also

Modifying the Echo Sample Property Page

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing CEchoPropPage::Apply

The CEchoPropPage::Apply method is implemented in EchoPropPage.cpp. It executes when the user clicks
Apply in the property page dialog box in Windows Media Player. The plug-in wizard sample code provides an
implementation to handle a single property. You can modify this code for one of the Echo sample properties,
and then add code to store the other property value.

Declaring the Apply Method Variables

First, you must remove the declaration of fScaleFactor. Then, add variable declarations that you will need. The
following example shows the completed variable declarations:

TCHAR szStr[MAXSTRING] = { 0 };
DWORD dwDelayTime = 1000; // Initialize the delay time.
DWORD dwWetmix = 50; // Initialize a DWORD for effect level.
double fWetmix = 0.50; // Initialize a double for effect level.

Retrieving the Values from the Property Page

You must implement code to retrieve and validate the user input. The following code example retrieves the
delay time value from the IDC_DELAYTIME edit box, and then verifies that the value is within a specified
range:

// Get the delay time value from the dialog box.
GetDlgItemText(IDC_DELAYTIME, szStr, sizeof(szStr) / sizeof(szStr[0]));

dwDelayTime = atoi(szStr);

// Make sure delay time is valid.
if ((dwDelayTime < 10) || (dwDelayTime > 2000))
{
 if (::LoadString(_Module.GetResourceInstance(), IDS_DELAYRANGEERROR, szStr, sizeof(szS
 {
 MessageBox(szStr);
 }

 return E_FAIL;
}

If the user input is not in the specified range, the code displays a message box. Notice the use of the string
resource you created earlier for the error message.

The following example retrieves the effect level from the IDC_WETMIX edit box and then verifies that the
value is within a specified range:

// Get the effects level value from the dialog box.
GetDlgItemText(IDC_WETMIX, szStr, sizeof(szStr) / sizeof(szStr[0]));

Previous Next

dwWetmix = atoi(szStr);

// Make sure wet mix value is valid.
if ((dwWetmix < 0) || (dwWetmix > 100))
{
 if (::LoadString(_Module.GetResourceInstance(), IDS_MIXRANGEERROR, szStr, sizeof(szStr
 {
 MessageBox(szStr);
 }

 return E_FAIL;
}

Storing the Property Values in the Registry

Next, your code must persist the new property values to the registry. The following code stores both property
values:

// update the registry
CRegKey key;
LONG lResult;

// Write the delay time value to the registry.
lResult = key.Create(HKEY_CURRENT_USER, kszPrefsRegKey);
if (ERROR_SUCCESS == lResult)
{
 lResult = key.SetValue(dwDelayTime , kszPrefsDelayTime);
}

// Write the wet mix value to the registry.
lResult = key.Create(HKEY_CURRENT_USER, kszPrefsRegKey);
if (ERROR_SUCCESS == lResult)
{
 lResult = key.SetValue(dwWetmix , kszPrefsWetmix);
}

Updating the Echo Plug-in Property Values

The Apply method must inform the Echo plug-in that the property values have changed. The following code
calls the property put method for each property using the interface pointer retrieved in
CEchoPropPage::SetObjects:

// update the plug-in
if (m_spEcho)
{
 m_spEcho->put_delay(dwDelayTime);

 // Convert the wet mix value from DWORD to double.
 fWetmix = (double)dwWetmix / 100;
 m_spEcho->put_wetmix(fWetmix);
}

Notice that the wet mix value is converted to floating point before being passed to the plug-in.

Disabling the Apply Button

As a final step, your code should disable Apply in the property page dialog box as a signal to the user that the
values have been successfully updated. This requires the following single line of code:

m_bDirty = FALSE; // Tell the property page to disable Apply.

See Also

Modifying the Echo Sample Property Page

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing CEcho::FinalConstruct

The CEcho::FinalConstruct method is implemented in Echo.cpp. It contains code to read the property values
from the registry when Windows Media Player instantiates the DSP plug-in object. This is important because it
allows the user settings to persist between instances of the object, as well as between sessions. The plug-in
wizard sample code provides implementation to read a single property from the registry. You can modify this
code to handle the delay time property, and then add code to read the wet mix property value.

The following example code reads each property value from the registry and stores each in the correct member
variable:

CRegKey key;
LONG lResult;
DWORD dwValue;

lResult = key.Open(HKEY_CURRENT_USER, kszPrefsRegKey, KEY_READ);
if (ERROR_SUCCESS == lResult)
{
 // Read the delay time from the registry.
 lResult = key.QueryValue(dwValue, kszPrefsDelayTime);
 if (ERROR_SUCCESS == lResult)
 {
 m_dwDelayTime = dwValue;
 }

 // Read the wet mix value from the registry.
 lResult = key.QueryValue(dwValue, kszPrefsWetmix);
 if (ERROR_SUCCESS == lResult)
 {
 // Convert the DWORD to a double.
 m_fWetMix = (double)dwValue / 100;
 // Calculate the dry mix value.
 m_fDryMix = 1.0 - m_fWetMix;
 }

}

return S_OK;

Previous Next

Previous Next

Notice that the DWORD value for the wet mix is converted to a floating point value. Also note that the code
calculates the correct value for m_fDryMix.

See Also

Modifying the Echo Sample Property Page

© 2000-2003 Microsoft Corporation. All rights reserved.

Working with Streaming Resources
The sample audio DSP plug-in project generated by the Windows Media Player Plug-in Wizard does not
require any streaming resources to be allocated by the plug-in. The Echo sample, however, requires a separate
buffer to hold the audio data for a period of time to create the delay effect. The buffer is managed by two
methods: IMediaObject::AllocateStreamingResources, which creates the buffer, and
IMediaObject::FreeStreamingResources, which releases the buffer. The IMediaObject methods are
implemented in Echo.cpp.

The following sections provide further information about managing the buffers:

Variables to Manage the Delay Buffer
Implementing IMediaObject::AllocateStreamingResources
Implementing IMediaObject::FreeStreamingResources

See Also

The Echo Sample

© 2000-2003 Microsoft Corporation. All rights reserved.

Variables to Manage the Delay Buffer

Previous Next

Previous Next

Previous Next

Previous Next

You must add the declarations for the member variables you need to manage the delay buffer. Add the
following declarations to Echo.h in the private section:

DWORD m_cbDelayBuffer; // Count of bytes in delay buffer size.
BYTE* m_pbDelayPointer; // Movable pointer to delay buffer.
BYTE* m_pbDelayBuffer; // Pointer to the head of the delay buffer.

Add the following code to the CEcho constructor to initialize the delay buffer variables:

m_pbDelayBuffer = NULL;
m_pbDelayPointer = NULL;
m_cbDelayBuffer = 0;

See Also

Working with Streaming Resources

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing IMediaObject::AllocateStreamingResources

In the Echo sample, the AllocateStreamingResources method creates the delay buffer. It does this by doing the
following:

1. Calculating a size for the buffer that corresponds to the specified delay time for the given media type.
2. Either allocating new memory or reallocating the buffer size if it already exists.
3. Calling a method that fills the buffer with values representing silence.

The value for silence is different depending upon the bit depth. For 8-bit audio, silence is represented by the hex
value 80; for 16-bit audio, silence is represented by zero.

Calculating the Delay Buffer Size

In order to calculate the size required for the delay buffer, you must first retrieve a WAVEFORMATEX
structure that contains information about the audio data. The following example retrieves a pointer to this
structure from the input DMO_MEDIA_TYPE structure:

// Get a pointer to the WAVEFORMATEX structure.
WAVEFORMATEX *pWave = (WAVEFORMATEX *) m_mtInput.pbFormat;
if (NULL == pWave)
{
 return E_FAIL;
}

Previous Next

Previous Next

Once you have stored a pointer to the proper WAVEFORMATEX structure, you can inspect its members and
use them to calculate the required buffer size. The following code example demonstrates this:

// Get the size of the buffer required.
m_cbDelayBuffer = (m_dwDelayTime * pWave->nSamplesPerSec * pWave->nBlockAlign) / 1000;

This algorithm computes the buffer size by multiplying the delay time, in milliseconds, by the number of
samples per millisecond, then multiplying the result by the number of channels, and then multiplying the result
by the number of bytes per sample. The number of channels and the number of bytes per sample are not
obvious; they are encoded in the nBlockAlign member. Dividing by 1000 reduces the nSamplesPerSec value
to samples per millisecond; the millisecond is the desired unit because the delay time is expressed in
milliseconds.

Allocating the Delay Buffer Memory

Once you have calculated the memory requirements, you can allocate the buffer. The buffer may need to be
deleted if it exists, such as when the user invokes the property page to change the delay time value. The
following code demonstrates allocating the delay buffer:

// Test whether a buffer exists.
if (m_pbDelayBuffer)
{
 // A buffer already exists.
 // Delete the delay buffer.
 delete m_pbDelayBuffer;
 m_pbDelayBuffer = NULL;
}

// Allocate the buffer.
m_pbDelayBuffer = new BYTE[m_cbDelayBuffer];

if (!m_pbDelayBuffer)
 return E_OUTOFMEMORY;

If the buffer is successfully allocated, you should move the movable pointer to the head of the buffer, as
demonstrated in the following example:

// Move the echo pointer to the head of the delay buffer.
m_pbDelayPointer = m_pbDelayBuffer;

Filling the Delay Buffer with Silence

It is convenient to write a method to fill the delay buffer with values representing silence. The method should
receive the pointer to the valid WAVEFORMATEX structure and then inspect the wBitsPerSample member
to determine whether the audio is 8-bit or higher. The following example fills the delay buffer with the correct
value for silence:

void CEcho::FillBufferWithSilence(WAVEFORMATEX *pWfex)
{
 if (8 == pWfex->wBitsPerSample)
 {
 ::FillMemory(m_pbDelayBuffer, m_cbDelayBuffer, 0x80);
 }
 else
 ::ZeroMemory(m_pbDelayBuffer, m_cbDelayBuffer);
}

Remember to add the forward declaration for the function to the header file Echo.h in the private section:

void FillBufferWithSilence(WAVEFORMATEX *pWfex);

You should add code at the end of AllocateStreamingResources to call this method each time the delay buffer
is created or resized. The following example code passes the WAVEFORMATEX pointer named pWave to the
new method:

// Fill the buffer with values representing silence.
FillBufferWithSilence(pWave);

Reallocating the Delay Buffer Memory

When the user changes the delay time by using the property page, the size of the delay buffer must change as
well. You've already added the code to AllocateStreamingResources to resize the buffer, but you need to add a
line of code to CEcho::put_delay to call the resource allocation method each time the property value changes.
Here is the code:

// Reallocate the delay buffer.
AllocateStreamingResources();

See Also

Working with Streaming Resources

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing IMediaObject::FreeStreamingResources

It is important that your code releases any allocated memory before the plug-in object is destroyed. Windows
Media Player calls FreeStreamingResources to allow you to do this. For safety, the sample created by the
plug-in wizard includes a call to FreeStreamingResources in the FinalRelease method to ensure that the
memory is freed. You must add the following code to FreeStreamingResources for the Echo sample:

// Test whether a buffer exists.
if (m_pbDelayBuffer)
{
 delete m_pbDelayBuffer;
 m_pbDelayBuffer = NULL;
 m_pbDelayPointer = NULL;
 m_cbDelayBuffer = 0;
}

See Also

Previous Next

Previous Next

Working with Streaming Resources

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing CEcho::DoProcessOutput
The DoProcessOutput method performs the digital signal processing. This is the method that makes the
changes to the data provided by Windows Media Player. It is the results of this method that you will hear as an
echo effect when your Echo sample plug-in is complete.

For this sample, the plug-in will only process 8-bit or 16-bit audio. You will need to make some changes to the
plug-in wizard sample code to remove the sections that process higher bit depth audio. It is worthwhile to study
these sections, however, because you may decide to add your own echo implementation for those formats.

The following sections detain the changes you need to make to the code:

Removing the Code to Process Greater than 16 Bits
Processing the Audio Data
Variables to Perform Processing
Creating the Echo Effect

See Also

The Echo Sample

© 2000-2003 Microsoft Corporation. All rights reserved.

Removing the Code to Process Greater than 16 Bits

Because this sample only processes 8-bit or 16-bit audio, you need to modify the code in
CEcho::ValidateMediaType to return DMO_E_TYPE_NOT_ACCEPTED for media types greater than 16
bits. To accomplish this, you must change the code in the switch block that tests formats of type

Previous Next

Previous Next

Previous Next

Previous Next

WAVE_FORMAT_EXTENSIBLE. Replace the wizard code with the following example code:

case WAVE_FORMAT_EXTENSIBLE:
 {
 // Sample size is greater than 16-bit or is multichannel.
 WAVEFORMATEXTENSIBLE *pWaveXT = (WAVEFORMATEXTENSIBLE *) pWave;

 if (KSDATAFORMAT_SUBTYPE_PCM != pWaveXT->SubFormat)
 {
 return DMO_E_TYPE_NOT_ACCEPTED;
 }
 }
 break;

Next, delete or comment out the sections of code in DoProcessOutput that handle high bit resolution audio.
These are the sections that begin with case 24 and case 32.

See Also

Implementing CEcho::DoProcessOutput

© 2000-2003 Microsoft Corporation. All rights reserved.

Processing the Audio Data

The default implementation of DoProcessOutput begins by retrieving a pointer to a valid
WAVEFORMATEX structure, exactly like was done in AllocateStreamingResources. It then uses the
information in that structure to calculate the number of samples in the input buffer waiting to be processed. The
following code is from the default implementation:

// Get a pointer to the valid WAVEFORMATEX structure
// for the current media type.
WAVEFORMATEX *pWave = (WAVEFORMATEX *) m_mtInput.pbFormat;

// Calculate the number of samples to process.
DWORD dwSamplesToProcess = (*cbBytesProcessed / pWave->nBlockAlign) * pWave->nChannels;

Then, the code inspects the wBitsPerSample member to determine the bit depth of the audio. This value is used
in a switch statement to provide separate processing for 8-bit and 16-bit audio.

Differences Between 8-bit and 16-bit Audio

There are important differences between 8-bit and 16-bit audio. Therefore, the processing routines to create the
echo effect are different. The two formats differ in the following ways:

Previous Next

Previous Next

Each format has a different sample size: 8-bit samples each occupy one byte of memory, while 16-bit
samples each occupy two bytes.
Each format represents the audio amplitude differently. 8-bit audio is represented by an unsigned integer
with a range from 0 to 255; a value of 128 represents silence. 16-bit audio is represented by a signed
integer with a range from -32768 to 32767; a value of zero represents silence.

While the process of creating the echo effect is fundamentally identical for each format, the details must differ
slightly.

See Also

Implementing CEcho::DoProcessOutput

© 2000-2003 Microsoft Corporation. All rights reserved.

Variables to Perform Processing

The member variables for handling the delay buffer deal with BYTE quantities; they are BYTE pointers and an
integer that stores a count of bytes. This is ideal for processing 8-bit audio, since an 8-bit sample fits nicely into
one byte of memory. When processing 16-bit audio, though, it is more convenient to convert these to short
pointers, so the processing can occur two bytes at a time.

The following example code allocates the new 16-bit pointers, and adds a pointer variable that stores the
address of the end of the delay buffer. Insert it in the case 16 section just before the loop entry point:

// Store local pointers to the delay buffer.
short *pwDelayPointer = (short *)m_pbDelayPointer;
short *pwDelayBuffer = (short *) m_pbDelayBuffer;
// Store the address of the last word of the delay buffer.
short *pwEOFDelayBuffer = (short *)(m_pbDelayBuffer + m_cbDelayBuffer - sizeof(short));

The code for 8-bit processing also allocates a variable that stores the address of the end of the delay buffer.
Storing this value makes it easy to test whether the movable delay buffer pointer has reached the end of the
delay buffer. The following example code calculates the value:

// Store the address of the end of the delay buffer.
BYTE * pbEOFDelayBuffer = (m_pbDelayBuffer + m_cbDelayBuffer - sizeof(BYTE));

See Also

Implementing CEcho::DoProcessOutput

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Creating the Echo Effect

You must first remove the code from the wizard sample that scales the audio. From the 8-bit section, remove
the following code:

// Apply scale factor to sample.
i = int(((double) i) * m_dwDelayTime);

(Remember that m_fScaleFactor was replaced by m_dwDelayTime.)

From the 16-bit section, remove the following code:

// Apply scale factor to sample.
i = int(((double) i) * m_dwDelayTime);

The implementation of DoProcessOutput provided by the plug-in wizard sample code creates a while loop that
iterates one time for each sample in the input buffer provided by Windows Media Player. This loop works the
same way for both 8-bit and 16-bit audio, although a separate loop is required for each. In each case, the loop
initiates with the following test:

while (dwSamplesToProcess--)

Once inside the loop, the processing routines are very similar for 8-bit and 16-bit audio. The main difference is
that the code in the 8-bit section changes the range of data values to -128 through 127, and then converts the
range back again before writing the data to the output buffer. This is important to retain the symmetry of the
audio waveform during processing.

Now you can begin to add and replace code in the processing loop.

Retrieve a Sample from the Input Buffer

During each iteration of the loop, a single sample is retrieved from the input buffer. For 8-bit audio, the sample
is shifted into the new range, and then the pointer to the input buffer is advanced to the next sample. The
following code is from the plug-in wizard:

// Get the input sample and normalize to -128 .. 127
int i = (*pbInputData++) - 128;

For 16-bit audio, the process is the same except for the normalization:

// Get the input sample.
int i = *pwInputData++;

Previous Next

Remember that the pointers in the 16-bit code have been converted to type short.

Retrieve a Sample from the Delay Buffer

Next, retrieve a single sample from the delay buffer. For 8-bit code, the delay samples are stored in their native
range of 0 to 255. The following code, which you must add, retrieves an 8-bit delay sample:

// Get the delay sample and normalize to -128 .. 127
int delay = m_pbDelayPointer[0] - 128;

For 16-bit audio, the process is similar:

// Get the delay sample.
int delay = *pwDelayPointer;

Write the Input Sample to the Delay Buffer

Now, you must store the input sample in the delay buffer in the same location from which you retrieved the
delay sample. The following is the code you must add for 8-bit audio:

// Write the input sample into the delay buffer.
m_pbDelayPointer[0] = i + 128;

This is the code to add for the 16-bit section:

// Write the input sample to the delay buffer.
*pwDelayPointer = i;

Move the Delay Buffer Pointer

Now that the work in the delay buffer is finished for this iteration, you can advance the movable pointer to the
delay buffer. If the pointer reaches the end of the circular buffer, you must change its value to point to the head
of the buffer. To do this for 8-bit audio, use the following code:

// Increment the delay pointer.
// If it has passed the end of the buffer,
// then move it to the head of the buffer.
if (++m_pbDelayPointer > pbEOFDelayBuffer)
 m_pbDelayPointer = m_pbDelayBuffer;

Here is the code for the 16-bit section:

// Increment the local delay pointer.
// If it is past the end of the buffer,
// then move it to the head of the buffer.
if (++pwDelayPointer > pwEOFDelayBuffer)
 pwDelayPointer = pwDelayBuffer;

Since the pointer in the 16-bit section is really a copy of the member variable, you must remember to update the
value in the member variable with the new address. If you fail to do this, the delay buffer pointer will point to
the head of the buffer repeatedly and your echo effect will not work as expected. Add the following code to the
16-bit section:

// Move the global delay pointer.
m_pbDelayPointer = (BYTE *) pwDelayPointer;

Mix the Input Sample with the Delay Sample

This is where you use the wet mix and dry mix values to create the final output sample. You simply multiply
each sample by the floating point value that represents the percentage of the final signal for the sample.
Multiply the input sample by the value stored in m_fDryMix; multiply the delay sample by the value stored in
m_fWetMix. Then, add the two values. The code you must add is identical for the 8-bit and 16-bit sections:

// Mix the delay with the dry signal.
i = (int)((i * m_fDryMix) + (delay * m_fWetMix));

Write the Data to the Output Buffer

Finally, copy the mixed sample to the output buffer, and then advance the output buffer pointer. For 8-bit audio,
the plug-in wizard uses the following code to return the sample to its original range:

// Convert back to 0..255 and write to output buffer.
*pbOutputData++ = (BYTE)(i + 128);

For 16-bit audio, the wizard uses the following code as the final step in the processing loop:

// Write to output buffer.
*pwOutputData++ = i;

See Also

Implementing CEcho::DoProcessOutput

© 2000-2003 Microsoft Corporation. All rights reserved.

Using the Echo Sample DSP Plug-in
When you create an error-free build of your Windows Media Player echo DSP plug-in, you can use it in
Windows Media Player to hear the effect. When you start Windows Media Player, the plug-in should be
enabled by default. If you play audio or video with audio, you should hear a one-second echo in the sound that
plays at the same volume as the original sound.

You can experiment with different delay times and effects levels by changing the values in the echo plug-in
property page. Try the effect on different types of source material, such as music or speech. A delay time of 200
ms with an effects level of 30 will result in a tightly spaced echo that sounds like the effect used on early rock
and roll recordings. Effects levels greater than 50 will result in the original signal being lower in volume than
the echo, which is called a pre-echo effect.

Previous Next

Previous Next

See Also

The Echo Sample

© 2000-2003 Microsoft Corporation. All rights reserved.

DSP Plug-ins Programming Reference
The Microsoft Windows Media Player Software Development Kit (SDK) supports a range of interfaces and
methods for digital signal processing (DSP) plug-ins. The following section documents these in detail.

See Also

Windows Media Player DSP Plug-ins

© 2000-2003 Microsoft Corporation. All rights reserved.

DSP Plug-in Interfaces
The digital signal processing (DSP) plug-in interfaces are used to manage data transfer between Windows
Media Player and the plug-in. All DSP plug-ins may optionally implement the ISpecifyPropertyPage interface
to provide a property page implementation.

The following interfaces are required for creating DSP plug-ins.

Previous Next

Previous Next

Section Description

DSP Plug-in Interfaces Lists the interfaces and methods used for DSP plug-
ins.

DSP Plug-in Enumeration Types Lists the enumeration types used for DSP plug-ins.

Previous Next

Previous Next

See Also

DSP Plug-ins Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPMediaPluginRegistrar Interface
The IWMPMediaPluginRegistrar interface manages plug-in registration.

In addition to the methods inherited from IUnknown, the IWMPMediaPluginRegistrar interface exposes the
following methods.

See Also

DSP Plug-in Interfaces

Interface Description

IMediaObject Manages data exchange with Windows Media Player
and performs digital signal processing tasks. Detailed
documentation is included with the DirectX SDK.

IWMPMediaPluginRegistrar Manages plug-in registration.

IWMPPlugin Manages the connection to Windows Media Player.

IWMPPluginEnable Stores whether the plug-in is currently enabled by
Windows Media Player.

IWMPServices Retrieves information from the Player about the
current stream time and stream state.

Previous Next

Previous Next

Method Description

WMPRegisterPlayerPlugin Adds information to the registry that identifies a
Windows Media Player plug-in.

WMPUnRegisterPlayerPlugin Removes information from the registry about a
Windows Media Player plug-in.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPMediaPluginRegistrar::WMPRegisterPlayerPlugin

The IWMPMediaPluginRegistrar::WMPRegisterPlayerPlugin function adds information to the registry that
identifies a Windows Media Player plug-in.

Syntax

HRESULT WMPRegisterPlayerPlugin(
 LPWSTR pwszFriendlyName,
 LPWSTR pwszDescription,
 LPWSTR pwszUninstallString,
 DWORD dwPriority,
 GUID guidPluginType,
 CLSID clsid,
 UINT cMediaTypes,
 LPVOID pMediaTypes
);

Parameters

pwszFriendlyName

Pointer to a wide character null-terminated string containing the friendly name of the plug-in. This is also the
name that displays to the user.

pwszDescription

Pointer to a wide character null-terminated string containing the description of the plug-in. This information
also displays to the user.

pwszUninstallString

Pointer to a wide character null-terminated string containing the uninstall string.

dwPriority

Integer value containing the priority position of the plug-in in the chain of currently enabled plug-ins.

guidPluginType

GUID specifying plug-in type. For DSP plug-ins, specify WMP_PLUGINTYPE_DSP.

clsid

Previous Next

The class ID of the plug-in.

cMediaTypes

Count of media types supported by the plug-in.

pMediaTypes

Pointer to an array of media types that enumerates the supported media types. Media types are stored as
type/subtype pairs.

Return Values

The function returns an HRESULT.

Remarks

Implement this function in the exported DllRegisterServer function.

The uninstall string is a command line string that Windows Media Player passes as the argument to the
Windows ShellExecute function when the user chooses to remove the plug-in by clicking Remove in the
Player plug-in configuration dialog box. This gives you a way to execute your own uninstall program that
initiates from Windows Media Player.

Priority values start at zero. Most DSP plug-ins should specify a value between 1 and 10. Lower values place
the plug-in closer to the rendering engine.

DSP plug-ins registered with identical values for dwPriority are ordered based on their position in the registry.
Plug-ins located higher in the registry hierarchy are assigned a higher priority than plug-ins located lower in the
registry hierarchy.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpservices.idl; include wmpservices.h.

Library: Use wmp.dll.

See Also

IWMPMediaPluginRegistrar Interface
IWMPMediaPluginRegistrar::WMPUnRegisterPlayerPlugin

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

IWMPMediaPluginRegistrar::WMPUnRegisterPlayerPlugin

The IWMPMediaPluginRegistrar::WMPUnRegisterPlayerPlugin function removes information from the
registry about a Windows Media Player plug-in.

Syntax

HRESULT WMPUnRegisterPlayerPlugin(
 GUID guidPluginType,
 CLSID clsid
);

Parameters

guidPluginType

GUID specifying plug-in type. For DSP plug-ins, specify WMP_PLUGINTYPE_DSP.

clsid

Specifies the class ID of the plug-in being removed.

Return Values

The function returns an HRESULT.

Remarks

Implement this function in the exported DllUnRegisterServer function.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpservices.idl; include wmpservices.h.

Library: Use wmp.dll.

See Also

IWMPMediaPluginRegistrar Interface
IWMPMediaPluginRegistrar::WMPRegisterPlayerPlugin

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

IWMPPlugin Interface
The IWMPPlugin interface is implemented by the plug-in. It manages the connection to Windows Media
Player.

Note The interface identifier GUID for this interface changed between the beta release and the final release.

In addition to the methods inherited from IUnknown, the IWMPPlugin interface exposes the following
methods.

See Also

DSP Plug-in Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Method Description

AdviseWMPServices Receives a pointer to a Windows Media Player
interface that contains methods that provide stream
state information.

GetCaps Sets a value that specifies whether the plug-in
requires the input format and output format to be
identical.

GetID Returns the Class ID of the plug-in.

Init Receives a playback context identifier.

Shutdown Executes when Windows Media Player shuts down
the plug-in.

UnAdviseWMPServices Executes when Windows Media Player releases the
pointer provided in AdviseWMPServices.

Previous Next

Previous Next

IWMPPlugin::AdviseWMPServices

The IWMPPlugin::AdviseWMPServices method is implemented by the plug-in.

Syntax

HRESULT AdviseWMPServices(
 IWMPServices* pWMPServices
);

Parameters

pWMPServices

[in] Pointer to an IWMPServices interface.

Return Values

The method returns an HRESULT.

Remarks

Windows Media Player calls the AdviseWMPServices method on the plug-in to pass in a pointer that the plug-
in can then use to call the IWMPServices interface, which contains methods that provide information about the
current state of the stream.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpservices.idl; include wmpservices.h.

See Also

IWMPPlugin Interface
IWMPServices Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlugin::GetCaps

The IWMPPlugin::GetCaps method returns a flag that specifies whether the plug-in can convert between an

Previous Next

Previous Next

input format and an output format.

Syntax

HRESULT GetCaps(
 DWORD* pdwFlags
);

Parameters

pdwFlags

[out] Pointer to a variable that specifies whether the plug-in can convert formats. The specified value is a
bitwise combination of zero or more flags from the WMPPlugin_Caps enumeration.

Return Values

The method returns an HRESULT.

Remarks

There are currently two possible [out] values that the plug-in may specify: zero to indicate that the plug-in can
convert formats, or WMPPlugin_Caps_CannotConvertFormats, which forces Windows Media Player to
handle any necessary format conversion.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpservices.idl; include wmpservices.h.

See Also

IWMPPlugin Interface
WMPPlugin_Caps

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlugin::GetID

The IWMPPlugin::GetID method returns the class id of the plug-in.

Syntax

Previous Next

Previous Next

HRESULT GetID(
 GUID* pGUID
);

Parameters

pGUID

[out] Pointer to a GUID that represents the class id of the plug-in.

Return Values

The method returns an HRESULT.

Remarks

For more information on the GUID structure, see the Platform SDK.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpservices.idl; include wmpservices.h.

See Also

IWMPPlugin Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlugin::Init

The IWMPPlugin::Init method is called when Windows Media Player initializes the plug-in.

Syntax

HRESULT Init(
 DWORD dwPlaybackContext
);

Parameters

dwPlaybackContext

Previous Next

Previous Next

[in] DWORD value that indicates the particular Windows Media Player playback engine to which the plug-in
belongs.

Return Values

The method returns an HRESULT.

Remarks

It is possible at any given time that multiple instances of Windows Media Player could be running in the same
process. For instance, multiple Windows Media Player control instances could be embedded in the same
browser window, or even in multiple instances of a browser that coexist in the same process. It is also possible
that the same instance of Windows Media Player could create multiple playback engines at the same time. The
dwPlaybackContext value allows you to determine which instance of the Windows Media Player playback
engine contains the plug-in. This is useful if you wish to enable multiple plug-ins to connect to each other.

Init and Shutdown will always be called on the same thread.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpservices.idl; include wmpservices.h.

See Also

IWMPPlugin Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlugin::Shutdown

The IWMPPlugin::Shutdown method is called when Windows Media Player shuts down the plug-in.

Syntax

HRESULT Shutdown();

Return Values

The method returns an HRESULT.

Previous Next

Previous Next

Remarks

Init and Shutdown will always be called on the same thread.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpservices.idl; include wmpservices.h.

See Also

IWMPPlugin Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlugin::UnAdviseWMPServices

The IWMPPlugin::UnAdviseWMPServices method is used to release the pointer provided by
AdviseWMPServices.

Syntax

HRESULT UnAdviseWMPServices();

Parameters

The method takes no parameters.

Return Values

The method returns an HRESULT.

Remarks

Windows Media Player calls this method when the pointer provided by AdviseWMPServices is no longer
valid. The plug-in should use this method to cease making stream state requests through the pointer.

Requirements

Version: Windows Media Player 9 Series or later.

Previous Next

Previous Next

Header: Defined in wmpservices.idl; include wmpservices.h.

See Also

IWMPPlugin Interface
IWMPPlugin::AdviseWMPServices

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPluginEnable Interface
The IWMPPluginEnable interface is implemented by the plug-in. It sets and retrieves a value that represents
whether the plug-in has been enabled by Windows Media Player.

In addition to the methods inherited from IUnknown, the IWMPPluginEnable interface exposes the following
methods.

See Also

DSP Plug-in Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPluginEnable::GetEnable

Previous Next

Previous Next

Method Description

GetEnable Retrieves the current enable state.

SetEnable Sets the current enable state.

Previous Next

Previous Next

The IWMPPluginEnable::GetEnable method returns a value indicating whether Windows Media Player has
enabled the plug-in.

Syntax

HRESULT GetEnable(
 BOOL* pfEnable
);

Parameters

pfEnable

[out] Pointer to a Boolean value indicating whether the user has enabled the plug-in.

Return Values

The method returns an HRESULT.

Remarks

This value is set by Windows Media Player in the IWMPPluginEnable::SetEnable method.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpservices.idl; include wmpservices.h.

See Also

IWMPPluginEnable Interface
IWMPPluginEnable::SetEnable

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPluginEnable::SetEnable

The IWMPPluginEnable::SetEnable method retrieves a value indicating whether user has enabled the plug-
in.

Syntax

Previous Next

Previous Next

HRESULT SetEnable(
 BOOL fEnable
);

Parameters

fEnable

[in] A variable that receives a value indicating whether the user has enabled the plug-in.

Return Values

The method returns an HRESULT.

Remarks

The value of fEnable depends upon whether the user has enabled the plug-in on the Plug-ins tab of the Options
dialog box in Windows Media Player.

DSP plug-ins are removed from the signal path when the user chooses to disable them. When disabled, a plug-
in should still include code to copy data from the input buffer to the output buffer, performing only format
conversion processing, if applicable. The sample code generated by the Windows Media Player plug-in wizard
includes code to copy the buffers.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpservices.idl; include wmpservices.h.

See Also

IWMPPluginEnable Interface
IWMPPluginEnable::GetEnable

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPServices Interface
The IWMPServices interface is implemented by Windows Media Player. It provides methods to retrieve the
current stream state and current stream time.

Previous Next

Previous Next

In addition to the methods inherited from IUnknown, the IWMPServices interface exposes the following
methods.

See Also

DSP Plug-in Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPServices::GetStreamState

The IWMPServices::GetStreamState method retrieves information about the current play state of the stream.

Syntax

HRESULT GetStreamState(
 WMPServices_StreamState* pState
);

Parameters

pState

[in] A pointer to a WMPServices_StreamState enumeration value.

Return Values

The method returns an HRESULT.

Remarks

The stream is stopped, paused, or playing.

Requirements

Version: Windows Media Player 9 Series or later.

Method Description

GetStreamState Returns a value that represents the current stream
state.

GetStreamTime Returns a value that indicates the current stream time.

Previous Next

Previous Next

Header: Defined in wmpservices.idl; include wmpservices.h.

Library: Use wmp.dll.

See Also

IWMPServices Interface
WMPServices_StreamState

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPServices::GetStreamTime

The IWMPServices::GetStreamTime method retrieves a structure indicating the current stream time.

Syntax

HRESULT GetStreamTime(
 REFERENCE_TIME* prt
);

Parameters

prt

[in] Pointer to a REFERENCE_TIME structure.

Return Values

The method returns an HRESULT.

Remarks

The current stream time is determined by Windows Media Player. This means that the value returned by this
method do not necessarily represent the elapsed time relative to the beginning of the file. For instance, if the
user moves the trackbar in the Player to seek the media to a new position, the value returned by this method
returns the time elapsed since the media began playing from the new position. Changes in playback rate will
also affect the value returned by this method.

The values provided in the rtTimestamp member of IMediaObject::ProcessInput and the rtTimestamp
member of the DMO_OUTPUT_DATA_BUFFER structure supplied by IMediaObject::ProcessOutput
contain values that indicate when the data provided in the buffer will be rendered relative to the current stream
time. Therefore, these values also do not necessarily represent the elapsed time relative to the beginning of the

Previous Next

Previous Next

file file or the presentation time specified in the file.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpservices.idl; include wmpservices.h.

Library: Use wmp.dll.

See Also

IWMPServices Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

DSP Plug-in Enumeration Types
The Windows Media Player SDK implements the following enumeration type for creating DSP plug-ins.

See Also

DSP Plug-ins Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Enumeration Type Description

WMPPlugin_Caps Used with IWMPPlugin::GetCaps to indicate
whether the plug-in can convert between formats.

WMPServices_StreamState Indicates the whether the stream is currently stopped,
paused, or playing.

Previous Next

WMPPlugin_Caps
The WMPPlugin_Caps enumeration type signals whether the plug-in can convert between input and output
formats.

Syntax

enum WMPPlugin_Caps{
 WMPPlugin_Caps_CannotConvertFormats = 1
};

Members

WMPPlugin_Caps_CannotConvertFormats

The plug-in requires that the input format and output format be the same.

Remarks

When IWMPPlugin::GetCaps returns WMPPlugin_Caps_CannotConvertFormats, Windows Media Player
handles any necessary format conversion.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpservices.idl; include wmpservices.h.

See Also

DSP Plug-in Enumeration Types
IWMPPlugin::GetCaps

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

WMPServices_StreamState
The WMPServices_StreamState enumeration indicates whether the stream is currently stopped, paused, or
playing.

Syntax

enum WMPServices_StreamState{
 WMPServices_StreamState_Stop = 0,
 WMPServices_StreamState_Pause = 1,
 WMPServices_StreamState_Play = 2
} WMPServices_StreamState;

Members

WMPServices_StreamState_Stop

The stream is stopped.

WMPServices_StreamState_Pause

The stream is paused.

WMPServices_StreamState_Play

The stream is playing.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpservices.idl; include wmpservices.h.

See Also

DSP Plug-in Enumeration Types
IWMPServices::GetStreamState

© 2000-2003 Microsoft Corporation. All rights reserved.

Windows Media Player Rendering Plug-ins

Previous Next

Previous Next

Microsoft Windows Media Player provides an architecture that enables you to develop plug-ins that decode (if
necessary) and render custom data contained in a Windows Media format stream. Rendering plug-ins are
DirectX Media Objects (DMOs) that connect to the Player using COM interfaces. A typical rendering plug-in
might display animation video encoded in a custom format. This section of the SDK provides you with the
programming information you need to create your own rendering plug-in.

The rendering plug-in documentation is divided into three sections:

See Also

Windows Media Player Plug-ins

© 2000-2003 Microsoft Corporation. All rights reserved.

About Rendering Plug-ins
Microsoft Windows Media Player provides an architecture for connecting add-on software that renders arbitrary
data streams, which can be contained in Windows Media files, during playback. These add-on programs are
referred to as rendering plug-ins.

The following sections provide a conceptual overview of Windows Media Player rendering plug-ins.

Section Description

About Rendering Plug-ins Provides an overview of the architecture used for
rendering plug-ins. Read this section to learn the
general concepts involved with this technology.

Rendering Plug-ins Programming Guide Explains what you need to do to create a rendering
plug-in. This section contains example code and step-
by-step procedures.

Rendering Plug-ins Programming Reference Provides a detailed reference for the COM interfaces,
methods, and enumerated types supported by the
Player SDK for rendering plug-ins.

Previous Next

Previous Next

Section Description

Rendering Plug-in User Overview Describes rendering plug-ins from the end user's
perspective.

Rendering Plug-in Developer Overview Provides general information you need to know

See Also

Windows Media Player Rendering Plug-ins

© 2000-2003 Microsoft Corporation. All rights reserved.

Rendering Plug-in User Overview
To the user, rendering plug-ins are add-on features that enable Windows Media Player to render content in a
Windows Media file that ordinarily wouldn't be available using Windows Media Player alone. The result of a
rendering plug-in could be something obvious, like a custom animation video being displayed, or something
subtle, like new functionality that lets the user click on a video image to change the playback experience.

Users can install and uninstall rendering plug-ins by using the Plug-ins tab of the Options dialog box in
Windows Media Player. Rendering plug-ins may implement a property page, which users can also access from
the Plug-ins tab. A property page provides the user with a way to change settings that affect the way a
rendering plug-in works. For example, a property page might include radio buttons that allow the user to choose
a background color.

Windows Media Player can display a small graphic, or series of graphics, in the status area of the Player to
indicate to the user that a rendering plug-in is active. This graphic is provided to the Player by the plug-in if the
plug-in supports this feature.

See Also

About Rendering Plug-ins

© 2000-2003 Microsoft Corporation. All rights reserved.

before you build a rendering plug-in for Windows
Media Player.

Building a Rendering Plug-in Explains how to use the Windows Media Player Plug-
in Wizard to create a sample rendering plug-in.

Implementing Your Rendering Code Discusses considerations for creating custom
rendering plug-ins for Windows Media Player.

Previous Next

Previous Next

Previous Next

Rendering Plug-in Developer Overview
From the developer's perspective, rendering plug-ins are software programs that receive arbitrary data from
Windows Media Player, then render that data.

The following sections provide conceptual information you should understand before developing a rendering
plug-in for Windows Media Player:

About Arbitrary Data Streams
Rendering Plug-in Packaging
Connecting to Windows Media Player
Data Input and Rendering
Format Negotiation
Providing a User Interface

See Also

About Rendering Plug-ins

© 2000-2003 Microsoft Corporation. All rights reserved.

About Arbitrary Data Streams

Arbitrary data is any data in any format. In the context of the Windows Media Player SDK, this means data in a
format that is not supported by Windows Media Player. In the context of the Player, arbitrary data is simply
binary data that the Player is not designed to play back natively.

The Windows Media Format SDK supports inserting arbitrary data into an arbitrary data stream by using
Component Object Model (COM) objects provided by the SDK. Such a stream is identified by a GUID that
uniquely identifies the media type of the data in the stream. This means that you can use arbitrary data streams
to contain data in virtually any format, including formats you invent yourself, and then use a Windows Media
Player rendering plug-in to display that data in the Player.

Note Streaming Windows Media files that contain arbitrary data streams is supported in Windows Media
Services 9 Series or later.

Previous Next

Previous Next

Previous Next

Note Arbitrary data samples to be rendered by Windows Media Player rendering plug-ins must not exceed 10
MB in size.

Windows Media Player will not instantiate a rendering plug-in to handle an arbitrary data stream, or play the
content, unless the Windows Media file has a .asf or .wm file name extension. For more information about
creating Windows Media files, download the Windows Media Format SDK from the Microsoft Web site.

See Also

Rendering Plug-in Developer Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Rendering Plug-in Packaging

Windows Media Player rendering plug-ins are based on Microsoft DirectX Media Objects (DMOs). DMOs are
programming objects built using COM technology. They are designed to provide a lightweight container for
audio or video processing algorithms that can be used by a variety of digital media applications. It is common to
think of a DMO as being analogous to a filter object in Microsoft DirectShow®. In fact, a DMO can be inserted
into a DirectShow filter graph by using a DMO Wrapper filter.

The DMO documentation can be found in the DirectShow section of the Microsoft DirectX 8 Software
Development Kit (SDK) or later documentation. If you plan to create your own rendering plug-ins for Windows
Media Player, you should install the entire DirectX SDK because it includes header and library files that you
will need. You can download the DirectX SDK from the Microsoft Web site.

Windows Media Player rendering plug-ins are packaged and distributed as self-registering DLL files.

Warning Rendering plug-in objects must not be created as singletons. Windows Media Player must be able to
create multiple separate instances of a particular rendering plug-in object.

See Also

Rendering Plug-in Developer Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Connecting to Windows Media Player

When attempting to play content containing an arbitrary data stream, Windows Media Player automatically
connects to rendering plug-ins that have been installed and properly registered. Rendering plug-ins must call
IWMPMediaPluginRegistrar::WMPRegisterPlayerPlugin to create the registry entries necessary to allow
Windows Media Player to recognize the plug-in and to list it on the Plug-ins tab of the Options dialog box. To
remove the registry entries created by IWMPMediaPluginRegistrar::WMPRegisterPlayerPlugin, the plug-
in calls IWMPMediaPluginRegistrar::WMPUnRegisterPlayerPlugin.

See Also

Rendering Plug-in Developer Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Data Input and Rendering

Windows Media Player provides arbitrary data to rendering plug-ins through an input buffer allocated by the
Player. Rendering plug-ins can then render data in the Windows Media Player video display region by using
resources obtained during a prior negotiation with Windows Media Player. If Windows Media Player cannot
provide space in its user interface for rendering, as in the case of an arbitrary data video stream combined with
Windows Media-based video, then the plug-in must render in a separate window. Windows Media Player
manages this negotiation by calling methods implemented by the plug-in.

In order to render data, a rendering plug-in requires a rectangle that defines the region on the Windows desktop
in which the plug-in can draw, and a handle to a drawing resource. The plug-in must implement
IWMPNodeRealEstate::GetDesiredSize in order to provide the Player with a pointer to a SIZE structure that
represents the requested size of the rendering region required by the plug-in. In Windows, drawing rectangles
are represented by RECT structures. Windows Media Player provides the plug-in three such structures by
calling IWMPNodeRealEstate::SetRects. Together, these RECTs are used to calculate the dimensions and
location of the rendering region provided by the Player. It is not guaranteed that requesting a particular size will
result in the Player providing a rendering RECT of that size. The actual dimensions and location of the
rendering region provided by the Player are determined by a variety of factors, such as whether the user has
resized the user interface, whether the rendering is occurring in a skin or a Web page, and how the user has
specified settings for sizing behaviors in the Player.

Because Windows Media Player can render in windowed or windowless mode, the plug-in must be able to

Previous Next

Previous Next

Previous Next

render data using either a window handle or a device context handle. In either case, the plug-in should create its
own window when instantiated. When rendering in windowed mode, this is the window where rendering takes
place. When rendering in windowless mode, this window is hidden.

Windows Media Player calls IWMPNodeRealEstate::SetWindowless to notify the plug-in about which
drawing state is the current one. When rendering in a window, the Player calls the plug-in implementation of
IWMPNodeWindowed::SetOwnerWindow to provide a window handle for rendering. The plug-in sets this
handle as the parent for the plug-in window.

Windows Media Player supplies data from the arbitrary data stream to the plug-in by calling
IMediaObject::ProcessInput, passing a pointer to an IMediaBuffer object. The plug-in must keep a reference
count on the buffer object until finished rendering the data in the buffer. Whenever the plug-in accesses the data
in the buffer object, it must do so within a critical section to ensure that the Player does not change the data on a
different thread.

Once the plug-in has a reference to the data buffer, it causes the drawing region to be invalidated in order to
prompt a repainting of the region. In windowed mode, the plug-in calls the Windows GDI method
InvalidateRect, followed by a call to UpdateWindow, which sends a WM_PAINT message to the rendering
window. The plug-in handles the WM_PAINT message in its rendering window and then renders the data. In
windowless mode, the plug-in must call IWMPNodeWindowlesshost::InvalidateRect. This causes Windows
Media Player to invalidate the rendering region and then call the plug-in implementation of
IWMPNodeWindowless::OnDraw. This method receives a device context handle and a pointer to a RECT
structure for rendering. The plug-in can then use these to render the data. Since rendering the data requires
access to the data buffer, rendering must take place within a critical section.

Rendering plug-ins don't provide an implementation for IMediaObject::ProcessOutput like other DMOs do.
Simply returning E_NOTIMPL is sufficient because the Player doesn't require and can't accept any processed
data from the plug-in. It is the job of the plug-in to perform all rendering functions.

See Also

Rendering Plug-in Developer Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Format Negotiation

Since the format being used by a rendering plug-in is proprietary, format negotiation is very simple. Windows
Media Player doesn't need to work with the arbitrary data except to deliver it unchanged to the plug-in. When
the Player opens a Windows Media file that contains an arbitrary data stream, it retrieves the GUID of the
stream and checks the registry to locate a rendering plug-in registered with the matching GUID. When it finds
one, it loads the plug-in and calls IMediaObject::SetInputType, passing as an argument a
DMO_MEDIA_TYPE structure. The plug-in can use the members of this structure to validate that it supports

Previous Next

Previous Next

rendering the arbitrary data. At a minimum, the plug-in should verify that the majortype member matches the
GUID of the media type the plug-in is designed to process.

See Also

Rendering Plug-in Developer Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Providing a User Interface

Rendering plug-ins can provide a property page in order to create a user interface. To do this, the plug-in must
include a property page object that provides an implementation of an IPropertyPage interface. The rendering
plug-in object must implement ISpecifyPropertyPages::GetPages, which allows Windows Media Player to
locate and identify the correct property page for the plug-in.

Displaying a Status Graphic

Rendering plug-ins can display a small graphic, or series of graphics, in the Windows Media Player status area
to notify the user that a plug-in is active. To support this feature, the plug-in must implement the IPropertyBag
interface. Windows Media Player calls IPropertyBag::Read, providing a pointer to the requested property
name "IconStreams", which is case-sensitive, and a pointer to a VARIANT structure that receives the data for
the graphic. The plug-in creates an IStream object (or a SAFEARRAY of IStream objects if there are multiple
graphics), then loads the graphic data, including header information, into the stream, and then returns a pointer
to the IStream object using the punkVal member of the VARIANT structure. If the plug-in only supplies one
graphic, it specifies the vt member of the VARIANT structure as VT_UNKNOWN. If the plug-in supplies
multiple graphic IStream objects using a SAFEARRAY, it specifies the vt member of the VARIANT structure
as VT_ARRAY.

Graphics can be stored in a variety of file formats, including:

BMP

Microsoft Windows Bitmap images are uncompressed.

JPEG

Compressed image format commonly used for Web pages. JPEG format files usually have .jpg file name
extensions.

GIF

Previous Next

Previous Next

Compressed image format commonly used for Web pages.

PNG

Compressed image format commonly used for Web pages.

The maximum dimensions for rendering plug-in graphics are 38 pixels wide and 14 pixels high.

The IStream byte stream containing the status graphic must include header information. Without header
information, Windows Media Player cannot properly identify the type of graphic and therefore will not load the
image.

See Also

Rendering Plug-in Developer Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Rendering Plug-in Wizard
The Windows Media Player SDK provides a COM wizard that you can add to Visual C++ 6.0 or Visual
C++ .NET that will generate the code for a rendering plug-in. This code includes sample method
implementations that render text data from a sample digital media file. You can compile and link this sample
code, and then register the resulting DLL file to try the sample rendering plug-in. You can then modify the
generated code to create your own rendering plug-in. For more information, see Building a Rendering Plug-in.

See Also

Rendering Plug-in Developer Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

Required Interfaces
A Windows Media Player rendering plug-in must implement certain interfaces. The following sections provide
an overview of these interfaces.

In addition to these interfaces, the plug-in can implement any additional interfaces required to do the job. For
instance, DMOs can implement several interfaces specific to the DMO architecture. By implementing the DMO
interfaces as required, you can create a plug-in that functions both as a DMO and as a Windows Media Player
plug-in.

See Also

Rendering Plug-in Developer Overview
Rendering Plug-ins Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

About IMediaObject

The IMediaObject interface is the required interface for DMOs. IMediaObject contains the methods that a
Windows Media Player rendering plug-in uses to get data from the Player. For complete documentation of the
IMediaObject interface, see the DirectX SDK.

The methods of IMediaObject can be categorized as follows:

Interface Description

About IMediaObject Required interface for a DirectX Media Object
(DMO). Detailed documentation for this interface is
located in the DirectX 8 SDK.

About IWMPNodeRealEstate Makes requests and receives responses related to the
rendering region.

About IWMPNodeWindowed Specifies and retrieves the owner window.

About IWMPNodeWindowless Initiates drawing in windowless mode.

About IWMPPlugin Manages the connection to Windows Media Player.

About IWMPWindowMessageSink Receives Windows messages when the plug-in is in
windowless mode.

Previous Next

Previous Next

Methods that Handle Format Negotiation

These are the methods that Windows Media Player calls to get information about the data formats supported by
the plug-in. These methods include:

GetInputMaxLatency
GetInputSizeInfo
GetInputStreamInfo
GetInputType
GetOutputSizeInfo
GetOutputStreamInfo
GetStreamCount
SetInputMaxLatency
SetInputType
SetOutputType

Of these methods, only SetInputType is called for rendering plug-ins.

Methods that Specify or Retrieve State Information

These are the methods that a DMO client calls to get or set values related to the current state of the plug-in.
These methods include:

GetInputCurrentType
GetInputStatus
GetOutputCurrentType

Windows Media Player doesn't call these methods for rendering plug-ins.

Methods that Handle Buffering and Processing Data

These are the methods that Windows Media Player calls to initiate the various processes that the plug-in
performs to do the digital signal processing. These methods include:

AllocateStreamingResources
Discontinuity
Flush
FreeStreamingResources
Lock
ProcessInput
ProcessOutput

Windows Media Player calls AllocateStreamingResources and FreeStreamingResources to provide the
rendering plug-in with an opportunity to set up or release any additional buffers the plug-in may require for
internal processing.

Windows Media Player may call Discontinuity at any time to indicate an interruption in the stream. Rendering
plug-ins can simply return S_OK.

Windows Media Player calls Flush to direct the rendering plug-in to flush all internally buffered data. The
plug-in should release any references to IMediaBuffer interfaces, clear any values that specify the time stamp
or sample length for the media buffer, and reinitialize any internal states that depend upon the contents of the
media sample.

Windows Media Player calls ProcessInput to pass a pointer to an IMediaBuffer interface to the rendering
plug-in. This interface provides access to the input buffer allocated by Windows Media Player to supply data to
the plug-in.

The IMediaObject interface includes a method named Lock. This method is designed to acquire or release a
lock on the DMO to keep the DMO serialized when performing multiple operations. The version of
IMediaObject::Lock in the wizard code overrides the ATL implementation of Lock. Because the sample code
is apartment threaded, the implementation of Lock simply returns S_OK. For details about how to create a
multi-threaded DMO, refer to the DirectX SDK.

See Also

Required Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

About IWMPNodeRealEstate

The IWMPNodeRealEstate interface handles the rendering region negotiation between Windows Media
Player and the plug-in. IWMPNodeRealEstate::GetDesiredSize, when called, requests a particular size
rendering region from Windows Media Player. The Player will not necessarily provide a region of the requested
size, but will attempt to do so. The actual rendering region available is conveyed to the plug-in in
IWMPNodeRealEstate::SetRects in the form of three RECT structures: a source RECT, a destination RECT,
and a clipping RECT. Using these three RECTs, the plug-in can calculate its own RECT for rendering.

IWMPNodeRealEstate::SetWindowless notifies the plug-in about the current rendering mode of the Player:
windowed or windowless. Each of these modes requires a different method of initiating a repainting of the
rendering region. Similarly, IWMPNodeRealEstate::SetFullScreen notifies the plug-in when the Player
transitions to full screen mode.

See Also

Required Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

About IWMPNodeWindowed

The IWMPNodeWindowed interface notifies the plug-in about the parent window.
IWMPNodeWindowed::SetOwnerWindow provides the plug-in with the window handle of the parent
window. The plug-in window must specify this window as its own parent window. Conversely, when a NULL
handle is supplied, the plug-in window must specify the desktop as its parent window. The plug-in should
always return this value in IWMPNodeWindowed::GetOwnerWindow.

See Also

Required Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

About IWMPNodeWindowless

The IWMPNodeWindowless interface includes one method. Windows Media Player calls
IWMPNodeWindowless::OnDraw to prompt the plug-in to render data when in windowless mode. Your
implementation can use whatever Windows drawing technologies you choose to render your data.

See Also

Required Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

Previous Next

About IWMPPlugin

Windows Media Player calls the IWMPPlugin methods to provide the plug-in with information about the state
of the connection between the plug-in and the Player. The Player calls IWMPPlugin::Init and
IWMPPlugin::Shutdown to notify the plug-in about when the Player is connecting to and disconnecting from
the plug-in. Rendering plug-ins also use IWMPPlugin::Init and IWMPPlugin::Shutdown to create and
destroy the rendering window because these calls will always happen on the same thread. Init also provides a
playback context id to allow the plug-in to determine which DirectShow graph contains it.
IWMPPlugin::AdviseWMPServices and IWMPPlugin::UnAdviseWMPServices manage a pointer to
IWMPServices to allow the plug-in to call methods on that interface. The Player can retrieve the class id of the
plug-in by calling IWMPPlugin::GetID.

See Also

Required Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

About IWMPWindowMessageSink

When the plug-in is active without a window hosted in the Player user interface, such as when the Player is
rendering Windows Media video or when in windowless mode, it requires a mechanism to receive window
messages like mouse and keyboard events. Windows Media Player sends these messages to the plug-in by
calling IWMPWindowMessageSink::OnWindowMessage.

Windows Media Player queries all active rendering plug-ins to determine whether they support this interface
and automatically forwards window messages to each plug-in that does.

See Also

Required Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Registering Rendering Plug-ins
Like other COM DLLs, you must register Windows Media Player rendering plug-ins to make them useable.
Typically, use the regsvr32.exe utility to manually perform registration tasks. The Windows Media Player Plug-
in Wizard creates files that contain registration scripts. These files have an .rgs file name extension. You can
also create a setup program that copies your files and registers the DLLs.

You must invoke the registration methods on the IWMPMediaPluginRegistrar interface in the
implementation blocks of the DllRegisterServer and the DllUnregisterServer functions, which are functions
that are exported by COM DLLs. The Windows Media Player registration methods perform the necessary
registration housekeeping to allow Windows Media Player to recognize your DLL file as a Windows Media
Player plug-in so that it can be presented as an option to the user.

See Also

IWMPMediaPluginRegistrar Interface
Rendering Plug-in Developer Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Building a Rendering Plug-in
You can create a Windows Media Player rendering plug-in by using the Windows Media Player Plug-in
Wizard. The Plug-in Wizard is included with the Windows Media Player SDK, which also includes this
documentation. If you haven't installed the entire Windows Media Player SDK, you should do so before
proceeding.

The Windows Media Player Plug-in Wizard is an add-in for Microsoft Visual C++ 6.0 or Microsoft Visual
C++ .NET that creates Visual C++ projects and generates sample code for each of the different types of plug-
ins supported by Windows Media Player.

The following sections explain what you need to know to create a rendering plug-in using the wizard:

Getting Started with Rendering Plug-ins
Using the Rendering Plug-in Wizard with Visual C++ 6.0
Using the Rendering Plug-in Wizard with Visual C++ .NET
About the Sample Rendering Plug-in

Previous Next

Previous Next

Previous Next

See Also

About Rendering Plug-ins

© 2000-2003 Microsoft Corporation. All rights reserved.

Getting Started with Rendering Plug-ins
To set up your development environment for creating rendering plug-ins, you must install the following items:

Microsoft Visual C++ 6.0 or later
Windows Media Player 9 Series
Windows Media Player 9 Series SDK
Microsoft DirectX 8 SDK
Windows Media Player Plug-in Wizard

Installing Visual C++

You can install Visual C++ 6.0 or later by itself or as part of Microsoft Visual Studio. For help with installation,
refer to the instructions that come with the Visual C++ or Visual Studio development environment.

Installing Windows Media Player

Install Windows Media Player 9 Series or any later version. You will need to use it to test your rendering plug-
in.

Installing the Windows Media Player SDK

Be sure to install Windows Media Player 9 Series SDK or any later version of the SDK. In addition to this
documentation, it includes the Windows Media Player Plug-in Wizard, as well as useful samples.

Installing the Microsoft DirectX 8 SDK

Install version 8.0 or newer of the Microsoft DirectX SDK. You'll need this to get the proper DMO headers and
to link with msdmo.lib, which is a required library file for the code that the wizard generates.

Note The Microsoft Windows XP SDK includes the DirectX 8 SDK files. If you have already installed the
Windows XP SDK, you don't have to install the DirectX 8 SDK.

Installing the Plug-in Wizard

Previous Next

Previous Next

There are separate versions of the Windows Media Player Plug-in Wizard for Microsoft Visual C++ 6.0 and
Microsoft Visual C++ .NET.

Once you have installed the Windows Media Player SDK, you can find the Windows Media Player Plug-in
Wizard for Visual C++ 6.0 in the following subfolder:

\wizards\wmpplugin

The wizard file is named wmpwiz.awx.

Copy the wizard file to the following subfolder:

\Program Files\Microsoft Visual Studio\Common\MSDev98\Bin\IDE

The preceding path assumes you installed Microsoft Visual Studio 6.0 to the default location. If you installed
the development environment to a different location, adjust the path accordingly. To quickly locate the correct
subfolder, you can use Windows Explorer to search for files with an .awx file name extension.

If you are using Microsoft Visual C++ .NET, the Windows Media Player Plug-in Wizard is installed and
configured automatically for you when you install this SDK. If you install Visual C++ .NET after installing this
SDK, you should remove the SDK and reinstall it.

See Also

Building a Rendering Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

Using the Rendering Plug-in Wizard with Visual
C++ 6.0
After you have installed the necessary components, creating a sample rendering plug-in is easy. The following
steps will guide you:

1. Start Microsoft Visual C++.
2. From the File menu, click New…
3. On the Projects tab, click Windows Media Player Plug-in Wizard.
4. In the Project name box, type a name for your rendering plug-in.
5. In the Location box, provide the location of a folder where the wizard can save the files it generates. You

can accept the default, type a new path, or browse to an existing location.
6. Click OK.

Previous Next

Previous Next

7. Click Rendering Plug-in.
8. Click Next.
9. Click OK.

The wizard generates a complete rendering plug-in project.

Before attempting to build the project, be sure to configure your development environment to point to the
folders named Include and Lib where you installed the DirectX 8 SDK. The compiler and linker will need
access to some of the files in these folders. In Visual C++ 6.0, you can add these paths on the Directories tab of
the Options dialog box, which you can access from the Tools menu.

See Also

Building a Rendering Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

Using the Rendering Plug-in Wizard with Visual
C++ .NET
Once you have installed the necessary components, creating a sample rendering plug-in is easy. The following
steps will guide you:

1. Start Microsoft Visual C++ .NET.
2. From the File menu, point to New, and then click Project.
3. In Project Types, click Visual C++ Projects if it isn't already selected.
4. In Templates, click Windows Media Player Plug-in Wizard to select it.
5. Type a name for your project.
6. Specify a location for your project. This is the folder to which your project files will be copied.
7. Click OK to start the wizard.
8. Click Rendering Plug-in.
9. Click Next.

The wizard generates a complete rendering plug-in project.

Before attempting to build the project, be sure to configure your development environment to point to the
folders named Include and Lib where you installed the DirectX 8 SDK. Your compiler and linker will need
access to some of the files in these folders. In Visual C++ .NET, you can add these paths on the VC++
Directories page of the Projects folder. The Projects folder is accessible from the Options dialog box, which
you can access from the Tools menu.

Previous Next

Previous Next

See Also

Building a Rendering Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

About the Sample Rendering Plug-in
The sample rendering plug-in is designed to work together with the sample digital audio file named
rendering.asf, which plays the same music as laure.wma. You can find the sample digital media file in the
following folder where you installed this SDK:

\samples\media

The sample file contains an arbitrary data stream that uses a GUID to identify the media type of the data in the
stream.

Warning This GUID was generated specifically for the sample file; do not use it in your projects.

The GUID for the data in the sample file is defined as:

0xc1ccdf59, 0x6924, 0x4b96, 0x82, 0x47, 0xdb, 0xb0, 0xea, 0xe5, 0xb6, 0x7

To use the rendering plug-in that the Plug-in Wizard generates with the sample digital media file, you must
replace the GUID in the definition created by the wizard with the preceding definition and then rebuild the
project. The GUID definition can be found in the header file having the same name as your project. Rebuilding
the project automatically registers the plug-in DLL on your computer.

The arbitrary data contained in rendering.asf is simply text data. The stream contains three lines of text. The
first line is specified to display during playback at one second, the second line at six seconds, and the third line
at 11 seconds. The sample plug-in creates a bitmap in memory, paints the background white, and then draws the
text to the bitmap before rendering.

To see the sample text rendering, open Windows Media Player 9 Series after you've registered the sample plug-
in. Play the sample file named rendering.asf.

The plug-in provides a sample property page implementation that allows the user to select the color of the
displayed text.

The plug-in provides a sample logo graphic implementation as well.

See Also

Previous Next

Previous Next

Building a Rendering Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing Your Rendering Code
Once you have built the sample rendering plug-in, you can modify the code to create your own Windows Media
Player rendering plug-in. Which methods you change and which you can leave as they are depends upon several
factors, including:

The data your plug-in is designed to render. If your data represents something visual, like video, then
you'll want to provide a visible window for rendering like the sample generated by the wizard. If your
data represents something else, like MIDI notes or hot spot coordinates, then you might never need to
make the plug-in window visible. This would require changing the sample code.
The number of properties you want to allow the user to change. You will certainly want to change the
default property page implementation to suit your needs, and you may need to add additional properties.
Whether your rendering plug-in needs to allocate any streaming resources. Your plug-in may require
additional buffers.
Whether your rendering plug-in needs to render in the Windows Media Player user interface (UI) Now
Playing tab or in an external window.
The number of status graphics you want your plug-in to display. The wizard-generated sample provides a
single status graphic. You'll need to provide your own art if you include a graphic. Your plug-in can
provide a series of graphics. Your plug-in is not required to include a graphic at all.

This section uses the rendering plug-in sample code generated by the Windows Media Player Plug-in Wizard to
illustrate important concepts. You might find it helpful to open Microsoft Visual Studio and generate the sample
code first so you can refer to it as you read this section. For details about how to use the Windows Media Player
Plug-in Wizard, see Building a Rendering Plug-in.

Which changes you make to the code generated by the plug-in wizard depends on your particular needs. The
range of possible applications for rendering plug-in technology is virtually limitless since the data you encode
in your Windows Media file can be in any format and your plug-in can process the data any way you choose.
However, you should take the time to understand how the code generated by the wizard works. That way, you'll
know exactly which method implementations you should modify to get the result you seek.

The following sections provide details about how to modify the code generated by the Windows Media Player
Plug-in Wizard to create your own rendering plug-in:

About the Media Type GUID Definition
About SetRects
Implementing ProcessInput
When to Render

Previous Next

Previous Next

Implementing DoRendering
Adding Properties to the Sample Rendering Plug-in
Implementing the Property Page for a Rendering Plug-in
Changing the Sample Rendering Plug-in Property

See Also

About Rendering Plug-ins

© 2000-2003 Microsoft Corporation. All rights reserved.

About the Media Type GUID Definition
The very first code you'll probably need to modify is the definition of the GUID that represents your media
type. Each time you generate a new sample rendering plug-in project using the Windows Media Player Plug-in
Wizard, the wizard creates a new GUID for the project media type. You are certainly free to use this GUID for
creating your content, but if you have already done that you'll need to change the GUID in the plug-in.

The media type GUID definition can be found in the header file having the same name as the plug-in project.
For example, if you named the project MyRenderingPlugin, then the header file you need to change is named
MyRenderingPlugin.h. When you view the file contents in Visual Studio, you'll see the GUID definition near
the top of the file after the last #include statement. It looks like this:

DEFINE_GUID(MEDIATYPE_MYRENDERINGPLUGIN, 0xc1ccdf59, 0x6924, 0x4b96, 0x82, 0x47, 0xdb, 0xb

Note The GUID shown here is the media type identifier for the sample rendering file provided with this SDK.
The GUID in your project will be different and unique.

If you already have a GUID for your media type, you must replace the provided GUID definition with your
own. Be sure to use the DEFINE_GUID format like the sample code does.

See Also

Implementing Your Rendering Code

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

About SetRects
When a plug-in renders in windowed mode and the rendering region is hosted in the Windows Media Player
user interface, the Player must convey to the plug-in a set of values that describe the size and location of the
portion of the rendering region that must be updated by the plug-in. The plug-in requests a particular region size
when the Player calls the plug-in implementation of IWMPNodeRealEstate::GetDesiredSize by returning a
pointer to a SIZE structure representing the desired size for the rendering region. The Player attempts to honor
this request to the extent possible, but there is no guarantee that the ultimate region size will equal the requested
size, so the plug-in must account for this possibility.

The Player notifies the plug-in about the actual region to be updated by calling the plug-in implementation of
IWMPNodeRealEstate::SetRects. Here, the Player provides three pointers to RECT structures: pSrc, pDest,
and pClip. For clarity, this section refers to these three RECTs as source rectangle, destination rectangle, and
clipping rectangle. Together, these three rectangles are used to resize and to reposition the plug-in window so
that it exactly corresponds to the region to be updated. That way, the plug-in can update the rendering region by
painting in its window.

The source rectangle represents the portion of the original image to be rendered. The size of this rectangle does
not have to equal the dimensions of the original area requested by the plug-in. The origin of the source rectangle
can be any set of values specified by the Player. This rectangle is stored in the member variable named
m_rctSrc. The following diagram shows the relationship between the video frame and the source rectangle.

The destination rectangle is provided with an origin that represents positioning relative to the owner window
and a size that represents stretching or shrinking relative to the source rectangle. This means that the destination
rectangle is proportional to the source rectangle, but may be smaller, larger, or the same size, depending on
conditions in the Player UI. The destination rectangle origin will always consist of a pair of values each greater
than or equal to zero. This rectangle is stored in the member variable named m_rctDest.

The clipping rectangle represents the portion of the Windows Media Player video display that should actually
be visible to the user. This rectangle is stored in the member variable named m_rctClip.

You can use these three rectangles to determine the size of the plug-in window and where to position it. To
accomplish this, the rendering plug-in generated by the wizard creates two additional rectangles (each in a

Previous Next

RECT structure) using the information conveyed in the three provided rectangles. The two new rectangles are:

The window position rectangle. This rectangle represents the location and size of the plug-in window. Its
size is given by the intersection of the destination rectangle and the clipping rectangle. This means that
the size of the window position rectangle can, and will, change frequently. Its size does not have to equal
the size of the entire region being displayed. It is stored in the member variable named m_rctWindowPos.
The display area rectangle. This rectangle has the same dimensions as the destination rectangle, but its
origin is recalculated to be relative to the origin of the plug-in window. Because the window position
rectangle is always located within the destination rectangle, the display area rectangle may have an origin
comprised of negative values. It is stored in the member variable named m_rctDisplay.

The following diagram illustrates the relationship between the rectangles.

The sample plug-in renders by using the StretchBlt function to copy the bitmap to be rendered from the source
rectangle to the display rectangle. Because the region to be updated (the plug-in window when rendering in
windowed mode) is always contained within the display rectangle, and the display area rectangle may have an
origin comprised of negative values, the operating system simply discards the portion of the bitmap that falls
outside the rendering region.

You can add tracing code to your implementation of SetRects to print information to the Visual Studio debug
window about the supplied and calculated rectangles. That way, you can observe and study this output to learn
more about the behavior of the rectangles. It is particularly interesting to resize the Player during playback to

see how the rectangles change as the rendering region moves, stretches, and shrinks. You should try this with
different settings in the Player for fitting the video to the Player on resize as well.

See Also

Implementing Your Rendering Code

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing ProcessInput
When Windows Media Player has data to deliver to your rendering plug-in, it does so by calling
IMediaObject::ProcessInput. Depending on how you made your content, this could occur infrequently or
many times each second. For example, the sample rendering plug-in media contains just three lines of text that
are each delivered to the plug-in at five-second intervals. An arbitrary data stream could just as easily contain
full-motion video causing the Player to deliver new data constantly. It is up to the content author to specify the
presentation time of each data sample.

The plug-in wizard sample code implementation of ProcessInput performs the following steps:

1. Validate the relevant parameters. The sample code checks to ensure that the provided stream index is as
expected and that the IMediaBuffer interface pointer provided is not NULL.

2. Verify that the input media type has been set.
3. Show the plug-in window under certain circumstances. The plug-in creates a hidden window and makes it

visible to the user at appropriate times. The following code is from the sample plug-in:

if (m_hWnd &&
 !IsWindowVisible() &&
 m_bHosted &&
 !m_bWindowless &&
 !m_bFullScreen)
{
 // Under these circumstances, be sure
 // that the plug-in window is visible.
 ShowWindow(SW_SHOW);
}

The preceding code first verifies that the rendering window exists. It then ensures that if the plug-in is
rendering in a window hosted inside the Player user interface (and Now Playing is currently selected),
and the Player isn't in full-screen mode, then the window is made visible if it is currently hidden. Your
plug-in may require that the window remain hidden always, or may not use a window at all.

4. Enter a critical section. This is a simple as calling Lock. It is important that rendering plug-ins process

Previous Next

Previous Next

their data within critical sections. Otherwise, it is possible that Windows Media Player could change the
data in the buffer before the plug-in is finished processing it.

5. Release any existing input buffer. The call to ProcessInput acts as a signal that any previous buffer
processing is completed. This also means that the previous data buffer can be released by the plug-in.

6. Hold a reference on the input buffer.
7. Exit the critical section. A simple call to Unlock accomplishes this.
8. Invalidate the rendering region and force Windows to post a WM_PAINT message (provided that the

window exists). The following code is from the Repaint method in the sample code:

if(m_bWindowless)
{
 if(m_spWMPNodeWindowlesshost.p)
 {
 // Invalidate the RECT to which we moved the window.
 // That's the same as the region to redraw.
 hr = m_spWMPNodeWindowlesshost->InvalidateRect(&m_rctWindowPos, FALSE);
 }
}

The preceding code demonstrates that the plug-in must direct the Player to invalidate the rendering region
when rendering in windowless mode. The following code continues the conditional block:

else
{
 InvalidateRect(NULL, FALSE);
 UpdateWindow();
}

If rendering in windowed mode, the plug-in invalidates the rendering region itself.

See Also

Implementing Your Rendering Code

© 2000-2003 Microsoft Corporation. All rights reserved.

When to Render
Windows Media Player rendering plug-ins that render data visually must be created to handle rendering in both
windowed and windowless modes. Windowless mode is a rendering mode supported by the Windows Media
Player ActiveX control where rendering occurs without a child window. This permits enhanced effects like
layering or alpha-blending. When a rendering plug-in renders in windowless mode, it calls
IWMPNodeWindowlessHost::InvalidateRect to direct the Player to invalidate the rendering region.
Eventually, this results in a call to the plug-in implementation of IWMPNodeWindowless::OnDraw. This

Previous Next

Previous Next

method receives a handle to a device context for drawing and a pointer to a RECT structure that represents the
drawing region. OnDraw is the method where you implement your own code for drawing in windowless mode.
The following code is an excerpt from the sample rendering plug-in implementation of OnDraw:

if (prcDraw)
{
 HDC hDC = (HDC)hdc;

 // Set the text color.
 COLORREF oldTextColor = ::SetTextColor(hDC, m_TextColor);
 // Set the text background color.
 COLORREF oldBkColor = ::SetBkColor(hDC, rgbWhite);

 hr = DoRendering(hDC, prcDraw);

 // Restore the original colors.
 ::SetBkColor(hDC, oldBkColor);
 ::SetTextColor(hDC, oldTextColor);
}

Notice that the code casts the device context handle from type OLE_HDC to type HDC. The remaining code
uses standard Windows drawing functions to prepare to draw the text data from the buffer. The text color is set
based on the user selection in the plug-in property page. The code then calls the custom function named
DoRendering to perform the actual drawing work. This is convenient because it centralizes most of the
drawing and painting code in a single function regardless of drawing mode. Finally, the code cleans-up the
changes it made earlier to the supplied device context.

When a rendering plug-in renders in windowed mode, it must invalidate the rendering region in its own window
and update the window. This results in the operating system posting a WM_PAINT message to the plug-in
window message queue. Upon receiving this message, the plug-in can paint in its own window. Because the
sample code generated by the plug-in wizard uses ATL COM, the plug-in maps the WM_PAINT message to a
function named OnPaint. This function acts as the windowed mode counterpart to
IWMPNodeWindowlessHost::OnDraw. The following code is an excerpt from the sample plug-in
implementation of OnPaint:

PAINTSTRUCT ps;
HDC hDC;

hDC = BeginPaint(&ps);

if(NULL == hDC)
{
 return 1;
}

// Set the text background to white.
COLORREF oldBkColor = ::SetBkColor(hDC, rgbWhite);
// Set the text color to the selection.
COLORREF oldTextColor = ::SetTextColor(hDC, m_TextColor);

hr = DoRendering(hDC, &m_rctDisplay);

// Restore the colors.
::SetBkColor(hDC, oldBkColor);
::SetTextColor(hDC, oldTextColor);

EndPaint(&ps);

The preceding code looks remarkably similar to the code from OnDraw. The main differences are:

The plug-in must create its own device context using BeginPaint. This is because the plug-in is painting
in its window instead of a windowless region supplied by the Player.
The RECT pointer (&m_rctDisplay) the function passes to DoRendering is from a member variable
instead of directly supplied by the Player. This RECT is calculated in IWMPNodeRealEstate::SetRects,
which is the method that the Player calls to supply the plug-in with information about the rendering
region when rendering in windowed mode. See the section titled About SetRects.

See Also

Implementing Your Rendering Code

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing DoRendering
DoRendering is the method where the sample plug-in finally displays the text data. Whether rendering in
windowed mode or windowless mode, the code that ultimately displays the text data is the same. In the sample
plug-in generated by the plug-in wizard, the code first creates a bitmap in memory with a white background.
The code accesses the data in the input buffer from within a critical section to prevent the data from changing
during this operation. The following code from MakeBitmapFromData illustrates this:

// Begin critical section.
Lock();

BYTE *pbInputData = NULL;
DWORD cbInputLength = 0;

// Get the data pointer and the buffer length.
if(m_spInputBuffer.p)
{
 hr = m_spInputBuffer->GetBufferAndLength(&pbInputData, &cbInputLength);
}

if (FAILED(hr))
{
 Unlock();
 Return hr;
}

// Display the data from the stream.
::DrawText(m_hdcMem, (TCHAR*) pbInputData, cbInputLength/sizeof(TCHAR) - 1, &m_rctSrc

// End critical section.
Unlock();

Previous Next

Previous Next

Once the bitmap exists, the code in DoRendering calls StretchBlt to copy the bitmap into the rendering region.

See Also

Implementing Your Rendering Code

© 2000-2003 Microsoft Corporation. All rights reserved.

Adding Properties to the Sample Rendering Plug-in
The rendering sample code that the Windows Media Player Plug-in Wizard generates uses a single property that
represents the color of the text rendered. Your plug-in may require more than one property. You can easily add
properties to your rendering plug-in in Microsoft Visual Studio using the following steps:

1. Define the methods in the interface definition code in the project's main header file. For example, to add a
property called "scale", you would create two accessor methods using the following syntax:

virtual HRESULT STDMETHODCALLTYPE get_scale(double *pVal) = 0;
virtual HRESULT STDMETHODCALLTYPE put_scale(double newVal) = 0;

2. Add the method declarations to the main class declaration in the header file:

STDMETHOD(get_scale)(double *pVal);
STDMETHOD(put_scale)(double newVal);

3. Add the method implementations to the project's main CPP file:

STDMETHODIMP CYourProject::get_scale(double *pVal)
{
 if (NULL == pVal)
 {
 return E_POINTER;
 }

 *pVal = m_fScale;

 return S_OK;
}

STDMETHODIMP CYourProject::put_scale(double newVal)
{
 m_fScale = newVal;

 return S_OK;
}

Previous Next

Previous Next

Finally, to make the properties accessible to the user, you'll want to make changes to the property page
implementation.

See Also

Implementing Your Rendering Code

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing the Property Page for a Rendering
Plug-in
Windows Media Player can display a property page for each rendering plug-in to enable users to set values that
change the behavior of the plug-in. Users can access the property page from the Plug-ins tab of the Options
dialog box by clicking the name of the rendering plug-in to select it and then clicking Properties.

The Windows Media Player Plug-in Wizard sample code for rendering plug-ins provides a default
implementation of a property page that includes three radio buttons that allow the user to select the text color.
When the user clicks one of the buttons, the plug-in caches the appropriate color value in a member variable
(m_Color), and then enables the Apply button. When the user clicks Apply, the property page passes the color
value to the plug-in object so the plug-in can change the value it uses to determine the text color during
rendering.

The following sections provide more details about implementing the property page:

About the Property Page Object
About the Property Page Dialog Resource
About ISpecifyPropertyPages

See Also

Implementing Your Rendering Code

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

About the Property Page Object

The property page object is a COM object that implements the IPropertyPage interface. The sample code
generated by the plug-in wizard uses the ATL implementation of IPropertyPage, which is documented in the
Visual C++ documentation on MSDN. Your code at least should provide override implementations for
IPropertyPage::OnInitDialog, which handles the event that occurs when the property page opens, and
IPropertyPage::Apply, which handles the event that occurs when the user clicks Apply. The plug-in wizard
generates sample code for each of these event handlers. The sample implementation of OnInitDialog retrieves a
value from the registry in order to display the current text color setting. The sample implementation of Apply
persists the value to the registry and then passes the value to the rendering plug-in property put method, named
put_color.

Additionally, you will need to add code to handle the event that occurs when the user changes a value in a
control you provide in the property page. For example, the plug-in wizard implements three functions named
OnClickedBlue, OnClickedRed, and OnClickedGreen. When the user clicks a radio button on the property
page, these are the events that cache the color value and then enable the Apply button by calling the SetDirty
method with an argument value of TRUE.

See Also

Implementing the Property Page for a Rendering Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

About the Property Page Dialog Resource

The user interface for the property page is stored as a dialog resource. You can easily view and edit the property
page dialog box in Visual Studio by selecting the ResourceView tab in the Project Workspace window, then
opening the Dialog folder, and then double-clicking the property page resource name. The dialog resource
editor in Visual Studio provides you with the tools you need to add controls to the property page dialog and to
create event handlers that are mapped to the appropriate Windows messages. For details about how to use the
resource editor in Visual Studio, refer to Visual Studio Help.

See Also

Implementing the Property Page for a Rendering Plug-in

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

About ISpecifyPropertyPages

If a rendering plug-in provides a property page, the plug-in must implement the ISpecifyPropertyPages
interface. This interface contains only one method: ISpecifyPropertyPages::GetPages. This is the method that
associates the property page with the rendering plug-in. Windows Media Player calls this method when the user
invokes the property page, passing a parameter of type CAUUID, which is a counted array of GUIDs. The
sample plug-in implementation of GetPages fills this structure with a single GUID that is the class ID of the
plug-in property page object. Windows Media Player then uses the class id to create the property page object.

You might notice that the sample implementation of GetPages uses CoTaskMemAlloc to allocate memory for
the GUID structure. It is the responsibility of the caller, in this case Windows Media Player, to use
CoTaskMemFree to release the memory. For details about the CAUUID structure, see the Platform SDK
documentation.

See Also

Implementing the Property Page for a Rendering Plug-in

© 2000-2003 Microsoft Corporation. All rights reserved.

Changing the Sample Rendering Plug-in Property
You will probably want to change the property that the Windows Media Plug-in Wizard creates by default. The
following list details the items that might require changing:

The dialog resource. Click the ResourceView tab in the Project Workspace window. Expand the folder
list to open the Dialog folder. Double-click the dialog resource to open the resource editor. You can make
changes to the property page dialog. For instance, you could replace the radio buttons with checkboxes.
The property page object code. The default implementation uses a variable of type COLORREF to
store the color value. You might require a different type of data. This would also require you to change

Previous Next

Previous Next

Previous Next

Previous Next

the code that persists the data to the registry and reads the data from the registry (including the code that
reads from the registry in CProjectName::FinalConstruct).
The member variable that stores the property value. This variable is named m_TextColor and is
declared as type COLORREF. You may want to change the name and type of this variable throughout the
project.
The property get and property put methods. You might want to change the names, parameters, and
implementations of these methods. Don't forget to also reflect those changes elsewhere in the project. For
instance, the property page Apply method calls CProjectName::put_color.

See Also

Implementing Your Rendering Code

© 2000-2003 Microsoft Corporation. All rights reserved.

Rendering Plug-ins Programming Guide
This section describes how to modify the code generated by the Windows Media Player Plug-in Wizard to
create your own Windows Media Player rendering plug-in. This section contains the following topics:

See Also

Windows Media Player Rendering Plug-ins

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Topic Description

Rendering in a Separate Window Describes how to modify the Plug-in Wizard sample
code to create a separate window for rendering.

Previous Next

Previous Next

Rendering in a Separate Window
The sample rendering plug-in created by the Windows Media Player Plug-in Wizard is designed to render in a
window that is hosted in the Windows Media Player user interface (UI), specifically the Now Playing tab.
However, you may create digital media content containing a custom stream of data that should be rendered in
addition to video content. Windows Media Player does not provide a rendering region in its UI while it is
rendering video, so the solution is to render the custom data in a separate window.

You can make some simple changes to the sample rendering plug-in code to enable you to render in a separate
window. This section describes how to change the code to create a separate window that has a title bar, a text
title, a maximize button, a minimize button, and a close button. The user can resize the window, move it to a
different location on the desktop, and close the window. These are the normal behaviors that a user expects
from a window; you can create your window to behave any way you choose.

This section assumes that you have already modified the sample plug-in implementation to render your content.
Following the steps in this section will not create a plug-in that renders content from the sample digital media
file rendering.asf provided with this SDK, because it does not contain a video stream. Do not use the sample file
GUID for your media type in the code you create for this section.

Warning Attempting to play rendering.asf using the plug-in you create in this section may yield unexpected
results.

To modify the sample plug-in code, follow these steps:

1. Change the code that creates the rendering window. Set the window style to
WS_OVERLAPPEDWINDOW, which provides all the features required. Also, add code to set the
window title. Modify the code that creates the window in CreateRenderWin to match the following
example:

// Create the plug-in window.
HWND hWnd = Create(GetDesktopWindow(), m_rctSrc, NULL, WS_OVERLAPPEDWINDOW);

if (NULL == hWnd)
{
 return E_HANDLE;
}

// Set the window title.
SetWindowText(_T("Rendering Plug-in Sample"));

ShowWindow(SW_HIDE);

return S_OK;

2. Add code to paint the window background white when the user resizes the window. The sample plug-in
depends on the StretchBlt function to fill the entire region supplied by Windows Media Player with the
bitmap the plug-in creates. Your separate window will only render the bitmap at its default size, so you
must repaint the window background in response to the user's actions. Add the following code to
OnPaint just after the variable declarations at the beginning of the function:

// Add painting code to paint background white.
RECT rc; // Represents the window client area.

// Get the window RECT.
GetClientRect(&rc);

Add the following code just after the call to BeginPaint:

// Fill the window with a white brush.
FillRect(hDC, &rc, WHITE_BRUSH);

3. Change the code in ProcessInput that ensures the window is visible. Modify the code to match the
following example:

if (m_hWnd &&
 !IsWindowVisible() &&
 !m_bFullScreen)
{
 // Under these circumstances, be sure
 // that the plug-in window is visible.
 ShowWindow(SW_SHOW);
}

4. Prevent the window from forwarding mouse and keyboard messages to Windows Media Player.
Otherwise, the window will not respond to the user's actions. Remove the following lines of code from
the ATL message map in the project's main header file:

// Remove these.
MESSAGE_RANGE_HANDLER(WM_KEYDOWN, WM_KEYUP, OnPluginWindowMessage)
MESSAGE_HANDLER(WM_MOUSEACTIVATE, OnPluginWindowMessage)
MESSAGE_RANGE_HANDLER(WM_MOUSEMOVE, WM_MBUTTONDBLCLK, OnPluginWindowMessage)
MESSAGE_RANGE_HANDLER(WM_NCMOUSEMOVE, WM_NCMBUTTONDBLCLK, OnPluginWindowMessage)

5. You can remove the implementations of the following interfaces.
IWMPNodeRealEstate
IWMPNodeWindowed
IWMPNodeWindowless

You should remove the code in AdviseWMPServices that retrieves pointers to the corresponding host
interfaces. You can also remove the implementation of OnPluginWindowMessage, which is the function
that normally receives mouse and keyboard messages from the ATL message map.

See Also

Rendering Plug-ins Programming Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Rendering Plug-ins Programming Reference

Previous Next

Previous Next

The Microsoft Windows Media Player Software Development Kit (SDK) supports COM interfaces rendering
plug-ins. The following sections document these in detail.

See Also

Windows Media Player Rendering Plug-ins

© 2000-2003 Microsoft Corporation. All rights reserved.

Rendering Plug-ins Interfaces
The rendering plug-ins interfaces are used to connect the plug-in to Windows Media Player, exchange status
information, and obtain resources from the Player. Format negotiation and data transfer are performed using the
DMO interface IMediaObject.

The Windows Media Player SDK exposes the following interfaces for creating rendering plug-ins.

Section Description

Rendering Plug-ins Interfaces Lists the interfaces and methods of each.

Rendering Plug-ins Enumeration Types Lists the enumeration types used for rendering plug-
ins.

Previous Next

Previous Next

Interface Description

IWMPMediaPluginRegistrar Manages plug-in registration.

IWMPNodeRealEstate Obtains a rendering area from Windows Media
Player.

IWMPNodeRealEstateHost Requests state changes from Windows Media Player.

IWMPNodeWindowed Stores a handle to the parent window used for
rendering.

IWMPNodeWindowedHost Sends Windows messages from the plug-in to
Windows Media Player.

IWMPNodeWindowless Stores a device context handle used by Windows
Media Player when rendering in windowless mode.

IWMPNodeWindowlessHost Provides methods to direct Windows Media Player to

See Also

Rendering Plug-ins Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPMediaPluginRegistrar
The IWMPMediaPluginRegistrar interface manages plug-in registration.

In addition to the methods inherited from IUnknown, the IWMPMediaPluginRegistrar interface exposes the
following methods.

See Also

Rendering Plug-ins Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

update the rendering area in windowless mode.

IWMPPlugin Manages the connection to Windows Media Player.

IWMPPluginEnable Stores whether the plug-in is currently enabled by the
user.

IWMPServices Retrieves information from Windows Media Player
about the current stream time and stream state.

IWMPWindowMessageSink Receives messages when in windowless mode.

Previous Next

Previous Next

Method Description

WMPRegisterPlayerPlugin Adds information to the registry that identifies a
Windows Media Player plug-in.

WMPUnRegisterPlayerPlugin Removes information about a Windows Media Player
plug-in from the registry.

Previous Next

IWMPMediaPluginRegistrar::WMPRegisterPlayerPlugin

The IWMPMediaPluginRegistrar::WMPRegisterPlayerPlugin function adds information to the registry that
identifies a Windows Media Player plug-in.

Syntax

HRESULT WMPRegisterPlayerPlugin(
 LPWSTR pwszFriendlyName,
 LPWSTR pwszDescription,
 LPWSTR pwszUninstallString,
 DWORD dwPriority,
 GUID guidPluginType,
 CLSID clsid,
 UINT cMediaTypes,
 LPVOID pMediaTypes
);

Parameters

pwszFriendlyName

Pointer to a wide-character null-terminated string containing the friendly name of the plug-in. This is also the
name that is displayed to the user.

pwszDescription

Pointer to a wide-character null-terminated string containing the description of the plug-in. This information
also is displayed to the user.

pwszUninstallString

Pointer to a wide-character null-terminated string containing the uninstall string.

dwPriority

Integer value containing the priority position of the plug-in in the chain of currently enabled plug-ins.

guidPluginType

GUID specifying plug-in type. For rendering plug-ins, specify WMP_PLUGINTYPE_RENDERING.

clsid

The class ID of the plug-in.

cMediaTypes

Previous Next

Count of media types supported by the plug-in.

pMediaTypes

Pointer to an array of media types that enumerates the supported media types. Media types are stored as
type/subtype pairs.

Return Values

The function returns an HRESULT.

Remarks

Implement this function in the exported DllRegisterServer function.

The uninstall string is a command-line string that Windows Media Player passes as the argument to the
Windows ShellExecute function when the user chooses to remove the plug-in by clicking Remove in the
Player plug-in configuration dialog box. This gives you a way to execute your own uninstall program that
initiates from Windows Media Player.

Rendering plug-ins should specify a value of 1 for dwpriority.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpservices.idl; include wmpservices.h.

Library: Use wmp.dll.

See Also

IWMPMediaPluginRegistrar
IWMPMediaPluginRegistrar::WMPUnRegisterPlayerPlugin

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPMediaPluginRegistrar::WMPUnRegisterPlayerPlugin

The IWMPMediaPluginRegistrar::WMPUnRegisterPlayerPlugin function removes information about a
Windows Media Player plug-in from the registry.

Previous Next

Previous Next

Syntax

HRESULT WMPUnRegisterPlayerPlugin(
 GUID guidPluginType,
 CLSID clsid
);

Parameters

guidPluginType

GUID specifying plug-in type. For rendering plug-ins, specify WMP_PLUGINTYPE_RENDERING.

clsid

Specifies the class ID of the plug-in being removed.

Return Values

The function returns an HRESULT.

Remarks

Implement this function in the exported DllUnRegisterServer function.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpservices.idl; include wmpservices.h.

Library: Use wmp.dll.

See Also

IWMPMediaPluginRegistrar
IWMPMediaPluginRegistrar::WMPRegisterPlayerPlugin

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPNodeRealEstate Interface

Previous Next

Previous Next

The IWMPNodeRealEstate interface is implemented by the plug-in.

In addition to the methods inherited from IUnknown, the IWMPNodeRealEstate interface exposes the
following methods.

See Also

Rendering Plug-ins Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPNodeRealEstate::GetDesiredSize

The GetDesiredSize method returns the size of the rendering area requested by the plug-in.

Syntax

HRESULT GetDesiredSize(
 LPSIZE pSize
);

Parameters

Method Description

GetDesiredSize Returns the size of the rendering area requested by
the plug-in.

GetFullScreen Returns a value indicating the current rendering state
of the Player.

GetRects Returns the three RECT structures previously set in
the plug-in.

GetWindowless Returns a value indicating whether the plug-in is
currently rendering in windowless mode.

SetFullScreen Returns a value indicating whether the plug-in
requests full screen rendering.

SetRects Receives information about the rendering area
provided by Windows Media Player.

SetWindowless Receives a value indicating that the plug-in should
render in windowless mode.

Previous Next

Previous Next

pSize

[out] A long pointer to a SIZE structure.

Return Values

The method returns an HRESULT.

Remarks

The SIZE structure stores width and height as x and y coordinates. For more information about the SIZE
structure, see the Platform SDK.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

See Also

IWMPNodeRealEstate Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPNodeRealEstate::GetFullScreen

The GetFullScreen method returns a value indicating the current rendering state of the Player.

Syntax

HRESULT GetFullScreen(
 BOOL* pfFullScreen
);

Parameters

pfFullScreen

[out] Pointer to a Boolean, true indicating full screen.

Return Values

Previous Next

Previous Next

The method returns an HRESULT.

Remarks

If TRUE, the Player is currently in full screen mode. If FALSE, the Player is currently displaying in full mode
or skin mode.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

See Also

IWMPNodeRealEstate Interface
IWMPNodeRealEstate::SetFullScreen

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPNodeRealEstate::GetRects

The GetRects method returns the three RECT structures previously set in the plug-in.

Syntax

HRESULT GetRects(
 RECT* pSrc,
 RECT* pDest,
 RECT* pClip
);

Parameters

pSrc

[out] Pointer to a RECT object that represents the portion of the original image that is to be rendered.

pDest

[out] Pointer to a RECT object that represents stretching/shrinking of the original image as well as positioning
relative to the origin of the owner window.

Previous Next

Previous Next

pClip

[out] Pointer to a RECT object that represents the portion of the destination rectangle that should actually be
visible to the user.

Return Values

The method returns an HRESULT.

Remarks

Any of these values can be set to NULL. The plug-in must not change values returned by this method.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

See Also

IWMPNodeRealEstate Interface
IWMPNodeRealEstate::SetRects

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPNodeRealEstate::GetWindowless

The GetWindowless method returns a value indicating whether the plug-in is currently rendering in
windowless mode.

Syntax

HRESULT GetWindowless(
 BOOL* pfWindowless
);

Parameters

pfWindowless

[out] Pointer to a Boolean, true indicating windowless.

Previous Next

Previous Next

Return Values

The method returns an HRESULT.

Remarks

Do not change values returned by this method.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

See Also

IWMPNodeRealEstate Interface
IWMPNodeRealEstate::SetWindowless

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPNodeRealEstate::SetFullScreen

The SetFullScreen method receives a value indicating that Windows Media Player is switching to full screen
mode.

Syntax

HRESULT SetFullScreen(
 BOOL fFullScreen
);

Parameters

fFullScreen

[in] Boolean, true indicating full screen.

Return Values

The method returns an HRESULT.

Remarks

Previous Next

Previous Next

Use this method to initialize any code related to full screen rendering. Do not use this method as a cue to begin
rendering.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

See Also

IWMPNodeRealEstate Interface
IWMPNodeRealEstate::GetFullScreen

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPNodeRealEstate::SetRects

The SetRects method receives information about the rendering area provided by Windows Media Player.

Syntax

HRESULT SetRects(
 const RECT* pSrc,
 const RECT* pDest,
 const RECT* pClip
);

Parameters

pSrc

[in] Pointer to a RECT object that represents the portion of the original image that is to be rendered.

pDest

[in] Pointer to a RECT object that represents stretching/shrinking of the original image as well as positioning
relative to the origin of the owner window.

pClip

[in] Pointer to a RECT object that represents the portion of the destination rectangle that should actually be
visible to the user.

Previous Next

Previous Next

Return Values

The method returns an HRESULT.

Remarks

Once the plug-in receives the RECT objects, it can immediately proceed with rendering.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

See Also

IWMPNodeRealEstate Interface
IWMPNodeRealEstate::GetRects

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPNodeRealEstate::SetWindowless

The SetWindowless method receives a value indicating that the plug-in should render in windowless mode.

Syntax

HRESULT SetWindowless(
 BOOL fWindowless
);

Parameters

fWindowless

[in] Boolean, true indicating windowless.

Return Values

The method returns an HRESULT.

Requirements

Previous Next

Previous Next

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

See Also

IWMPNodeRealEstate Interface
IWMPNodeRealEstate::GetWindowless

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPNodeRealEstateHost Interface
The IWMPNodeRealEstateHost interface is implemented by Windows Media Player and its methods are
called by the plug-in.

In addition to the methods inherited from IUnknown, the IWMPNodeRealEstateHost interface exposes the
following methods.

See Also

Rendering Plug-ins Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Method Description

OnDesiredSizeChange Requests a new size.

OnFullScreenTransition Requests a transition to full screen rendering.

Previous Next

Previous Next

IWMPNodeRealEstateHost::OnDesiredSizeChange

The OnDesiredSizeChange method requests a size change from Windows Media Player.

Syntax

HRESULT OnDesiredSizeChange(
 LPSIZE pSize
);

Parameters

pSize

[in] Pointer to a SIZE structure that represents the desired size as x,y coordinates.

Return Values

The method returns an HRESULT.

Remarks

A call to this method is not a guarantee that the rendering size has actually changed. Actual rendering
information is always conveyed by IWMPNodeRealEstate::SetRects.

For more information about the SIZE structure, see the Platform SDK.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

Library: Use wmp.dll.

See Also

IWMPNodeRealEstate::SetRects
IWMPNodeRealEstateHost Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

IWMPNodeRealEstateHost::OnFullScreenTransition

The OnFullScreenTransition method requests a transition to full screen rendering.

Syntax

HRESULT OnFullScreenTransition(
 BOOL fFullScreen
);

Parameters

fFullScreen

[in] Boolean, true indicating full screen.

Return Values

The method returns an HRESULT.

Remarks

When the Player transitions to full screen mode, it calls IWMPNodeRealEstate::SetFullScreen.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

Library: Use wmp.dll.

See Also

IWMPNodeRealEstate::SetFullScreen
IWMPNodeRealEstateHost Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPNodeWindowed Interface
The IWMPNodeWindowed interface is implemented by the plug-in.

Previous Next

Previous Next

In addition to the methods inherited from IUnknown, the IWMPNodeWindowed interface exposes the
following methods.

See Also

Rendering Plug-ins Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPNodeWindowed::GetOwnerWindow

The GetOwnerWindow method returns the window handle previously set by Windows Media Player.

Syntax

HRESULT GetOwnerWindow(
 OLE_HWND* phwnd
);

Parameters

phwnd

[out] A pointer to a window handle.

Return Values

The method returns an HRESULT.

Remarks

This method allows Windows Media Player to retrieve a value from the plug-in previously set by the Player. Do
not change this value.

Requirements

Method Description

GetOwnerWindow Returns the window handle previously set by
Windows Media Player.

SetOwnerWindow Receives a handle to the window the plug-in will use
for rendering.

Previous Next

Previous Next

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

See Also

IWMPNodeWindowed Interface
IWMPNodeWindowed::SetOwnerWindow

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPNodeWindowed::SetOwnerWindow

The SetOwnerWindow method receives a handle to a parent window. The plug-in can use this parent window
to derive a child window for rendering.

Syntax

HRESULT SetOwnerWindow(
 OLE_HWND hwnd
);

Parameters

hwnd

[in] A handle to the window to be used for rendering.

Return Values

The method returns an HRESULT.

Remarks

Rendering in a child window gives you the advantage of keeping the RECT coordinates returned from the
Player consistent when the parent window position changes. Coordinate values will remain relative to the parent
window, as opposed to relative to the Windows desktop.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

Previous Next

Previous Next

See Also

IWMPNodeWindowed Interface
IWMPNodeWindowed::GetOwnerWindow

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPNodeWindowedHost Interface
The IWMPNodeWindowedHost interface is implemented by Windows Media Player and its method is called
by the plug-in.

In addition to the methods inherited from IUnknown, the IWMPNodeWindowedHost interface exposes the
following methods.

See Also

Rendering Plug-ins Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPNodeWindowedHost::OnWindowMessageFromRenderer

The OnWindowMessageFromRenderer method sends Windows messages from the plug-in to Windows
Media Player.

Previous Next

Previous Next

Method Description

OnWindowMessageFromRenderer Sends Windows messages from the plug-in to
Windows Media Player.

Previous Next

Previous Next

Syntax

HRESULT OnWindowMessageFromRenderer(
 UINT uMsg,
 WPARAM wparam,
 LPARAM lparam,
 LRESULT* plRet,
 BOOL* pfHandled
);

Parameters

uMsg

[in] The Windows message received.

wparam

[in] Message-specific data.

lparam

[in] Message-specific data.

plRet

[out] Pointer to a long integer containing the return value.

pfHandled

[out] Pointer to a Boolean, true indicating handled.

Return Values

The method returns an HRESULT.

Remarks

You must forward certain messages received by your plug-in window to Windows Media Player if they are not
handled by your window code. For instance, keyboard messages and mouse messages might need to be handled
by the Player or Internet Explorer. Do not forward messages received from Windows Media Player in
IWMPWindowMessageSink::OnWindowMessage.

The following window messages must be forwarded:

WM_KEYDOWN
WM_KEYUP
WM_LBUTTONDBLCLK
WM_LBUTTONDOWN
WM_LBUTTONUP
WM_MBUTTONDBLCLK
WM_MBUTTONDOWN
WM_MBUTTONUP

WM_MOUSEACTIVATE
WM_MOUSEMOVE
WM_NCLBUTTONDBLCLK
WM_NCLBUTTONDOWN
WM_NCLBUTTONUP
WM_NCMBUTTONDBLCLK
WM_NCMBUTTONDOWN
WM_NCMBUTTONUP
WM_NCMOUSEMOVE
WM_NCRBUTTONDBLCLK
WM_NCRBUTTONDOWN
WM_NCRBUTTONUP
WM_RBUTTONDBLCLK
WM_RBUTTONDOWN
WM_RBUTTONUP

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

Library: Use wmp.dll.

See Also

IWMPNodeWindowedHost Interface
IWMPWindowMessageSink::OnWindowMessage

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPNodeWindowless Interface
The IWMPNodeWindowless interface is implemented by the plug-in.

In addition to the methods inherited from IWMPWindowMessageSink, the IWMPNodeWindowless interface
exposes the following methods.

Previous Next

Previous Next

Method Description

OnDraw Receives a handle to a device context and a RECT

See Also

Rendering Plug-ins Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPNodeWindowless::OnDraw

The OnDraw method receives a handle to a device context and a RECT structure for drawing in windowless
mode.

Syntax

HRESULT OnDraw(
 OLE_HDC hdc,
 const RECT* prcDraw
);

Parameters

hdc

[in] A handle to a device context.

prcDraw

[in] A RECT structure representing the drawing area.

Return Values

The method returns an HRESULT.

Remarks

This is the method that initiates rendering when in windowless mode.

Requirements

Version: Windows Media Player 9 Series or later.

structure for drawing in windowless mode.

Previous Next

Previous Next

Header: Defined in wmprealestate.idl; include wmprealestate.h.

See Also

IWMPNodeWindowless Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPNodeWindowlessHost Interface
The IWMPNodeWindowlessHost interface is implemented by Windows Media Player and its method is called
by the plug-in.

In addition to the methods inherited from IUnknown, the IWMPNodeWindowlessHost interface exposes the
following method.

See Also

Rendering Plug-ins Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPNodeWindowlessHost::InvalidateRect

The InvalidateRect method directs Windows Media Player to refresh the windowless display area.

Previous Next

Previous Next

Method Description

InvalidateRect Requests that Windows Media Player refresh the
display area.

Previous Next

Previous Next

Syntax

HRESULT InvalidateRect(
 const RECT* prc,
 BOOL fErase
);

Parameters

prc

[in] Specifies the region to update.

fErase

[in] Flag, true indicating erase.

Return Values

The method returns an HRESULT.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

Library: Use wmp.dll.

See Also

IWMPNodeWindowlessHost Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlugin Interface
The IWMPPlugin interface is implemented by the plug-in. It manages the connection to Windows Media
Player.

In addition to the methods inherited from IUnknown, the IWMPPlugin interface exposes the following
methods.

Previous Next

Previous Next

See Also

Rendering Plug-ins Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlugin::AdviseWMPServices

The IWMPPlugin::AdviseWMPServices method is implemented by the plug-in.

Syntax

HRESULT AdviseWMPServices(
 IWMPServices* pWMPServices
);

Method Description

AdviseWMPServices Receives a pointer to a
Windows Media Player
interface that contains
methods that provide
stream state information.

GetCaps Sets a value that specifies
whether the plug-in
requires the input format
and output format to be
identical.

GetID Returns the class ID of the
plug-in.

Init Receives a playback
context identifier.

Shutdown Executes when Windows
Media Player shuts down
the plug-in.

UnAdviseWMPServices Executes when Windows
Media Player releases the
pointer provided in
AdviseWMPServices.

Previous Next

Previous Next

Parameters

pWMPServices

[in] Pointer to an IWMPServices interface.

Return Values

The method returns an HRESULT.

Remarks

Windows Media Player calls the AdviseWMPServices method on the plug-in to pass in a pointer that the plug-
in can then use to call the IWMPServices interface, which contains methods that provide information about the
current state of the stream.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

See Also

IWMPPlugin Interface
IWMPServices Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlugin::GetCaps

The IWMPPlugin::GetCaps method returns a flag that specifies whether the plug-in can convert between an
input format and an output format.

Syntax

HRESULT GetCaps(
 DWORD* pdwFlags
);

Parameters

pdwFlags

Previous Next

Previous Next

[out] Pointer to a variable that specifies whether the plug-in can convert formats. The specified value is a
bitwise combination of zero or more flags from the WMPPlugin_Caps enumeration.

Return Values

The method returns an HRESULT.

Remarks

There are currently two possible [out] values that the plug-in may specify: zero to indicate that the plug-in can
convert formats, or WMPPlugin_Caps_CannotConvertFormats, which forces Windows Media Player to
handle any necessary format conversion.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

See Also

IWMPPlugin Interface
WMPPlugin_Caps

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlugin::GetID

The IWMPPlugin::GetID method returns the class id of the plug-in.

Syntax

HRESULT GetID(
 GUID* pGUID
);

Parameters

pGUID

[out] Pointer to a GUID that represents the class ID of the plug-in.

Return Values

Previous Next

Previous Next

The method returns an HRESULT.

Remarks

For more information on the GUID structure, see the Platform SDK.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

See Also

IWMPPlugin Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlugin::Init

The IWMPPlugin::Init method is called when Windows Media Player initializes the plug-in.

Syntax

HRESULT Init(
 DWORD dwPlaybackContext
);

Parameters

dwPlaybackContext

[in] DWORD value that indicates the particular Windows Media Player playback engine to which the plug-in
belongs.

Return Values

The method returns an HRESULT.

Remarks

It is possible at any given time that multiple instances of Windows Media Player could be running in the same
process. For instance, multiple Windows Media Player control instances could be embedded in the same

Previous Next

Previous Next

browser window, or even in multiple instances of a browser that co-exist in the same process. It is also possible
that the same instance of Windows Media Player could create multiple playback engines at the same time. The
dwPlaybackContext value allows you to determine which instance of the Windows Media Player playback
engine contains the plug-in. This is useful if you wish to enable multiple plug-ins to connect to each other.

Init and Shutdown will always be called on the same thread.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

See Also

IWMPPlugin Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlugin::Shutdown

The IWMPPlugin::Shutdown method is called when Windows Media Player shuts down the plug-in.

Syntax

HRESULT Shutdown();

Return Values

The method returns an HRESULT.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

Remarks

Init and Shutdown will always be called on the same thread.

See Also

Previous Next

Previous Next

IWMPPlugin Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPlugin::UnAdviseWMPServices

The IWMPPlugin::UnAdviseWMPServices method is used to release the pointer provided by
AdviseWMPServices.

Syntax

HRESULT UnAdviseWMPServices();

Parameters

The method takes no parameters.

Return Values

The method returns an HRESULT.

Remarks

Windows Media Player calls this method when the pointer provided by AdviseWMPServices is no longer
valid. The plug-in should use this method to cease making stream state requests through the pointer.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

See Also

IWMPPlugin Interface
IWMPPlugin::AdviseWMPServices

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

IWMPPluginEnable Interface
The IWMPPluginEnable interface sets and retrieves a value that represents whether the plug-in has been
enabled by the user.

In addition to the methods inherited from IUnknown, the IWMPPluginEnable interface exposes the following
methods.

See Also

Rendering Plug-ins Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPluginEnable::GetEnable

The IWMPPluginEnable::GetEnable method returns a value indicating whether the user has enabled the
plug-in.

Syntax

HRESULT GetEnable(
 BOOL* pfEnable
);

Parameters

pfEnable

Previous Next

Method Description

GetEnable Retrieves the current enable state.

SetEnable Sets the current enable state.

Previous Next

Previous Next

[out] Pointer to a Boolean value indicating whether the user has enabled the plug-in.

Return Values

The method returns an HRESULT. For rendering plug-ins, return E_NOTIMPL.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

See Also

IWMPPluginEnable Interface
IWMPPluginEnable::SetEnable

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPPluginEnable::SetEnable

The IWMPPluginEnable::SetEnable method retrieves a value indicating whether user has enabled the plug-
in.

Syntax

HRESULT SetEnable(
 BOOL fEnable
);

Parameters

fEnable

[in] A variable that receives a value indicating whether the user has enabled the plug-in.

Return Values

The method returns an HRESULT. For rendering plug-ins, return E_NOTIMPL.

Requirements

Version: Windows Media Player 9 Series or later.

Previous Next

Previous Next

Header: Defined in wmprealestate.idl; include wmprealestate.h.

See Also

IWMPPluginEnable Interface
IWMPPluginEnable::GetEnable

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPServices Interface
The IWMPServices interface is implemented by Windows Media Player. It provides methods to retrieve the
current stream state and current stream time.

In addition to the methods inherited from IUnknown, the IWMPServices interface exposes the following
methods.

See Also

Rendering Plug-ins Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPServices::GetStreamState

Previous Next

Previous Next

Method Description

GetStreamState Returns a value that represents the current stream
state.

GetStreamTime Returns a value that indicates the current stream time.

Previous Next

Previous Next

The IWMPServices::GetStreamState method retrieves information about the current play state of the stream.

Syntax

HRESULT GetStreamState(
 WMPServices_StreamState* pState
);

Parameters

pState

[in] A pointer to a WMPServices_StreamState enumeration value.

Return Values

The method returns an HRESULT.

Remarks

The stream is stopped, paused, or playing.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

Library: Use wmp.dll.

See Also

IWMPServices Interface
WMPServices_StreamState

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPServices::GetStreamTime

The IWMPServices::GetStreamTime method retrieves a structure indicating the current stream time.

Syntax

Previous Next

Previous Next

HRESULT GetStreamTime(
 REFERENCE_TIME* prt
);

Parameters

prt

[in] Pointer to a REFERENCE_TIME structure.

Return Values

The method returns an HRESULT.

Remarks

The current stream time is determined by Windows Media Player. This means that the value returned by this
method do not necessarily represent the elapsed time relative to the beginning of the file. For instance, if the
user moves the trackbar in the Player to seek the media to a new position, the value returned by this method
returns the time elapsed since the media began playing from the new position. Changes in playback rate will
also affect the value returned by this method.

The values provided in the rtTimestamp member of IMediaObject::ProcessInput and the rtTimestamp
member of the DMO_OUTPUT_DATA_BUFFER structure supplied by IMediaObject::ProcessOutput
contain values that indicate when the data provided in the buffer will be rendered relative to the current stream
time. Therefore, these values also do not necessarily represent the elapsed time relative to the beginning of the
file or the presentation time specified in the file.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

Library: Use wmp.dll.

See Also

IWMPServices Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

IWMPWindowMessageSink Interface
The IWMPWindowMessageSink interface receives messages when the rendering plug-in does not have a
window hosted in the Player UI.

In addition to the methods inherited from IUnknown, the IWMPWindowMessageSink interface exposes the
following method.

See Also

Rendering Plug-ins Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPWindowMessageSink::OnWindowMessage

The OnWindowMessage method receives window messages.

Syntax

HRESULT OnWindowMessage(
 UINT uMsg,
 WPARAM wparam,
 LPARAM lparam,
 LRESULT* plRet,
 BOOL* pfHandled
);

Parameters

uMsg

[in] The Windows message received.

wparam

[in] Message-specific data.

Method Description

OnWindowMessage Receives window messages.

Previous Next

Previous Next

lparam

[in] Message-specific data.

plRet

[out] Pointer to a long integer containing the return value.

pfHandled

[out] Pointer to a Boolean, true indicating handled.

Return Values

The method returns an HRESULT.

Remarks

When a rendering plug-in window is not hosted in the Windows Media Player UI, such as when the Player is in
windowless mode or the Player is rendering Windows Media video, it needs a mechanism to receive window
messages from the Player. In these cases, the Player forwards window messages to the plug-in by calling this
method.

Windows Media Player queries all active rendering plug-ins to determine whether they support this method and
automatically forwards window messages to each plug-in that does.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmprealestate.idl; include wmprealestate.h.

See Also

IWMPWindowMessageSink Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Rendering Plug-ins Enumeration Types
The Windows Media Player SDK implements the following enumeration types for creating Rendering plug-ins.

Previous Next

Previous Next

See Also

Rendering Plug-ins Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

WMPPlugin_Caps
The WMPPlugin_Caps enumeration type signals whether the plug-in can convert between input and output
formats.

Syntax

enum WMPPlugin_Caps{
 WMPPlugin_Caps_CannotConvertFormats = 1
};

Members

WMPPlugin_Caps_CannotConvertFormats

The plug-in requires that the input format and output format be the same.

Remarks

When IWMPPlugin::GetCaps returns WMPPlugin_Caps_CannotConvertFormats, Windows Media Player
handles any necessary format conversion.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpservices.idl; include wmpservices.h.

Enumeration Type Description

WMPPlugin_Caps Used with IWMPPlugin::GetCaps to indicate
whether the plug-in can convert between formats.

WMPServices_StreamState Indicates the whether the stream is currently stopped,
paused, or playing.

Previous Next

Previous Next

See Also

Rendering Plug-ins Enumeration Types
IWMPPlugin::GetCaps

© 2000-2003 Microsoft Corporation. All rights reserved.

WMPServices_StreamState
The WMPServices_StreamState enumeration indicates whether the stream is currently stopped, paused, or
playing.

Syntax

enum WMPServices_StreamState{
 WMPServices_StreamState_Stop = 0,
 WMPServices_StreamState_Pause = 1,
 WMPServices_StreamState_Play = 2
} WMPServices_StreamState;

Members

WMPServices_StreamState_Stop

The stream is stopped.

WMPServices_StreamState_Pause

The stream is paused.

WMPServices_StreamState_Play

The stream is playing.

Requirements

Version: Windows Media Player 9 Series or later.

Header: Defined in wmpservices.idl; include wmpservices.h.

See Also

Previous Next

Previous Next

Rendering Plug-ins Enumeration Types
IWMPServices::GetStreamState

© 2000-2003 Microsoft Corporation. All rights reserved.

Windows Media Metafiles
This reference documents Windows Media metafiles, which use the .wax, .wvx, .wmx, and .asx file name
extensions. It contains overview and programming guide sections, and a full reference section on metafile
element tags, their attributes and values, and special conditions related to each element.

A metafile is a file that contains information about other files. A metafile can be used to list a group of media
content files that are to be played in order. Windows Media metafile playlists, simply referred to as playlists in
this reference document, are one of the most powerful features of Microsoft Windows Media Technologies.
Playlists allow you to control and customize your media content. For instance, with playlists you can schedule
content to play in succession or insert advertising or special interest clips into a presentation. A further
advantage of playlists is that instead of playing a stream, stopping, starting the next stream, and then waiting for
it to finish buffering, Windows Media Services and Windows Media Player work together to play the clips one
after the other with minimal buffering time or interruption between them.

Windows Media Technologies and other Internet products provide you with the tools to understand user
demographics and dynamically customize a broadcast or message for individual users.

This reference is divided into the following sections.

See Also

Windows Media Player 9 Series SDK

Previous Next

Previous Next

Section Description

About Windows Media Metafiles Introduces Windows Media metafile elements and
discusses their purpose.

Windows Media Metafile Guide Details the steps necessary for creating metafiles.
Examples illustrate how to use element tags for
specific tasks.

Windows Media Metafile Reference Explains in detail each of the metafile elements, their
attributes and values, and special conditions related to
each. Explains metafile file name extensions and their
proper use.

© 2000-2003 Microsoft Corporation. All rights reserved.

About Windows Media Metafiles
Microsoft Windows Media metafiles are text files that provide information about a file stream and its
presentation. Windows Media metafiles are based on the Extensible Markup Language (XML) syntax and can
be encoded in ANSI or UNICODE (UTF-8) format. They are made up of various elements with their associated
tags and attributes. Each element in a Windows Media metafile defines a particular setting or action in
Windows Media Player. Some elements must be located in a specific position in the file relative to other
elements. Some elements have required tags and attributes that must be defined in the Windows Media metafile.

Windows Media Download (WMD) packages provide a way to combine Windows Media Player borders,
playlist information, and multimedia content into a single downloadable file.

The following sections provide conceptual information about Windows Media metafile playlists and Windows
Media Download packages.

See Also

Windows Media Metafiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Section Description

Windows Media Metafiles Overview Describes Windows Media metafiles, why you need
them, and how to use them.

Windows Media Download Packages Describes WMD packages, why you need them, and
how to use them.

Previous Next

Previous Next

Windows Media Metafiles Overview
The most important part of successfully using Windows Media metafiles is using the correct syntax for the
metafile elements. Syntax errors in a Windows Media metafile can cause anything from a single attribute being
overlooked, to the metafile not being recognized as valid and failing to work.

Almost as important is the order in which the elements appear in a Windows Media metafile. The attributes of
some elements temporarily override the attributes of similar elements in different sections of the metafile. There
is a defined Order of Precedence.

Windows Media metafile playlists are Windows Media metafiles that provide information that Windows Media
Player uses to receive unicast streams, multicast streams, and other supported media from an intranet or the
Internet. A metafile playlist is basically a shortcut to media content. A metafile playlist can be sent as e-mail,
used as a link reference on a Web page, created dynamically using Active Server Pages (ASP), or exist as a
stand-alone file on a local disk drive. A metafile playlist can reference another metafile playlist, an ASP page,
or a Windows Media Station file (with a .nsc file name extension). An .nsc file is used to define a Windows
Media Station to Windows Media Player. The basic handling process is the same for each case.

See Also

About Windows Media Metafiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Purpose of a Metafile Playlist
The basic purpose of a metafile playlist is to redirect streaming media content away from browsers to Windows
Media Player because most browsers will attempt to download the content instead of stream it. A metafile
playlist provides information Windows Media Player uses to receive streams, such as the Uniform Resource
Locator (URL). The metafile playlist can provide the path to media files over the Internet, an intranet or just
stored media on a network or local drive. With processing redirected to Windows Media Player, you have
greater control over the streaming media.

Metafile playlists are used to control the streaming experience. By combining different media files into a single
content stream, you can control and customize their presentation.

See Also

Windows Media Metafiles Overview

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Using a Metafile Playlist
Because you cannot link directly from a Web page to a streaming media server, you use metafile playlists. The
metafile playlists contain the information needed by Windows Media Player and are stored on a Web server.
You can then link from the Web document to a metafile playlist. When a metafile playlist is opened, control
transfers to Windows Media Player, which processes the file, connects to the streaming media server, and plays
the specified content.

The browser first downloads the metafile playlist to the user's cache directory. Because the metafile playlist is
small, this is a very quick step. The user's computer then finds in its file associations table the association of the
metafile playlist with Windows Media Player. Windows Media Player opens and interprets the scripting in the
metafile playlist, which contains, among other things, the URL of the streaming content. Windows Media
Player uses the URL to locate the content and initiate the stream. The metafile playlist scripting then controls
the streaming experience.

Because metafile playlists work through a helper application associated with the ASXMIME type
(application/mplayer2 or video/x-ms-asf), they are compatible with any browser that supports helper
applications. The examples shown in this document will work with Microsoft Internet Explorer 4.0 and later,
and with Netscape Navigator 4.0 and later on Microsoft Win32® and Apple Macintosh platforms. In all
examples, you will have to be sure that any media files referenced have valid paths and file names for your
environment.

See Also

Windows Media Metafile Guide
Windows Media Metafile Reference
Windows Media Metafiles Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

Support for Multiple Languages
Windows Media Player 9 Series supports Windows Media metafiles created using the Unicode character set.
This allows you to include multilingual metadata in your metafile playlist. The following rules govern the use
of multilingual metadata in Windows Media metafiles:

Characters must be encoded using the UTF-8 encoding scheme.
The metafile playlist must include the following PARAM at the playlist level:

<PARAM NAME = "Encoding" VALUE = "utf-8">

Only Windows Media Player 9 Series or later supports this functionality.
If the metafile playlist is not saved with UTF-8 encoding and the correct PARAM element, it will be
parsed using the default system locale code page of the user's computer.

See Also

PARAM Element
Windows Media Metafiles Overview

© 2000-2003 Microsoft Corporation. All rights reserved.

Windows Media Download Packages
Windows Media Download (WMD) packages combine Windows Media Player borders, playlist information,
and multimedia content in a single downloadable file with a .wmd file name extension. A WMD package could
include an entire album of music videos that also displays advertising in the form of graphical branding and
links to an online music retailer Web site.

Users can download a WMD package from a Web site simply by clicking a link. Once the package is
downloaded to the user's computer, Windows Media Player extracts the files inside the package automatically,
then adds the packaged playlist to the playlists drop-down box, adds the content to Media Library, displays the
border skin in the Now Playing pane of the full mode Windows Media Player, and then plays the initial item in
the playlist.

WMD packages provide the following benefits:

A single-click downloads, extracts, and catalogues multiple files to the user's computer.
Content plays immediately after being downloaded.
Customized borders can display advertising and branding information.
Packaged playlists are cataloged in Media Library.

Previous Next

Previous Next

Web site redirection can occur from within Windows Media Player to a related site.
A variety of interactive border controls are available.
Multiple audio and video file types are supported for packaging.

All of these benefits can be used together. For example, a single WMD package could give users the
opportunity to view the lyrics to songs as they play, display a video that accompanies the songs, view
advertising information about the record distributor, view album cover art, visit a fan Web site, and catalog the
content in Media Library.

The following sections provide concepts to help you understand and create Windows Media Download
packages.

See Also

About Windows Media Metafiles
Borders for Windows Media Player

© 2000-2003 Microsoft Corporation. All rights reserved.

How Windows Media Download Packages Work
A Windows Media Download package is launched from a Web site when a user clicks a link in a Web browser,
such as Microsoft Internet Explorer. This action opens Windows Media Player and then downloads and un-
packages the WMD package on the user's hard disk in a default folder.

Once the files have been extracted from the WMD package, Windows Media Player locates a Windows Media
metafile playlist with a .asx file name extension among the packaged files. If it finds one, the Player creates a

Section Description

How Windows Media Download Packages Work Provides an overview of how a WMD file is
packaged, posted to a Web site, downloaded, and
played by Windows Media Player.

Using Borders in Windows Media Download
Packages

Introduces borders and explains how a border is
created.

Using Playlists in Windows Media Download
Packages

Describes how a metafile playlist file is used in a
WMD package, and provides sample code.

Creating a Windows Media Download Package Describes the process of putting a package together
for distribution.

Previous Next

Previous Next

playlist based on the included metafile. Files that contain multimedia content are then added to Media Library.

Windows Media Player also looks for a SKIN element in the metafile. If the SKIN element contains a reference
to a border file with a .wmz file name extension, the Player loads the border into the Now Playing pane. The
Player then starts to play the content provided in the package.

The following diagram shows how content is packaged in a WMD file, posted to a Web site, downloaded, and
played on a client computer using Windows Media Player.

The following table describes the three elements that make up a WMD package.

See Also

Windows Media Download Packages

Package element Function File name extensions

Border A fixed, customized user interface created by the
content owner for displaying, linking, and
playing all media packaged in the WMD
package. The techniques used to create borders
are similar to those used to create skins.

.wmz

Metafile Playlist A Windows Media metafile that contains
ENTRY elements, playlist information, and a
SKIN element identity for content files.

.asx

Multimedia Content A file containing any audio or video format that
is supported by Windows Media Player.

.wma, .wmv, .asf, .wav,

.avi, .mpg, .mp3

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Borders in Windows Media Download
Packages
Borders enable you to create a customized graphical user interface for your packaged content. The border can
include elements such as images, interactive controls, and links to Web sites. You can use borders in cases
where you want to add additional value to your packaged content, such as for branding or advertising. After
users download and open your WMD package, Windows Media Player automatically displays your custom
border when it plays the packaged content.

Unlike a skin, which enables users to completely replace the Windows Media Player user interface, a border is
displayed only in the Now Playing pane of the full mode Player. However, the same tools and technologies that
you use to create skins are also used to create borders. The following illustration shows a border.

Previous Next

Previous Next

It is important to understand the basic techniques for creating a skin before attempting to create a border. Border
programming is accomplished using two programming languages: Extensible Markup Language (XML) and
Microsoft JScript. XML is used to define interface elements such as buttons, sliders, and text boxes. You don't
need to understand all the details of XML since you don't have to write new XML code elements; you can
simply use the ones provided by Windows Media Player. Although JScript is not required for creating borders,
it can be used to provide additional functionality.

A compressed border file with a .wmz file name extension includes a border definition file with a .wms file
name extension and all the image files used within the border.

To include a border in a WMD package, simply create a border and reference that border in a Windows Media
metafile playlist. The border file is loaded into Windows Media Player after the Player parses the metafile and
interprets the SKIN element that references the border. The SKIN element is used only for borders, and the
HREF attribute of the SKIN element can reference only one skin for each package.

See Also

Borders for Windows Media Player
Windows Media Download Packages
Windows Media Player Skins

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Playlists in Windows Media Download
Packages
Playlists are Windows Media metafiles with a .asx file name extension that provide information that tells
Windows Media Player how to play the packaged content. By combining multiple content files into a single
WMD package, you can control and customize your Windows Media Download package using the playlist.

Note In general, metafile playlists are used by WMD packages to reference the multimedia content in the
package, and not a stream from a server on an intranet or the Internet. However, URL references within the .asx
file are supported.

Using XML, the metafile provides the information Windows Media Player uses to play and display content.
Playlists are made up of various XML code elements with their associated tags and attributes. Each element in a
Windows Media metafile playlist defines a particular setting or action in Windows Media Player.

The user's computer associates a Windows Media metafile that has an .asx file name extension with Windows
Media Player. Windows Media Player opens and parses the XML code in the metafile, which contains the path
for locating the packaged audio or video files. The metafile script then controls the audio, video, and graphical
experience. The metafile also contains information that Windows Media Player processes and displays in the
playlist drop-down box. Immediately after the list is displayed, the first item in the list is played.

A metafile playlist is a shortcut to the files that contain your packaged content. The following code is an
example of a metafile that specifies the border to display by using the SKIN element, two songs to be played,
and the playlist information for each song.

<ASX Version="3.0">
<AUTHOR>Name of content creator goes here</AUTHOR>
<TITLE>Album Title goes here</TITLE>
<PARAM name="Album" value="Album Title "/>
<PARAM name="Artist" value="Artist Name"/>
<PARAM name="Genre" value="Genre"/>
<SKIN HREF="myborder.wmz"/>
 <ENTRY>
 <REF HREF="song1.wma"/>
 <AUTHOR>Creator's name</AUTHOR>
 <COPYRIGHT>Copyright information</COPYRIGHT>
 <TITLE>Song #1 title</TITLE>
 </ENTRY>
 <ENTRY>
 <REF HREF="song2.wma"/>
 <AUTHOR>Creator's name</AUTHOR>
 <COPYRIGHT>Copyright information</COPYRIGHT>
 <TITLE>Song #2 name</TITLE>
 </ENTRY>

Previous Next

</ASX>

See Also

Borders for Windows Media Player
Windows Media Download Packages
Windows Media Metafiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Creating a Windows Media Download Package
Follow these steps to create a WMD package.

1. Create a border. Use the same techniques you would use to build a skin for Windows Media Player.
Design the border so that resizing Windows Media Player will not ruin the composition of the border
elements For instance, use a solid color or visualization as a background because these will scale well as
the Player is resized.

2. Compress the border contents. Using a compression program commonly used for distributing and
storing files, compress the border files: images, JScript files, and the skin definition file with a .wms file
name extension. Rename the compressed file so that it has a .wmz file name extension. Windows Media
Player associates and reads the .wmz file extension automatically.

3. Write a Windows Media metafile. The Player will not load the border unless you create a Windows
Media metafile with an .asx file name extension that implements the SKIN element. The metafile can
also be used to create a playlist that describes the content included in the package.

4. Assemble your content. Put all the files that you want to use into a folder. This includes audio files,
video files, metafiles, and border definition files.

5. Create the package. Using a compression program commonly used for distributing and storing files,
compress the border file, content files, and the metafile into a new file with a .wmd file name extension.
Windows Media Player associates and reads the .wmd file extension automatically.

6. Post the package to a Web site. The completed package is ready to be posted to a Web site and
downloaded by users.

See Also

Windows Media Download Packages

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Windows Media Metafile Guide
A Windows Media metafile can be as simple or complex as you need it to be. The most basic Windows Media
metafile contains only the Uniform Resource Locator (URL) of some multimedia content on a server. The
client, Windows Media Player, parses this information and then opens the media file or stream defined in the
Windows Media metafile. A complex metafile can contain multiple files or streams arranged in a playlist,
instructions on how to play the files or streams, text and graphic elements such as title, author, and copyright
text, personalized ad insertion into a live stream, hyperlinks associated with elements on the Windows Media
Player interface, and more.

The following sections provide detailed information on how to create and use Windows Media metafile
playlists.

See Also

Windows Media Metafile Elements Reference
Windows Media Metafiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Section Description

Types of Playlists Lists available file name extensions.

Creating Metafile Playlists Describes how to create Windows Media metafile
playlists.

Metafile Playlists Describes metafile playlist usage, scripting, metadata,
and processing.

Metafile Extension Guidelines Describes the preferred use of file name extensions
for streaming media files.

Order of Precedence Describes how metafile playlist elements override
other metafile playlist elements.

Previous Next

Previous Next

Types of Playlists
Windows Media metafile playlists, simply referred to as playlists in this document, have .wax, .wvx, or .asx
extensions. Playlists with these extensions are used to access Windows Media files with .wma, .wmv, and .asf
file name extensions, respectively.

See Also

Metafile Extension Guidelines
Using Metafile Playlists
Windows Media Metafile Elements Reference
Windows Media Metafile Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Creating Metafile Playlists
You can create a playlist using any text editor, such as Microsoft Notepad. Open your text editor. Type the
script entries you want to implement. After you have finished typing into Notepad, save the file with an
appropriate file name and file name extension. For more information about extensions, see Metafile Extension
Guidelines. Typically the file name is the name of the Windows Media file or stream followed by an extension
of .wax, .wvx, or .asx. For example, if your media content is a Windows Media audio file that has a .wma
extension, use the .wax extension when naming the playlist. Playlists must not include any formatting codes
from a word processor, such as Microsoft Word. To be sure no formatting codes are included in the playlist,
save the file as a plain text or ASCII file.

Note Elements and attributes are not case sensitive. The text used in the playlist to define an element or
attribute can be either uppercase or lowercase, or a mixture of both.

If an element does not have any child elements (those that modify or are contained within another element), a
single slash character (/) can be used at the end of the opening tag, just before the '>', in place of a closing tag.
Child elements of an element must appear between the opening and closing tag for that element, otherwise they
are not child elements for that element, and are ignored or cause an error in the syntax of the playlist.

The first four characters of a playlist must be "<ASX". The ASX element is used in all playlists whether their
extension is .wax, .wvx, or .asx, There must be only one ASX element per playlist. This element identifies the
file as a Windows Media metafile playlist. It does not specify the type of playlist.

The ASX element has three possible attributes:

VERSION

Previous Next

Previous Next

The VERSION attribute is required and must follow immediately after the ASX element, for example "<ASX
version = "3.0">". The current version number is 3.0. Windows Media Player supports all previous versions.
Acceptable values for the VERSION attribute include both 3.0 and 3 (with no decimal point).

PREVIEWMODE

The PREVIEWMODE attribute is optional. It provides another mechanism for specifying how long to render a
clip. If the value of the PREVIEWMODE attribute is YES, Windows Media Player will render each clip for
the duration specified by the element PREVIEWDURATION. Each clip can have a PREVIEWDURATION
specified.

BANNERBAR

The optional BANNERBAR attribute defines whether the Windows Media Player control reserves space for a
banner graphic. (Use the BANNER element to specify the graphic to display.) If the value of BANNERBAR is
FIXED, Windows Media Player reserves banner space for the show and for every clip, whether or not the
metafile playlist specifies a banner for the show or clip. This will keep the size of the Windows Media Player
window the same (except when the video size changes) regardless of the absence or presence of a banner
graphic. If the show or clip does not have a banner associated with it, the space reserved for one is black. If the
value of the BANNERBAR attribute is AUTO, Windows Media Player reserves space for the banner only
when the show or clip includes one.

<ASX version="3.0" BANNERBAR="AUTO" >

For more information about the three attributes of the ASX element, see the reference entry for the ASX
Element.

An ASX element contains ENTRY child elements that define information about the media files to be accessed.
Each ENTRY element must contain a REF element that specifies the path to the media file to be streamed.
There must be at least one ENTRY or ENTRYREF element within an ASX element.

Other elements defined within the scope of the ASX element, such as TITLE and AUTHOR, are associated
with the metadata displayed by Windows Media Player.

The simplest playlists are created by adding multiple ENTRY elements with a single REF element to a
metafile. Each ENTRY element in a metafile playlist is rendered in the order it appears in the file as though the
user had manually opened each clip.

Example Code

<ASX version = "3.0">
<!--A simple playlist with entries to be played in sequence.-->
 <Title>The Show Title</Title>
 <Entry>
 <Ref href = "mms://adventure-works.com/Path/title1.wma" />
 </Entry>
 <Entry>
 <Ref href = "mms://adventure-works.com/Path/title2.wma" />
 </Entry>
 <Entry>
 <Ref href = "mms://adventure-works.com/Path/title3.wma" />
 </Entry>
</ASX>

Be sure that the playlist is working by double-clicking it in Windows Explorer. Windows Media Player should

open and start streaming the media content. After you have confirmed that the playlist works, save it to your
Web server along with your Web pages, and link to it by means of an HREF element, or embed it in a Web
page using the Windows Media Player OBJECT element.

The following sections contain more information:

Nesting Metafiles
Using ASP Pages to Dynamically Create Windows Media Metafile Playlists

See Also

BANNER Element
Example Playlists
Windows Media Metafile Elements Reference
Windows Media Metafile Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Nesting Metafiles
A metafile can reference another metafile. To reference another metafile, use the ENTRYREF element. An
ENTRYREF element in the primary metafile points to an external metafile.

The Windows Media Player control processes the ENTRY elements of the referenced metafile as if they were
included in the primary metafile at the position of the ENTRYREF element. However, it skips any ENTRY
elements in the referenced metafile that have the SKIPIFREF attribute set to YES.

The Windows Media Player 7.0, 7.1, and Windows Media Player for Windows XP controls ignore any
ENTRYREF elements in the referenced metafile. Thus, metafiles can only be nested one level deep using these
versions. These versions also ignore the ASX element and its attributes in the referenced file. Windows Media
Player 9 Series or later supports nesting metafiles up to 5 deep.

See Also

Creating Metafile Playlists

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Using ASP Pages to Dynamically Create Windows
Media Metafile Playlists
You can use Active Server Pages (ASP, or .asp files) to dynamically generate playlists based on information
provided by users. An ASP page is a dynamic Web page used in conjunction with Microsoft Internet
Information Services (IIS). ASP is an environment in which you can combine HTML, scripts, and reusable
ActiveX server components to create dynamic and powerful Web-based business solutions. ASP pages enable
server-side scripting for IIS with native support for both Microsoft Visual Basic Scripting Edition (VBScript)
and Microsoft JScript. This discussion assumes that you are familiar with ASP and defining variables.

All header information must be contained on the first line of the ASP page string returned to Windows Media
Player.

When you use ASP pages to generate playlists, you must specify values for the Response object's ContentType
and expires properties in the ASP page because of latency issues with Windows Media Player. The
Response.ContentType value must be a valid file name extension for Windows Media metafiles. Acceptable
values include wma, wax, wmv, wvx, asf, and asx.

The Response.expires property specifies the length of time, in seconds, that Windows Media Player caches the
playlist file. Specifying a value of zero results in Windows Media Player requesting a new playlist from the
server each time the user refreshes the page.

See the Platform SDK for details about using the Response object in Active Server Pages.

The following code is an example of an ASP page used to generate a Windows Media metafile playlist.

<%Response.ContentType = "video/x-ms-wma"%><%Response.expires=0 %>
<ASX VERSION="3.0">
 <TITLE>Your title here</TITLE>
 <ENTRY>
 <REF HREF ="mms://adventure-works.com/pubpt/filename.wma" />
 </ENTRY>
</ASX>

See Also

Creating Metafile Playlists

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Metafile Playlists
Windows Media metafile playlists are used to organize stream content and presentation. A playlist can simply
redirect Windows Media Player to the content to be streamed, but more commonly will provide a list of files to
be played sequentially. A more complex playlist may contain repeats, commercial inserts, and information
about the items in the list.

Another advantage of playlists is that instead of playing a stream, stopping, starting the next stream, and then
waiting for it to finish buffering, Windows Media Services and Windows Media Player work together to play
the clips one after the other with minimal buffering time or interruption.

The following sections provide more information about metafile playlists:

Control of Playlists
Custom Graphics in Windows Media Player
Displaying Web Pages in Windows Media Player
Logging Stream Data
Retrieving Metadata

See Also

Windows Media Metafile Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Control of Playlists
Control of playlists is maintained by the client. Playlists are parsed by Windows Media Player, which takes
actions based upon the elements of the playlist. The client has control of the streaming experience.

See Also

Metafile Playlists

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Custom Graphics in Windows Media Player
With Windows Media metafile scripting, you can add graphics elements to Windows Media Player as the
stream plays. There is one basic type of graphics you can add.

See Also

Metafile Playlists
Modifying the Display
Windows Media Metafile Elements Reference
Windows Media Metafile Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Displaying Web Pages in Windows Media Player
Windows Media metafiles let you display Web pages while the entries in your playlist play. These Web pages
display in the Now Playing pane in place of the visualization or the normal display of a video file. Using
regular HTML, you can supplement your digital media with custom content or advertisements, or provide a
custom user interface to supplement the user interface of the Player.

To specify HTML content to embed in the Player, use the PARAM element and set its NAME attribute to

Previous Next

Previous Next

Type Description

BANNER Using the BANNER element you can place a banner (32 pixels high by 194
pixels wide) image on Windows Media Player at the bottom of the video display
area. You can then use a child element to add a hyperlink to the banner.

Previous Next

Previous Next

"HTMLView" and its VALUE attribute to a URL. If the PARAM element is a child of the ASX element, it
displays for the entire duration of a playlist. If it is a child of an ENTRY element, it displays for the duration of
that entry only. This lets you specify supplemental content that will change depending on what is playing.

Note The URL you specify cannot refer to a file on the local machine. This prevents metafiles in the local
security zone from loading Web pages which might contain malicious script code.

The following example illustrates a playlist that contains two entries, each of which references a different URL:

<ASX version="3.0">
 <TITLE>HTMLView Demo</TITLE>
 <ENTRY>
 <TITLE>First Entry</TITLE>
 <REF href="audio.wma"/>
 <PARAM name="HTMLView" value="http://www.microsoft.com"/>
 </ENTRY>
 <ENTRY>
 <TITLE>Second Entry</TITLE>
 <REF href="video.wmv"/>
 <PARAM name="HTMLView" value="http://www.proseware.com"/>
 </ENTRY>
</ASX>

Displaying Video

While HTML is showing in the Now Playing pane, video files cannot display as they normally do. Instead, you
can display them within the Web page by using an embedded Windows Media Player control. This allows you
to specify the exact dimensions of the video display and to coordinate its appearance with the other HTML
content.

When embedding the control in this way, do not specify the URL attribute of the OBJECT element that embeds
the control. The digital media content referenced by the playlist ENTRY element plays within the embedded
control automatically.

You can manipulate the embedded control using JScript code as if it were a standalone Web page. Because the
embedded control recognizes that it is contained within the Player, it automatically communicates with the
Player when JScript code runs. This means you can create a custom user interface to supplement or replace the
user interface provided by the Player itself. A custom Stop button provided in the HTML, for example, can
duplicate the functionality of the normal Stop button of the Player.

For general information about embedding the Windows Media Player control in a Web page, see the Player
Control Guide.

Additional Tips

When you design Web pages that will be shown in the Now Playing area of the Player, take into account the
reduced screen space that you have available. In general, it's not a good idea to simply embed Web pages that
were originally designed for a standalone browser. Such pages will often be clipped on one or more sides and
end users will have to use scroll bars to see all of your visual content.

You also cannot specify the size of the display window. The elements of your Web page should maintain a
logical appearance when the user resizes the Player window.

Be aware that script commands may not work as you intend. The FILE and URL script commands are affected
by the end user's security choices. The Web page that you display in the Player is subject to the Player security

choice, and the default setting is to not execute those two script commands. Custom script commands will
always execute, however, so you can take similar actions through custom commands.

See Also

Metafile Playlists

© 2000-2003 Microsoft Corporation. All rights reserved.

Logging Stream Data
Logged information can be acquired and used to determine viewer behavior, for example, how often a stream is
viewed, or if a specific user viewed a stream and for how long at what quality.

Logging information is automatically sent to the server from which the playlist originated. You can also send
logging information to additional servers, including Web servers you use exclusively for logging. To do this,
use the LOGURL element, specifying a valid URL for the HREF attribute. You can include LOGURL
elements as children of the ASX element and as children of individual ENTRY elements. When the playlist is
first opened, logging information is sent to the origin server and to each URL specified in LOGURL children
of the ASX element. Then, as each entry is reached, logging information specific to that entry is sent to each
URL specified in LOGURL children of the ENTRY element.

The Windows Media Format SDK supports the LOGURL element through the IWMSReaderNetworkConfig
interface and the following methods:

HRESULT AddLoggingUrl(LPCWSTR pwszUrl);
HRESULT GetLoggingUrl(DWORD dwIndex, LPCWSTR pwszUrl, DWORD *pcchUrl);
HRESULT GetLoggingUrlCount(DWORD *pdwUrlCount);
HRESULT ResetLoggingUrlList();

In addition to the information that is automatically logged, a metafile playlist can log custom information
through the use of the PARAM element. To use the PARAM element in this way, set the NAME attribute to
"log:" followed by a log field name and an optional XML namespace separated from the field name by another
colon (":"). Everything after the second colon is treated as a namespace, so the field name should not contain a
colon.

The log field specified in the NAME attribute is set to the value of the VALUE attribute. If the log does not
already contain a field with the specified name, it will be added.

Example Code

<ASX version="3.0">
 <LOGURL href="http://www.proseware.com/log.asp?SomeArg=SomeVal" />

Previous Next

Previous Next

 <ENTRY>
 <REF href="mms://ucast.proseware.com/Media1.wma" />
 <LOGURL href="http://www.proseware.com/cgi-bin/logging.pl?SomeArg=SomeVal" />
 <LOGURL href="http://www.proseware.com/WMLogging.dll?SomeArg=SomeVal" />
 <PARAM name="log:cs-media-role" value="Advertisement"/>
 <PARAM name="log:cs-media-name:namespace" value="Music"/>
 <REF href=rtsp://ucast.proseware.com/Media1.wma"/>
 </ENTRY>
 <ENTRY>
 <REF href="mms://ucast.proseware.com/Media2.wma"/>
 </ENTRY>
</ASX>

See Also

Metafile Playlists
Windows Media Metafile Elements Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Retrieving Metadata
While a show or clip is playing, your script can retrieve metadata, such as title and author, by using the
getItemInfo methods of the Windows Media Player Media and Playlist objects. You can retrieve metadata
from the ASX scope using Playlist object methods and from the ENTRY scope using Media object methods.

For example, to retrieve the values for AUTHOR, ABSTRACT and PARAM in the file below, use the
getItemInfo method of the Playlist object. The attribute name is required for this method. Attribute names can
be obtained by providing the index number to the attributeName property. The available indexes for a Playlist
object can be obtained using the attributeCount property.

Example Code

<ASX version="3.0">
 <AUTHOR>My Talking File</AUTHOR>
 <ABSTRACT>Talking File Album</ABSTRACT>
 <PARAM name="one" value="111"/>
 <ENTRY>
 <REF href="Artists_Only.wma"/>
 <TITLE>Artists Only</TITLE>
 <COPYRIGHT>2000</COPYRIGHT>
 <PARAM name="three" value="333"/>
 </ENTRY>
 <PARAM name="two" value="222"/>
</ASX>

Previous Next

Previous Next

To retrieve the values of the current Media object in the ENTRY scope for REF, TITLE, COPYRIGHT, and
PARAM ("three"), use the currentMedia property of the Player object. Use the attributeCount property of
the Media object to determine the number of attributes available for the specified Media object. Use index
numbers with the getItemInfoByAtom method to retrieve attribute values. Use index numbers with the
getAttributeName method of the Media object to determine the names of the available attributes, and then use
the results with the getItemInfo method.

For an example of using Windows Media Player object methods to retrieve metadata, see
Playlist.attributeCount.

See Also

Creating Metafile Playlists
Metafile Playlists
Windows Media Metafile Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Metafile Playlists
Playlists specify how the streaming media or media files will be played and what metadata Windows Media
Player will display.

This section explains several ways you can use playlists. The section is divided into the following topics.

Previous Next

Previous Next

Topic Description

Modifying the Display Adding text, links, and images.

Redirection Using playlists to redirect the browser to Windows
Media Player and specifying the URL of a stream or
media file to play.

Accessing Media Using metafile elements and their child elements to
specify the content to access, and the order and
duration of their playback.

Using Live Event Stream Switching Using the EVENT element to specify a media stream
to access and then resume playing the original stream.
Used for ad insertion.

Using Metafiles for Seamless Stream Switching Using the EVENT element to preload the next media
stream to access to avoid gaps in the presentation.

See Also

Metafile Playlists
Windows Media Metafile Elements Reference
Windows Media Metafile Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Modifying the Display

Playlists can alter the Windows Media Player user interface in four main ways:

Text properties
Image properties
MOREINFO properties
ABSTRACT text

Text properties

Windows Media Player enables the display of Title, Author, Copyright, and Description metadata text. Clip
metadata can come from the stream or media file, or it can come from a playlist. Show metadata comes from the
playlist. In general, playlists are a better method of passing text properties to Windows Media Player, especially
if text elements are likely to change. It is easier to edit text in a playlist than to re-author a media file. And
because properties read from a playlist override those contained in the media file, you can easily update display
text by adding the new text to the corresponding property in a playlist. In the following example, the text of the
Title and Author metadata in the playlist overrides the Title and Author text contained in the media file,
sample.wma.

Using Announcements Using a metafile to provide information about the
URL for a media stream, including the multicast IP
address, port, stream format, and other station
settings.

Using URL and Server Rollover Using metafile playlists to provide a means of
automatically rolling over to alternate content sources
when a stream cannot be accessed or played.

Using Custom Parameters and Commands Using the PARAM element to define custom
elements to provide additional metadata.

Personalizing Media Delivery Using user preferences to determine broadcast
content.

Previous Next

Previous Next

DESCRIPTION text is retrieved from a Windows Media file referenced in an ENTRY element unless there is
an ABSTRACT element in a metafile playlist. If there is ABSTRACT text, it will be displayed, overriding the
DESCRIPTION text.

<ASX version="3.0" BANNERBAR="AUTO" >
 <ENTRY>
 <BANNER HREF="YourPath\2.gif">
 </BANNER>
 <TITLE>Upgrade</TITLE>
 <AUTHOR>Ad Department</AUTHOR>
 <REF href="YourPath\sample.wma"/>
 </ENTRY>
</ASX>

Image properties

Banner images can be added to the user interface of Windows Media Player. The graphic can be used for
advertising, providing information, and providing access to Web sites, to name a few possibilities.

Use the BANNER element to specify a graphic image (32 pixels high by 194 pixels wide) for display by
Windows Media Player. The graphic is displayed below any video content. A hyperlink can be added to the
banner using the MOREINFO child element.

A ToolTip can be defined by an ABSTRACT element within the scope of the BANNER element. Any defined
ToolTip text can be displayed by pausing the mouse pointer over the banner graphic. Selecting the banner
graphic with the mouse pointer will activate any hyperlink defined with the MOREINFO element.

The preferred BANNER graphics format is the GIF format. The JPG format can be used if the graphic is
properly sized.

The previous example illustrates use of the BANNER element.

Note BANNER images are not supported with DRM files or when Windows Media Player is embedded in a
Web page.

For more information about banners, see Custom Graphics in Windows Media Player.

MOREINFO properties

Text and image areas of the user interface can be associated with URLs. During playback, users can select one
of these sections to connect to the URL associated with it in their Web browser. For example, you can associate
an advertiser's Web site with an ad banner image as shown in the following code snippet.

<BANNER HREF="YourPath\2.gif">
 <ABSTRACT>More Information.</ABSTRACT>
 <MOREINFO HREF="http://www.proseware.com" />
</BANNER>

ABSTRACT text

ABSTRACT text is used to display a short pop-up description of the text or image areas of the user interface it
is associated with. During playback, if the mouse pointer hovers over one of these areas, a ToolTip appears
beside the mouse pointer displaying the ABSTRACT text associated with the area. ABSTRACT text is
retrieved from a metafile and is defined with the ABSTRACT element. The ABSTRACT element can be a
child element of either an ENTRY or a BANNER element.

See Also

Metafile Playlists
Using Metafile Playlists
Windows Media Metafile Elements Reference
Windows Media Metafile Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Redirection

The playlist will redirect the browser to Windows Media Player to play the designated media stream or media
file. The most basic metafile playlist contains only the Uniform Resource Locator (URL) of a media file.

To create a basic metafile playlist , open your favorite text editor, such as Microsoft Notepad, and type the
following example code.

<ASX version="3.0">
 <ENTRY>
 <REF HREF="PathToYourFile"/>
 </ENTRY>
</ASX>

Substitute a valid path to your Windows Media file using the syntax in the following table.

Previous Next

Previous Next

Source of content Syntax

Content is a file on a Windows Media
server

mms://ServerName/Path/FileName.wma

Content is a broadcast multicast that is
accessed from a Windows Media station

http://WebServerName/Stations/kxyz.nsc

Content is a broadcast unicast that is
accessed from a publishing point on a
Windows Media server

mms://ServerName/PublishingPointAlias

Content is a file on a Web server http://WebServerName/Path/Filename.wma

Content is a file on a local hard disk file://c:\Path\Filename.wma

Content is a file on a network share file://\\ServerName\Path\Filename.wma

Content is a file on a Windows Media
server

mms://ServerName/Path/FileName.wmv

Save the file you have created with a file name and extension as described in File Name Extensions. Double-
click it in Windows Explorer. Windows Media Player should open and start streaming the content. You can
save the file to your Web server, along with your Web pages, and link to it with an HREF element, or embed it
in a Web page using the Windows Media Player OBJECT tag.

See Also

Metafile Playlists
Using Metafile Playlists
Windows Media Metafile Elements Reference
Windows Media Metafile Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Accessing Media

Use playlists to specify and to control the streaming media or media files that Windows Media Player plays.

Use the ENTRY element to specify a single media element (a media file or a live stream) and any child
elements (such as images, MOREINFO links, and ABSTRACT text). Use an ENTRYREF element to specify
a playlist. A playlist can contain one or more ENTRY or ENTRYREF elements. Windows Media Player
executes a playlist by starting with the first entry and then playing each entry in turn until the list is finished.

An ENTRY element can point to any type of media that Windows Media Player can play. This includes not
only .wma, .wmv, .asf, and .avi files, to name a few, but live streams as well. By using a series of ENTRY or
ENTRYREF elements to reference media content, you can use a playlist to send a single stream that consists of
multiple sources. The referenced streams will play sequentially and be seen as one continuous stream by the
viewer. For example, the playlist can contain two ENTRY elements: a standard introduction from a Windows
Media file with a .wma extension, and a live Windows Media stream.

Note A playlist must not contain links to media files that have content created with different versions of
Digital Rights Management (DRM). In a metafile playlist, if there are links for media files with DRM version 1
content and for media files created with later DRM versions, Windows Media Player will only play the DRM
version 1 content.

Controlling Playback

Use playlists to control not only which media clip is played, but also which portions of the clip are played and
how. You can use playlists to define a set of clips to be looped or repeated, to set the duration of play, and to
assign start times, and start and end markers for each entry. The STARTTIME, STARTMARKER, and
ENDMARKER elements work in conjunction with markers in the media file.

Previous Next

Previous Next

For example, the following playlist uses an ad banner and the associated MOREINFO link in one ENTRY,
and references a STARTMARKER and ENDMARKER.

<ASX version ="3.0">
<Title>Windows Media Example</Title>
<Abstract>Windows Media Technologies</Abstract>
<MoreInfo href = "http://www.proseware.com"/>
 <!--This is the first Entry -->
 <Entry>
 <Title>This is the ad</Title>
 <Author>Ad Department</Author>
 <Copyright>2000</Copyright>
 <Abstract>This is a description of the ad.</Abstract>
 <MoreInfo href = "http://www.proseware.com/"/>
 <Ref href="ad.wma"/>
 <Banner href ="purchase.gif">
 <Abstract>Click here to go to our Web site.</Abstract>
 <MoreInfo href = "http://www.litwareinc.com/" />
 </Banner>
 </Entry>
 <!-- This is the second Entry -->
 <!-- The Windows Media file plays from Segment2 to Segment3 -->
 <Entry>
 <Title>Playlist Clip Number Two</Title>
 <Author>Windows Media</Author>
 <Copyright>2000</Copyright>
 <Ref href="show.wma"/>
 <StartMarker Name = "Segment2" />
 <EndMarker Name = "Segment3" />
 </Entry>
</ASX>

Setting Duration

Use the DURATION element to specify how long to play a clip or set of clips. You can also use the
PREVIEWMODE attribute of the ASX element in conjunction with the PREVIEWDURATION element to
specify how long to play a clip or set of clips. Set the PREVIEWMODE attribute to YES to use the
PREVIEWDURATION element to specify how long to play the associated clip. The PREVIEWDURATION
and DURATION elements have the same behavior.

See Also

Metafile Playlists
Using Metafile Playlists
Windows Media Metafile Elements Reference
Windows Media Metafile Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Using Live Event Stream Switching

Streaming media can also be controlled by the interaction of script commands embedded in a media stream with
Windows Media metafile elements in a metafile playlist.

An event is a particular type of script command embedded in a media stream or media file. When the Windows
Media Player control receives the script command, it processes the event as defined by the EVENT element in
the metafile playlist. Windows Media Player switches from the current stream it is rendering and renders the
content referenced in the metafile playlist EVENT element. The EVENT element is usually used in live
production.

An EVENT element looks similar to an ENTRY element, but each handles the playback of streams and media
files differently. The ENTRY element is used to create playlists. A stream or media file referenced in an
ENTRY element starts playing as soon as the stream or media file referenced in the previous ENTRY finishes.
A stream referenced in an EVENT plays only when a specific script command is received. For example, when
Windows Media Player receives a script command with type string "EVENT" and the command string
"Adlink", it searches the playlist for the following elements.

<EVENT NAME="Adlink" WHENDONE="RESUME">
 <ENTRY HREF=mms://www.proseware.com/adlink.wma />
</EVENT>

Windows Media Player then switches from the live stream to play the stream or media file contained in the
EVENT, in this case Adlink.wma. The code WHENDONE="RESUME" instructs Windows Media Player to resume
playing the previous stream as soon as Adlink.wma is finished.

Note Failure to handle every event embedded in a media stream or media file may yield unexpected results.

If you want to use live event stream switching, you must include one EVENT element in your playlist to handle
each event script command embedded in the media streams or media files in your playlist. Before you create
your playlist, you must know the details about which script commands are embedded in your digital media
content. If there is an event script command that you want Windows Media Player to ignore, include an
EVENT element in your playlist to handle the event, but reference a dummy URL in the event handler.

Ad Insertion

This technique can be used for ad insertion. For example, during a live Internet broadcast of a ball game, a
command can be sent at the beginning of every commercial break that instructs each client (Windows Media
Player) to play commercials listed in its playlist. When clients finish playing the commercials, the playlist
instructs each client to cut back to the live broadcast. The EVENT media content will be rendered only when
the streaming media being accessed broadcasts embedded scripting with the matching EVENT name.

The possibilities inherent in EVENT switching are best appreciated by contrasting how ads reach viewers
through standard, over-the-air broadcasting with how ads can reach viewers using Windows Media
Technologies. Historically, broadcast ads could only be roughly targeted at viewers, using ratings data as the
primary criteria. Ads sent using Windows Media Technologies can be aimed directly at the target user because
EVENTs and playlists can be built on the fly based on user input. For more information, see Personalizing
Media Delivery.

You can also use metafile playlists to display customized graphics, audio and text for advertising. You can use
the BANNER element as a child element of an EVENT to display an advertising message graphic. The

Previous Next

BANNER element provides the path and file containing the graphics for your advertising banner. You can also
provide a link to a site or file using the MOREINFO child element. The URL in the MOREINFO element can
provide a link to even more advertisements on the Web.

Example Code

<BANNER HREF="SomePath\2.gif">
 <ABSTRACT>Read This Ad and Buy.</ABSTRACT>
 <MOREINFO HREF="http://www.proseware.com" />
</BANNER>

The following example inserts the ad Advert.wma into the broadcast unicast stream BallGame when a client
receives a script command EVENT with the NAME attribute set to "Time-Out". CLIENTSKIP is set to NO to
prevent the streamed ad from being skipped. In this example, the streamed ad must be played before returning
to the original stream. When the ad is finished, the client resumes playing the original stream.

Example Code

<ASX VERSION="3.0">
 <ENTRY>
 <REF HREF="mms://proseware.com/BallGame" />
 </ENTRY>
 <EVENT NAME="Time-Out" WHENDONE="RESUME">
 <ENTRY>
 <REF HREF = "mms://proseware.com/Advert.wma"
 CLIENTSKIP = "NO" />
 </ENTRY>
 </EVENT>
</ASX>

See Also

Metafile Playlists
Using Metafile Playlists
Windows Media Metafile Elements Reference
Windows Media Metafile Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Metafiles for Seamless Stream Switching

You can facilitate seamless stream switching using metafile playlists. Usually, when a piece of content ends,
buffering occurs for the next clip or stream before it opens (if it is content received from a streaming media
server). Microsoft Windows Media Services enables you to eliminate, or at least minimize, this buffering time
and have another piece of streamed content begin playing nearly immediately. The normal mode of operation

Previous Next

Previous Next

for Windows Media Player is to open the next media stream referenced by the playlist 20 seconds before the
end of the currently rendered stream. This generally provides a seamless transition between media streams,
depending on other factors such as Web access times.

Use the EVENT element in a playlist in conjunction with OPENEVENT commands from the encoder to
facilitate seamless switching between streams or files. Sending an OPENEVENT command 20 seconds or
more prior to the EVENT command can minimize delays in stream switching. Then Windows Media Player is
able to preload a portion of the upcoming streaming content into a buffer.

Use Windows Media Encoder to send a script command in the stream using the following format:

OPENEVENT eventname

The event name must be the one defined in the EVENT element in the playlist. When Windows Media Player
receives an OPENEVENT script command from the encoder, it looks to the EVENT element in the playlist
and begins buffering the clip or stream defined in the EVENT element. Windows Media Player then holds this
information until the actual event of the same name. When the named event is received, Windows Media Player
switches to that previously buffered content.

Note You cannot use Unicode characters for the OPENEVENT script command in the media file or the
EVENT element in the playlist.

See Also

Creating Metafile Playlists
Metafile Playlists
Player.ScriptCommand Event
Using Metafile Playlists
Windows Media Metafile Elements Reference
Windows Media Metafile Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Announcements

An announcement is a file that contains information about the URL for a media stream, including the multicast
IP address, port, stream format, and other station settings. Announcements are created by Windows Media
Administrator when a unicast or multicast publishing stream is created. The client can quickly load the
announcement file, then proceed to access the streaming media file.

For a unicast publishing point, the publishing point media stream is opened. For a multicast publishing point,
the URL is extracted from a broadcast station file with an .nsc extension, and the streaming media is accessed.
Unlike a unicast stream, no header information is contained in a multicast stream. That information comes from

Previous Next

Previous Next

the broadcast station file with an .nsc extension. Windows Media Player usually first opens an announcement
file, which is one use for metafile playlists, that points to the location of the broadcast station file.

Example Code

<ASX VERSION="3.0">
 <TITLE>title</TITLE>
 <ENTRY>
 <REF HREF="mms://proseware.com/pubpoint"/>
 </ENTRY>
</ASX>

See Also

Creating Metafile Playlists
Using Metafile Playlists

© 2000-2003 Microsoft Corporation. All rights reserved.

Using URL and Server Rollover

You can use metafile playlists to provide a means of automatically rolling over to alternate content sources
when a stream cannot be accessed or played. You can use this rollover method to specify sources of the same
content on different servers or different types of servers. You can, for example, specify a first alternate on a
different Windows Media server. If that content fails to play, the client can roll over to a second alternate on a
Web server. Windows Media Player automatically tries to roll over to different protocols according to its
Windows Media property settings before trying the rollover URLs in the playlist.

Set server and protocol rollover by placing multiple REF elements in succession within one ENTRY element.
Each REF element specifies an alternate location or protocol for a media file or stream.

Example Code

<!--Server and protocol rollover is set for the file Rollover.wma.-->
<ASX version="3.0">
 <TITLE>MyServer Rollover</TITLE>
 <ENTRY>
 <REF HREF="mms://Server1.proseware.com/Path/Rollover.wma"/>
 <REF HREF="mms://Server2.proseware.com/Path/Rollover.wma"/>
 <REF HREF="mms://Server3.proseware.com/Path/Rollover.wma"/>
 <REF HREF="http://www.proseware.com/Path/Rollover.wma"/>
 </ENTRY>
</ASX>

See Also

Previous Next

Previous Next

Creating Metafile Playlists
Using Metafile Playlists

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Custom Parameters and Commands

You can create custom parameters to pass additional metadata in a metafile playlist by using the PARAM
element. Use the NAME attribute of the PARAM element to define the custom parameter name. Use the
VALUE attribute to define the value for the named custom parameter.

Retrieve PARAM metadata by using the getItemInfo methods of the Media and Playlist objects. For an
example using these methods to retrieve metadata, see the attributeCount method of the Playlist object.

The following example metafile playlist shows the use of the PARAM element to define custom parameters.

<ASX version="3.0" BANNERBAR="auto" >
 <TITLE>Example Media Player Show</TITLE>
 <PARAM NAME="Director" VALUE="Jane D." />

 <ENTRY>
 <TITLE>Example Clip</TITLE>
 <REF HREF="http://www.proseware.com/media.wma" />
 <PARAM NAME="Title" VALUE="Example Clip" />
 <PARAM NAME="Location" VALUE="North America" />
 <PARAM NAME="Release Date" VALUE="March 1998" />
 </ENTRY>

 <ENTRY>
 <TITLE>Another Clip</TITLE>
 <REF HREF="http://www.proseware.com/more_media.wma" />
 <PARAM NAME="Title" VALUE="Another Clip" />
 <PARAM NAME="Location" VALUE="Japan" />
 <PARAM NAME="Release Date" VALUE="December 2000" />
 </ENTRY>
</ASX>

See Also

Using Metafile Playlists

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Personalizing Media Delivery

Unlike one-way communication that broadcasts identical content to a mass audience, Windows Media
Technologies provides you with the tools to use demographics to individualize broadcasts. With the Internet,
two-way communication on a large scale is readily available. This dynamic interchange of information enables
content providers to know their audience and respond with customized presentations.

The following example, using a fictional company, illustrates how delivery of streaming content can be
personalized. This discussion assumes that you are familiar with Active Server Pages (ASP, or .asp files) and
defining variables.

News Network is a fictional broadcast news organization that has expanded its operations to include a Web site.
The main feature of the site is a section where users can create their own personalized newscasts. Instead of
viewing a traditional newscast that is aimed at a mass audience, a user views a complete news program that
contains only topics of personal interest. The following sequence describes a typical user experience.

1. A new user goes to the site, and clicks Create Your Personal Newscast.
2. A preference form opens. On this form, the user answers questions regarding personal preferences, such

as favorite news stories, least favorite news stories, hobbies, and usual method of receiving daily news.
3. The user sends this information, and a few seconds later views a complete, 15-minute, personal newscast

containing program content, transitions, and commercials. Selection of each media element, including
commercials, is based on the user profile, and is accomplished automatically with Windows Media
Technologies components and off-the-shelf Internet tools.

The following list describes how the various tools interact to create a personalized newscast.

1. The preference form that the user fills out is an Active Server Page (ASP) (Choices.asp). Data obtained
from the preference form is analyzed by two server components. One component uses the information to
query a Microsoft SQL Server database of news stories. The other component is an ad server that uses a
complex set of rules based on contractual requirements and demographics to schedule ads appropriate to
the user at that time.

2. The two databases return different portions of a playlist. The news story database returns a set of
appropriate story Entries, and the ad server returns a set of appropriate commercial Entries.

3. A second ASP page (PlayShow.asp) receives the Entries from the news story database and ad server, and
combines those with standard show open, close, and transition Entries. All Entries are then laid out
according to the template provided by PlayShow.asp, and the ASP page returns a playlist to the user.

4. The embedded Windows Media Player control on the user's computer plays the playlist from beginning to
end, and the user views a personalized newscast.

The following example is a portion of a playlist file that a user might receive. Ad banners, MOREINFO links,
and ABSTRACTS have been added to it.

<ASX Version="3">
<TITLE>MyPersonalized NewsCast</TITLE>
<ENTRY ClientSkip="no">
 <!—- Commercial Element 1 -->
 <REF HREF="mms://proseware.com/Commercial.wma" />

Previous Next

 <BANNER HREF="http://www.proseware.com/images/MoreInfo.gif" >
 <MOREINFO HREF="http://www.proseware.com" target="_blank" />
 <ABSTRACT>Courtesy of Windows Media Technologies
 </ABSTRACT>
 </BANNER>
</ENTRY>
<ENTRY>
 <!—- Program Element 1 -->
 <TITLE>A Celebrity's Life</TITLE>
 <COPYRIGHT>Copyright 2000</COPYRIGHT>
 <REF HREF="mms://proseware.com/SomePath/TheFile.wma" />
 <ABSTRACT>
 :: A celebrity continues to captivate the world, even after death.
 </ABSTRACT>
 <COPYRIGHT>Copyright 2000-- All Rights
 Reserved
 </COPYRIGHT>
</ENTRY>

<ENTRY>
 <!—Program Element 2 -->
 <TITLE>Fire:: Wildfires appear to be just the beginning</TITLE>
 <COPYRIGHT>Copyright 2000</COPYRIGHT>
 <REF HREF="mms://proseware.com/SomePath/MyFile.wma" />
 <ABSTRACT>
 :: So far, more than 100,000 acres have burned.
 </ABSTRACT>
 <COPYRIGHT>Copyright 2000 -- All Rights Reserved
 </COPYRIGHT>
</ENTRY>
</ASX>

The example companies, organizations, products, people and events depicted herein are fictitious. No
association with any real company, organization, product, person or event is intended or should be inferred.

See Also

Creating Metafile Playlists
Metafile Playlists
Using Metafile Playlists
Windows Media Metafile Elements Reference
Windows Media Metafile Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Relative Links in Metafiles

Previous Next

Previous Next

Relative links are a fully supported feature of Windows Media metafiles. You can use relative links in metafiles
much like you use them in HTML documents. The use of relative links enables you to create metafiles that are
portable, meaning you can copy or move an entire directory structure to another server without updating the
paths to graphic files used as banners or the HREF attributes of MOREINFO elements (if they reference files
on the same Web server as the stored metafile). Relative links work, in any application that supports them,
because the parts of the URL not included in the HREF attribute of an element are included in the URL sent by
the application to the server when that URL is requested. This means that the protocol (such as http://), the
server name, and the virtual directory in which the file containing the relative link is located are all included in
the URL that is sent to the server. If the media file, or URL you link to using a relative link does not reside on
the same server as the metafile, the relative link is not valid.

Note This information on relative links is correct only when using a link to metafiles that are opened in the
stand-alone Windows Media Player. When you use the embedded Windows Media Player control, all links are
relative to the page on which the control is hosted, unless the BASE child element of the ASX element is used
to redirect the relative path.

All relative links in the metafile must be fully relative, not drive-relative, for streaming media. When a URL
begins with a "\" character, the link is drive-relative. Windows Media Player attempts to open the file linked to
on the drive where the metafile was opened from, usually a Web server. Because Web servers use virtual
directories, Windows Media Player tries to find the specified stream or media file in a subdirectory of a virtual
directory on the Web server where the metafile was opened from. A user would not have access to a server
directory. The example in this section illustrates the use of a fully relative link.

You can use drive-relative links when using metafiles on a single computer where all media files linked to in
the metafile playlist exist on a storage device in that computer. However, you cannot stream media in this
manner.

When you use a link to another metafile to allow for relative links, the name displayed as the Title by Windows
Media Player is the Title in the original metafile.

Relative links cannot be used for URLs to a streaming media server because different protocols are used for
accessing streaming media content.

In the following example playlist, the first ENTRYREF contains a URL for another playlist, relative.wax.

<ASX>
 <ENTRYREF HREF="http://example.microsoft.com/metafiles/relative.wax"/>
</ASX>

The following example is the file relative.wax, which contains relative links.

<ASX version = "3.0">
 <BANNER HREF = "graphics/logo1.jpg">
 <MOREINFO HREF = "category1/category1.htm" />
 </BANNER>
 <ENTRY>
 <REF HREF = "mms://samples.microsoft.com/myfile.wma" />
 </ENTRY>
</ASX>

The URL containing the reference to the playlist, relative.wax, can exist in a metafile playlist anywhere that is
accessible to the user. For the URL to be processed successfully, there must be a Web server named
"example.microsoft.com". That Web server must have a virtual directory defined as "metafiles". The referenced
playlist, relative.wax, must exist on the Web server named "example.microsoft.com" in the virtual directory
"metafiles".

For the referenced media files in the playlist relative.wax to be successfully accessed and played, there must be
a directory named "Graphics" which is a subdirectory of the server's virtual directory "metafiles". The graphics
file Logo1.jpg, referenced in the BANNER element, must be the subdirectory named Graphics.

Similarly a document named Category1.htm must reside in a subdirectory named Category1. The directory
named Category1 must exist as a subdirectory of the virtual directory "metafiles" on the Web server
example.microsoft.com.

See Also

Creating Metafile Playlists
Metafile Playlists
Windows Media Metafile Elements Reference.
Windows Media Metafile Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Example Playlists
Following are three example playlists. To use these examples you must ensure that you have substituted valid
paths and file names that are accessible to Windows Media Player.

See Also

Creating Metafile Playlists
Metafile Playlists

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Example playlist Description

A Basic Playlist A simple playlist.

An Advanced Playlist A playlist with a more complete set of playlist
elements.

An Example Radio Station Playlist A playlist that scans three radio stations.

Previous Next

A Basic Playlist

The following playlist example shows a basic set of playlist elements. When writing your own code, you will
need to change all URLs and file names to valid file names that are accessible to your Windows Media Player.

Code Example

<ASX version = "3.0">
<TITLE>Basic Playlist Demo</TITLE>
 <ENTRY>
 <TITLE>An Entry in a basic playlist</TITLE>
 <AUTHOR>Microsoft Corporation</AUTHOR>
 <COPYRIGHT>(c)2000 Microsoft Corporation</COPYRIGHT>
 <REF HREF = "mms://proseware.com/path/Yourfile.wma" />
 </ENTRY>
</ASX>

The following table provides details on the use of each element in the example code.

Previous Next

Line Description

<ASX version = "3.0"> The ASX element identifies for the client (Windows
Media Player) that this is a Windows Media metafile
playlist. The version attribute specifies the version
number of the metafile elements.

<TITLE>Basic Playlist Demo</TITLE> The TITLE element identifies the title of the playlist
as a whole. Windows Media Player displays this
metadata as the show title.

<ENTRY> Begins the ENTRY element. An ENTRY element is
a way to define a particular clip in a playlist

<TITLE>An Entry in a the basic playlist</TITLE> Identifies the title of the playlist clip . It is different
than the previous TITLE element because this one is
nested within an ENTRY element. Windows Media
Player displays this metadata as the clip title.

<AUTHOR>Microsoft Corporation</AUTHOR> The AUTHOR element identifies the author of the
media clip . Windows Media Player displays this
metadata as the clip AUTHOR.

<COPYRIGHT>(c)1999 Microsoft
Corporation</COPYRIGHT>

The COPYRIGHT element identifies any copyright
associated with the media content. This information is
displayed as the clip COPYRIGHT by Windows
Media Player.

<!-- This is a comment. Change the following path to
point to your Windows media file -->

A comment. Comments are only be visible when the
code is viewed, and are in the same format as XML
comments.

See Also

Creating Metafile Playlists
Example Playlists
Metafile Playlists
Windows Media Metafile Elements Reference
Windows Media Metafile Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

An Advanced Playlist

The following playlist example shows how to use a more complete set of playlist elements. When writing your
own code, you will need to change all URLs and file names to valid file names that are accessible to your
Windows Media Player.

Example Code

<ASX version = "3.0">
 <TITLE>Advanced Playlist Demo</TITLE>
 <ABSTRACT>More Information at this Web site</ABSTRACT>
 <MOREINFO HREF="http://www.microsoft.com/windows/windowsmedia" />
 <BANNER HREF = "..\samples\home.gif">
 <ABSTRACT>MSN Web site</ABSTRACT>
 <MOREINFO HREF = "http://www.msn.com" />
 </BANNER>
 <PARAM name="track" value="1"/>

<REF HREF =
"mms://proseware.com/path/Yourfile.wma" />

Actual pointer to the media file. The REF element
identifies the line as a pointer to media content, while
the HREF attribute is the URL to the media file. In
this case, the URL uses the MMS protocol, so it
points to a Windows Media server.

Media files on your media server are not usually kept
in the same location as your HTML documents.

Note the use of the XML-like closing of the element ,
"/>", instead of "</REF>". Because this element does
not have child elements, it closes itself.

</ENTRY> Specifies the end of the of the ENTRY element.

</ASX> Specifies the end of the playlist.

Previous Next

Previous Next

 <ENTRY ClientSkip="no">
 <BANNER HREF = "..\sample\contact.gif">
 <ABSTRACT>Visit Our Web site</ABSTRACT>
 <MOREINFO HREF = "http://www.msn.com" />
 </BANNER>
 <MOREINFO HREF = "http://www.msn.com" />
 <!-- This is the ToolTip text for Title/Author/Copyright text -->
 <ABSTRACT>Visit the YourImage Web site</ABSTRACT>
 <TITLE>The first entry in an advanced playlist</TITLE>
 <AUTHOR>YourImage</AUTHOR>
 <COPYRIGHT>(c)2000 YourImage</COPYRIGHT>
 <!-- This is a comment. Change the following path to point to
 your Windows Media file -->
 <REF HREF = "..\media\laure.wma" />
 </ENTRY>

 <ENTRY>
 <TITLE>The second entry in the advanced playlist</TITLE>
 <AUTHOR>Microsoft Corporation</AUTHOR>
 <COPYRIGHT>(c)2000 Microsoft Corporation</COPYRIGHT>
 <!-- This is the ToolTip text for Title text -->
 <ABSTRACT>This is where you can include your tool tips</ABSTRACT>
 <!-- This is a comment. Change the following path to point to
 your Windows Media file -->
 <REF HREF = "..\media\mellow.wma" />
 </ENTRY>
</ASX>

The following table describes the preceding advanced playlist.

Line Description

<ASX version = "3.0"> The ASX element identifies for the client
(Windows Media Player) that this is a Windows
Media metafile playlist. The version attribute
specifies the version number of the metafile
elements.

<TITLE>Advanced Playlist Demo</TITLE> The TITLE element identifies the title of the
playlist as a whole. Windows Media Player
displays this metadata as the show title.

<ABSTRACT>More Information at this Web
Site< /ABSTRACT>

The ABSTRACT element provides the ToolTip
for the show title.

<MOREINFO HREF
="http://www.microsoft.com/windows/windowsmedia" />

The MOREINFO element links the show title to
an URL. Pausing the mouse pointer over the
show title accesses the ToolTip, if defined.
Selecting the show title will then open the
designated URL.

<BANNER HREF = "..\samples\home.gif"> The BANNER element creates an advertising
banner in Windows Media Player. The HREF
attribute specifies the banner graphic (which must
be 194 pixels wide by 32 pixels tall).

<ABSTRACT>MSN Web site</ABSTRACT> The ABSTRACT element provides the ToolTip
for the BANNER.

<MOREINFO HREF = "http://www.msn.com"
</ABSTRACT>

The MOREINFO element links the BANNER
graphic to a URL. Holding the mouse pointer
over the BANNER accesses a ToolTip, if
defined. Selecting the BANNER will open the
designated URL.

<PARAM name = "track" value="1"/> The PARAM element defines a custom
parameter. The name attribute defines the name
of the custom parameter as "track". The value
attribute defines the value of "track" to be "1".

</BANNER> Closes the BANNER element

<ENTRY ClientSkip="no"> Begins the ENTRY element block. This element
defines a clip in a playlist by specifying a link in
the REF element. Setting ClientSkip to "no"
means that the user cannot fast forward or jump
to the next clip

<BANNER HREF = "..\samples\contact.gif"> Creates an advertising banner. The HREF is the
banner graphic (194x32 pixels).

<ABSTRACT>Visit Our Web site< /ABSTRACT> Provides the ToolTip for the banner.

<MOREINFO HREF = "http://www.msn.com" /> Provides a link to the URL for the banner.
Selecting the banner connects to the URL.

</BANNER> Closes the BANNER element

<MOREINFO HREF = "http://www.msn.com" /> Provides a link to the URL for the clip Title text.

<!--This is the ToolTip text for the Title text --> A comment. Comments are only be visible when
the code is viewed.

<Abstract>Visit the YourImage Web site</abstract> Provides the ToolTip for the clip Title text.

<TITLE>The first entry in an advanced playlist</TITLE> Identifies the title of the clip. It is the clip TITLE
because it is nested within an ENTRY element.
Windows Media Player displays this metadata as
the clip title.

<AUTHOR>YourImage</AUTHOR> Identifies the author of the media clip. This
metadata is displayed as the clip AUTHOR by
Windows Media Player.

<COPYRIGHT>(c)2000 YourImage</COPYRIGHT> The COPYRIGHT element specifies the
copyrights associated with the media clip.
Windows Media Player displays this metadata as
the clip COPYRIGHT.

<!-- This is a comment. Change the following path to
point to your Windows Media file -->

A comment, in the same format as XML
comments.

<REF HREF = "..\media\laure.wma" /> URL for the media content. The REF element
identifies the line as a pointer to media content.
The HREF attribute is the URL to the file.

Note the use of the XML-like closing of the

See Also

Creating Metafile Playlists
Example Playlists
Metafile Playlists
Windows Media Metafile Elements Reference.
Windows Media Metafile Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

An Example Radio Station Playlist

The following example code illustrates how to create a playlist to scan three rock radio stations. The fictitious

element , "/>" instead of "</REF>". Because this
element does not have child elements, it closes
itself.

</ENTRY> Specifies the end of the of the first ENTRY
element.

<ENTRY> Begins the second ENTRY element.

TITLE>The second Entry in a the advanced
playlist</TITLE>

Identifies the title of the second clip.

<AUTHOR>Microsoft Corporation</AUTHOR> Identifies the author of the second media clip.

COPYRIGHT>(c)2000 Microsoft
Corporation</COPYRIGHT>

Specifies the copyright for the media clip.

<!--This is the ToolTip text for the
Title/Author/Copyright text -->

A comment. It will only be visible when the code
is viewed.

<ABSTRACT>This is where you can include your tool
tips</ABSTRACT>

This is the ToolTip text for the TITLE text of the
clip.

<!-- This is a comment. Change the following path to
point to your Windows Media file -->

A comment. It will only be visible when the code
is viewed.

<REF HREF = ..\media\mellow.wma" /> Identifies the line as a pointer to media content.
The HREF attribute is the URL to the file.

</ENTRY> Specifies the end of the second ENTRY element.

</ASX> Specifies the end of the playlist.

Previous Next

Previous Next

company Adventure Works Radio brand is on the playlist and on all of the individual streams within the
playlist. When you write your code, change all URLs and file names to valid file names that are accessible to
your Windows Media Player.

A playlist is created for each of the stations. A fourth playlist scans through the first three. The playlists are
created to reference dynamically generated advertisements and have Adventure Works Radio branding.

One of the playlists representing a radio station might look like this.

<ASX version = "3.0">
 <TITLE>Adventure Works Radio</TITLE>
 <MOREINFO href = "http://www.adventure-works.com" />
 <ENTRY clientSkip = "no" skipIfRef = "yes">
 <REF href = "http://www.adventure-works.com/ad.asp/" />
 </ENTRY>
 <ENTRY>
 <TITLE>MyWRCK Radio</TITLE>
 <ABSTRACT>MyTown's Best Rock 'n Roll</ABSTRACT>
 <COPYRIGHT>2000 RadioNetwork</COPYRIGHT>
 <MOREINFO href = "http://www.adventure-works.com" />
 <REF href = "http://www.adventure-works.com" />
 <REF href = "http://backup.adventure-works.com" />
 </ENTRY>
</ASX>

The playlist can then be constructed of references to the individual playlists.

Example Code

<ASX Version = "3.0">
 <TITLE>Adventure Works Radio Top 3 Rock Stations</TITLE>
 <MOREINFO href = "http://www.adventure-works.com/MyTop3Rocks"/>
 <REPEAT>
 <ENTRY ClientSkip = "no">
 <REF HREF = "http://www.adventure-works.com/ad.asp/">
 </ENTRY>
 <DURATION VALUE="00:00:30" />
 <ENTRYREF HREF = "http://www.adventure-works.com/asx/RadioNetwork.wax"/>
 <DURATION VALUE="00:00:30" />
 <ENTRYREF HREF = "http://www.adventure-works.com/asx/RadioNetwork2.wax/>
 <DURATION VALUE="00:00:30" />
 <ENTRYREF HREF = "http://www.adventure-works.com/asx/RadioNetwork3.wax"/>
 </REPEAT>
</ASX>

This example would play an ad followed by 30 seconds of each of the three stations referenced, one after the
other. This cycle will repeat indefinitely because the COUNT attribute of the REPEAT element is not defined.

The example companies, organizations, products, people and events depicted herein are fictitious. No
association with any real company, organization, product, person or event is intended or should be inferred.

See Also

Creating Metafile Playlists
Example Playlists
Metafile Playlists
Windows Media Metafile Elements Reference

Windows Media Metafile Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Metafile Extension Guidelines
A file name extension provides an independent software vendor (ISV) with information about the rendering
requirements of an application that uses the extension, and enables content authors to target general types of
players.

Windows Media metafile extensions are used to identify the format of the Windows Media files that a metafile
references. Windows Media metafiles with .wax, .wvx, or .asx extensions reference files with .wma, .wmv,
and .asf extensions, respectively. All metafiles, regardless of the file name extension used, have the ASX
element tag at the beginning of the file with the version attribute specified.

The following table shows the media file types referenced by each type of metafile file name extension. The
columns list media file extensions, the rows list metafile extensions. An X in a column indicates a media file
type that can be referenced by a particular metafile file name extension.

See Also

File Name Extensions
Metafile Playlists
Windows Media Metafile Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Extension .asf .wma .wmv

.wvx X X X

.wax X X

.asx X

Previous Next

Order of Precedence
Not all metafile element attributes are created equal. Some metafile element attributes override other element
attributes. Element attributes can be overridden by similar element attributes depending on position and order.
Any attributes of a metafile playlist override those contained in a referenced Windows Media file. An attribute
that overrides another has higher precedence.

The hierarchy, highest precedence to lowest, is shown in the following table. The highest precedence item is
never overridden.

"Signed DRM content" - Digital signature object.

Attributes of Signed DRM content will override all others. For example, the Copyright information of
"Signed DRM content" will not be overridden. It will always be streamed and presented.

REF element scope

Attributes of the REF element will override other element attributes, but not signed DRM content.

ENTRY scope

Attributes of the ENTRY element will be overridden by the REF element attribute but will override other
element attributes. TITLE metadata from the ENTRY element is displayed instead of the title
information from the media file.

ASX scope

Any properties that are entered in the metafile override those contained in the Windows Media file.
Attributes of the ENTRY element override ASX element attributes. While the ENTRY element's
referenced media clip is playing, TITLE metadata from the ENTRY element is displayed instead of title
information from the ASX element.

Windows Media file scope

Previous Next

Scope Hierarchy

"Signed DRM content" Never overridden.

REF element scope Only overridden by signed DRM content.

ENTRY element scope Overrides elements of the categories below.

ASX scope Overrides media file elements.

Windows Media file scope Overridden by all of the above.

Attributes of the Windows Media file are overridden by any metafile attributes. Media file metadata is
displayed only if there is no metadata defined for that element in the metafile.

See Also

Creating Metafile Playlists
Metafile Playlists
Windows Media Metafile Elements Reference
Windows Media Metafile Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Windows Media Metafile Reference
This reference documents elements and file extensions for Windows Media metafiles. The reference is divided
into the following sections.

Windows Media metafiles are text files that provide information about a file stream and its presentation. The
metafiles are based on the Extensible Markup Language (XML) syntax, and are made up of various XML-like
elements with their tags and attributes. Each element defines a setting or action for streaming media.

There are two sets of element tags available for metafiles. Client-side metafiles have one set of elements, and
server-side metafiles have another set of elements.

If an element tag does not have any child elements (those that modify or are contained within another element),
a single slash character (/) can be used at the end of the opening tag in place of a closing tag. If child elements
do not appear between the opening and closing tag for an element, they are not child elements for that element,
and are ignored or cause an error in the syntax of the metafile.

See Also

About Windows Media Metafiles
Windows Media Metafile Guide

Previous Next

Previous Next

Section Description

Windows Media Metafile Elements Reference Documents metafile elements, including definitions,
attributes and their values, and special conditions
related to each element.

File Name Extensions Documents metafile file name extensions with rules
and guidelines on their use.

Windows Media Metafiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Windows Media Metafile Elements Reference
This section contains reference documentation for all Windows Media metafile elements for client-side
applications. Reference entries include definitions of the elements, their attributes and values, and special
conditions related to each element.

The following metafile elements are supported for client-side applications.

Previous Next

Previous Next

Element Description

ABSTRACT Contains text that describes the associated ASX, BANNER, or ENTRY
element.

ASX Defines a file as a Windows Media metafile.

AUTHOR Contains the name of the author of a media clip or a Windows Media
metafile.

BANNER Specifies a URL for a graphic that appears in the display panel of
Windows Media Player.

BASE Specifies a string that is appended to the front of URLs sent to Windows
Media Player.

Comments Specifies the XML syntax for comments (<!--...-->).

COPYRIGHT Contains the copyright information for an ASX or ENTRY element.

DURATION Specifies the length of time Windows Media Player renders a stream.

ENDMARKER Specifies a marker at which Windows Media Player stops rendering the
stream.

ENTRY Specifies the path for a media clip.

ENTRYREF Links to the ENTRY elements in an external Windows Media metafile
that has an .asx, .wax, .wvx, or .wmx extension.

EVENT Defines a behavior or action taken by Windows Media Player when it
receives a script command labeled as an event.

LOGURL Instructs the player to submit any log data to the specified URL.

See Also

Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

ABSTRACT Element
The ABSTRACT element contains text that describes the associated ASX, BANNER, or ENTRY element.

Syntax

<ABSTRACT>
 text string
</ABSTRACT>

Attributes

None.

Parent/Child Elements

MOREINFO Specifies a URL for a Web site, e-mail address, or script command
associated with a show, clip, or banner.

PARAM Specifies the value of a custom parameter associated with a clip.

PREVIEWDURATION Specifies the length of time a clip is played in preview mode.

REF Specifies a URL for a piece of media content.

REPEAT Specifies the number of times Windows Media Player repeats one or
more ENTRY or ENTRYREF elements.

SKIN Specifies a URL to an embedded skin.

STARTMARKER Specifies a marker at which Windows Media Player starts rendering the
stream.

STARTTIME Specifies a time at which Windows Media Player will start rendering
the stream.

TITLE Contains the title of an ASX or ENTRY element.

Previous Next

Previous Next

Remarks

If this element appears within an ASX element, the text displays as a ToolTip when the mouse hovers over the
show title.

If this element appears within an ENTRY element, the text displays as a ToolTip when the mouse hovers over
the clip title.

If this element appears within a BANNER element, the text is displayed as a ToolTip for the banner graphic.

Use only one ABSTRACT element per scope. Only the first ABSTRACT element within the scope of another
element is used when a metafile file is processed. Any subsequent ABSTRACT elements in that scope are
ignored.

Example Code

<ASX VERSION="3.0">
 <TITLE>The Title of the Show<TITLE>
 <ABSTRACT>
 Brief description of the show.
 </ABSTRACT>

<ENTRY>
 <REF HREF="YourMediaFilename.asf" />
 <TITLE>The Title of the Track</TITLE>
 <ABSTRACT>
 Brief description of the track.
 </ABSTRACT>
</ENTRY>
</ASX>

Requirements

Windows Media Player version 7.0 or later.

See Also

Windows Media Metafile Elements Reference
Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Hierarchy Elements

Parent ASX, ENTRY, BANNER

Child None

Previous Next

ASX Element
The ASX element defines a file as a metafile.

Syntax

<ASX
 VERSION = "number"
 PREVIEWMODE = "YES" | "NO"
 BANNERBAR = "AUTO" | "FIXED"
>
</ASX>

Attributes

 VERSION (required)

Decimal number representing the version number of the syntax for the metafile. Set to 3 or 3.0.

 PREVIEWMODE

Value indicating whether Windows Media Player enters preview mode before playing the first clip.

Must be one of the following values.

 BANNERBAR

Value indicating whether Windows Media Player reserves space for a banner graphic.

Must be one of the following values.

Previous Next

Value Description

YES Windows Media Player enters preview mode before playing the first
clip.

NO The default value. Windows Media Player does not enter preview mode
before playing the first clip.

Value Description

AUTO The default value. Windows Media Player reserves space for the banner
bar only when a piece of content includes one.

FIXED Windows Media Player reserves a fixed space for a banner graphic for
every piece of content played, whether or not there is an associated

Parent/Child Elements

Remarks

The first four characters of a metafile playlist must be <ASX. Other elements defined within the scope of the
ASX element, such as TITLE and AUTHOR, are associated with the show information displayed by Windows
Media Player.

For Windows Media Player, the syntax version number is 3.0. Windows Media Player supports all previous
versions of metafile syntax. Acceptable values for the VERSION attribute include both 3.0 and 3 (with no
decimal point).

If the value of the PREVIEWMODE attribute is YES, Windows Media Player immediately enters preview
mode before playing the first clip. When Windows Media Player enters preview mode, it previews each clip
referenced in the metafile. The PREVIEWDURATION element determines the duration of each preview.

The BANNERBAR attribute defines whether Windows Media Player reserves space for a banner graphic. A
banner is a graphic that is displayed in the video display area while media content is playing. (Use the
BANNER element to add a banner to the content.) If the value of BANNERBAR is FIXED, Windows Media
Player reserves banner space for every piece of media content, whether or not the media content has a banner. If
a piece of media content does not have a banner associated with it, the space reserved for one is black. If the
value of the BANNERBAR attribute is AUTO, Windows Media Player reserves space for the banner only
when the media content includes one.

If you create a metafile with multiple clips (ENTRY or ENTRYREF elements) and set the value of the
BANNERBAR attribute to AUTO, Windows Media Player might resize to allow space for a banner graphic for
one clip, and then resize again if the next clip does not contain a banner graphic. If you want the size of the
window to stay the same (except when the video size changes), use the FIXED value for the BANNERBAR
attribute.

The space reserved for a banner graphic is 32 pixels high by 194 pixels wide. The reserved space appears below
any rendered video content and 6 pixels above the lower edge of the video area, allowing space for the 6-pixel
video area border. The reserved banner space is centered horizontally.

Windows Media Player renders the graphic beginning in the leftmost pixel of the banner space. If the graphic
fills the entire space, it will appear centered horizontally. Otherwise there will be trailing space. Note that the
minimum width of Windows Media Player is always wider than the size of the video clip, regardless of the
value of the BANNERBAR attribute.

Example Code

<ASX VERSION="3.0" PREVIEWMODE="YES" BANNERBAR="auto" >

banner.

Hierarchy Elements

Parent elements None. The ASX element must be the first element in every metafile.

Child elements ABSTRACT, AUTHOR, BANNER, BASE, COPYRIGHT,
ENTRY, ENTRYREF, EVENT, MOREINFO,
PREVIEWDURATION, PARAM, REPEAT, TITLE

 <ENTRY HREF="http://sample.microsoft.com/sample1.ASX" />
</ASX>

Requirements

Windows Media Player version 7.0 or later.

See Also

Windows Media Metafile Elements Reference
Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

AUTHOR Element
The AUTHOR element contains the name of the author of a Windows Media metafile or media clip.

Syntax

<AUTHOR>
 text string
</AUTHOR>

Attributes

None.

Parent/Child Elements

Remarks

This element contains a text string representing the name of the author of a Windows Media metafile or media
clip. You can use the AUTHOR element within the ASX element and within ENTRY elements.

If this element appears in the ASX element, the text is displayed as Show information.

Previous Next

Previous Next

Hierarchy Element

Parent elements ASX, ENTRY

Child elements None

If this element appears in an ENTRY element, the text is displayed as the clip author.

Each parent ASX and ENTRY element should contain at most one child AUTHOR element. Multiple
AUTHOR elements after the first will be ignored and will not be displayed.

Example Code

<ASX VERSION="3.0">
 <AUTHOR>Neal S.</AUTHOR> <!-- Show author -->
 <ENTRY>
 <REF HREF="mms://example.microsoft.com/clip1.asf" />
 <AUTHOR>Robert P.</AUTHOR> <!-- Clip author -->
 </ENTRY>
</ASX>

Requirements

Windows Media Player version 7.0 or later.

See Also

Windows Media Metafile Elements Reference
Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

BANNER Element
The BANNER Element defines a URL to a graphic file that will appear in the display panel.

Syntax

<BANNER
 HREF = "URL"
>
</BANNER>

Attributes

 HREF (required)

URL to a graphic file that is displayed in the display panel.

Previous Next

Previous Next

Parent/Child Elements

Remarks

This element defines a URL to a graphic file that appears in the Windows Media Player display panel, beneath
the video content. If the media is audio only, the banner graphic is displayed by itself. Windows Media Player
reserves a space 32 pixels high by 194 pixels wide (the banner bar) for the graphic. If the graphic defined in the
URL is smaller than that, it displays at its original size. If the graphic is larger than the reserved space,
Windows Media Player will crop the image to fit the space.

You can use an ABSTRACT element within the scope of the BANNER element to display text as a ToolTip
when the user pauses the mouse pointer over the banner graphic. A MOREINFO element within a BANNER
element defines a URL to which the user is taken when the user clicks the banner graphic. (The URL can be any
path or protocol, such as an e-mail link, a Hypertext Transfer Protocol (HTTP) URL to a Web site, or even a
Microsoft JScript command.) When the pointer is moved over the graphic, the graphic becomes embossed and
looks like a button.

A BANNER element defined for an ASX element displays while all clips in the playlist are playing. A
BANNER element defined in an ENTRY element displays only while that clip is playing, and during that time
overrides any banner defined within the parent ASX element. You can specify how Windows Media Player
reserves space for the banner by setting the BANNERBAR attribute of the ASX element.

Banner images are not supported with DRM files or when the player is embedded in a Web page.

Example Code

The following is an example of a BANNER element without child elements:

<BANNER HREF="http://sample.microsoft.com/art/banner1.bmp" />

The following is an example of a BANNER element containing ABSTRACT and MOREINFO elements.

<BANNER HREF="http://www.proseware.com/logos/banner1.bmp">
 <ABSTRACT>Click here to go to our Web site.</ABSTRACT>
 <MOREINFO HREF="http://sample.microsoft.com" />
 <!-- The text in the Abstract element displays as a
 ToolTip when the mouse hovers over the banner
 graphic. When a user clicks the banner, the URL
 given in the MoreInfo element opens in the
 browser. -->
</BANNER>

Requirements

Windows Media Player version 7.0 or later.

See Also

Hierarchy Elements

Parent elements ASX, ENTRY

Child elements ABSTRACT, MOREINFO

Windows Media Metafile Elements Reference
Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

BASE Element
The BASE element defines a URL string appended to the front of URLs sent to Windows Media Player.

Syntax

<BASE
 HREF = "URL"
/>

Attributes

 HREF (required)

The string appended to the front to URLs sent to Windows Media Player. The default value is the null string
("").

Parent/Child Elements

Remarks

This element defines a URL string appended to the front of URL-flip URLs sent to Windows Media Player.
URL-flipping is a scripting mechanism that causes Windows Media Player to open a new URL in a browser or
browser frame when it receives a script command.

The BASE element is similar to a home directory for relative links. It only affects URLs sent using script
commands as part of the content stream that is playing in Windows Media Player.

A BASE element defined as the child of an ASX element becomes the default for the entire metafile. A BASE
element defined in an ENTRY element overrides any BASE element in the parent ASX element (for that
ENTRY element only).

Previous Next

Previous Next

Hierarchy Elements

Parent elements ASX, ENTRY

Child elements None

Note If the HREF attribute does not end with a / character, Windows Media Player appends one to the end of
the string.

Example Code

<BASE HREF="http://msdn.microsoft.com/" />

Requirements

Windows Media Player version 7.0 or later.

See Also

Windows Media Metafile Elements Reference
Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Comments
Add comments to metafiles by following Extensible Markup Language (XML) syntax. Comments begin with
"<!--" and end with "-->".

Syntax

<!--Enter your comment text here.-->

Remarks

Comments can appear anywhere except within element content (between element open and close tags, < >).
They are not part of the document's character data and are ignored when the metafile is parsed.

Example Code

<ASX version = "3.0">
<!-- This information is only visible when editing a metafile file. -->
<!--<BANNER HREF="c:\wmsdk\wmssdk\samples\dhtml\asfbutton3.gif">
 </BANNER>-->
 <ENTRY>
 <REF HREF = "mms://proseware.com/pubpt/filename.asf" />
 </ENTRY>

 <ENTRY>

Previous Next

Previous Next

 <TITLE>WMA Port na Pucai</TITLE>
 <!--<DURATION VALUE="00:00:15"/>-->
 <REF href="c:\asfroot\Port na Pucai.wma"/>
 </ENTRY></ASX>

See Also

Windows Media Metafile Elements Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Adding Copyright Characters to Metafiles
The characters for copyright and trademark registration symbols (© or ®) may not display properly if the
metafile is not encoded using the UTF-8 encoding scheme. In this case, to display either of these symbols
properly for all users, you can use the ASCII equivalents (c) and (r) inside the COPYRIGHT element, as shown
in the following code.

<COPYRIGHT>Copyright (c)1998, Microsoft Corporation</COPYRIGHT>

If the metafile is encoded using UTF-8, copyright and trademark symbols will display correctly.

See Also

Windows Media Metafile Elements Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

COPYRIGHT Element
The COPYRIGHT element defines a text string specifying the copyright information for an ASX or ENTRY

Previous Next

Previous Next

Previous Next

Previous Next

element.

Syntax

<COPYRIGHT>
 text string
</COPYRIGHT>

Attributes

None.

Parent/Child Elements

Remarks

This element defines a text string that specifies the copyright information for an ASX or ENTRY element.

When this element appears within an ASX element, the copyright string is displayed only as Show information.
When this element appears within an ENTRY element, the text is displayed as clip information. Each parent
ASX and ENTRY element should contain at most one child COPYRIGHT element. Multiple COPYRIGHT
elements after the first will be ignored and will not be displayed.

The characters for copyright and trademark registration symbols (© or ®) may not display properly if the
metafile is not encoded using the UTF-8 encoding scheme. In this case, to display either of these symbols
properly for all users, you can use the ASCII equivalents (c) and (R) instead.

If the metafile is encoded using UTF-8, copyright and trademark symbols will display correctly.

Example Code

<COPYRIGHT>Copyright (c)1998, Microsoft Corporation</COPYRIGHT>

Requirements

Windows Media Player version 7.0 or later.

See Also

Windows Media Metafile Elements Reference
Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Hierarchy Elements

Parent elements ASX, ENTRY

Child elements None

Previous Next

DURATION Element
The DURATION element defines the length of time Windows Media Player will render the associated playlist
entry.

Syntax

<DURATION
 VALUE = "hh:mm:ss.fract"
/>

Attributes

 VALUE (required)

The length of time, in hours, minutes, seconds, and hundredths of a second, that an entry is rendered by
Windows Media Player. The default value is the entire length of the entry. If the entry is an image file, a
duration value must be specified.

Parent/Child Elements

Remarks

This element defines the length of time a stream is to be rendered. If the VALUE attribute exceeds the length of
the content stream, the stream terminates at its normal end-point.

This element can appear either within a REF element or within an ENTRY element. However, a DURATION
element defined within a REF element overrides one that appears within the REF element's parent ENTRY
element.

The DURATION element overrides a PREVIEWDURATION element.

Example Code

<DURATION VALUE="00:00:30" /> <!-- 30 seconds -->
<DURATION VALUE="1:01.5" /> <!-- 61.5 seconds -->

Requirements

Previous Next

Hierarchy Elements

Parent elements ENTRY, REF

Child elements None

Windows Media Player version 7.0 or later.

See Also

Windows Media Metafile Elements Reference
Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

ENDMARKER Element
The ENDMARKER element specifies a marker at which Windows Media Player will stop rendering the
stream.

Syntax

<ENDMARKER
 NUMBER = "marker number" |
 NAME = "marker name"
/>

Attributes

 NUMBER

The number of a numeric marker in the index. The default value is the end of the content.

 NAME

The name of a named marker in the index. The default value is the end of the content.

Parent/Child Elements

Remarks

This element specifies the marker where Windows Media Player is to stop rendering the stream defined in the

Previous Next

Previous Next

Hierarchy Elements

Parent elements ENTRY, REF

Child elements None

parent ENTRY or REF element.

Note Use the ENDMARKER element with either the NUMBER or NAME attribute, but not both.

In preview mode, reaching an end marker stops the preview, even if the time specified by the
PREVIEWDURATION element has not elapsed. The ENDMARKER element also takes precedence over the
DURATION element.

An ENDMARKER element defined within a REF element takes precedence over an ENDMARKER defined
within the REF element's parent ENTRY element.

If the marker specified by an ENDMARKER element occurs earlier in the stream than the marker defined by a
STARTMARKER element, no content plays, but no error is generated.

Example Code

<ENDMARKER NUMBER="17" />
<ENDMARKER NAME="Marker_StopHere" />

Requirements

Windows Media Player version 7.0 or later.

See Also

Windows Media Metafile Elements Reference
Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

ENTRY Element
The ENTRY element specifies a Windows Media file to render as a clip.

Syntax

<ENTRY
 CLIENTSKIP = "YES" | "NO"
 SKIPIFREF = "YES" | "NO"
>
</ENTRY>

Previous Next

Previous Next

Attributes

 CLIENTSKIP

Value indicating whether the user can skip forward past the clip.

Possible values include the following.

 SKIPIFREF

Value indicating whether Windows Media Player should skip this clip when the ENTRY element is included in
a second metafile through the use of an ENTRYREF element.

Possible values include the following.

Parent/Child Elements

Remarks

This element is the fundamental construct in a Windows Media metafile. The ENTRY element and its
associated attributes define meta-information for a single, logical piece of content, called a clip. Child elements
within the scope of an ENTRY element define media content for Windows Media Player to open (REF),
information about the clip that Windows Media Player will display as text (AUTHOR, COPYRIGHT,
TITLE), and other settings related to the clip. The REF child element links the content to be streamed for the
parent ENTRY element. Though the script will not break, the ENTRY is meaningless without a REF child.

If the value of the CLIENTSKIP attribute is NO, the user cannot skip forward past the piece of content defined
by the ENTRY element. This does not work if the child REF element references another metafile. Nested
metafiles should be referenced using the ENTRYREF element.

Value Description

YES Default. User can skip forward past the clip.

NO User cannot skip forward past the clip.

Value Description

YES Windows Media Player will ignore this entry, if referenced through an
ENTRYREF element.

NO Default. Windows Media Player will not ignore this entry.

Hierarchy Elements

Parent elements ASX, EVENT, REPEAT

Child elements ABSTRACT, AUTHOR, BANNER, BASE, COPYRIGHT,
DURATION, ENDMARKER, MOREINFO, PARAM,
PREVIEWDURATION, REF, STARTMARKER, STARTTIME,
TITLE

The SKIPIFREF attribute pertains only to ENTRY elements that are included in a second metafile through the
use of an ENTRYREF element. The ENTRYREF element references another metafile for logical inclusion in
the current file. If the value of the SKIPIFREF attribute for an ENTRY element from the referenced metafile
file is YES, Windows Media Player ignores this pulled-in entry, and moves on to the next ENTRY element, if
any. The next ENTRY element can be the next entry in the original file, or the next entry in the metafile
referenced in the ENTRYREF element.

Example Code

<ASX VERSION="3.0">
 <TITLE>Example Windows Media Player Show</TITLE>

 <ENTRY>
 <TITLE>Example Clip</TITLE>
 <REF HREF="http://example.microsoft.com/media.asf" />
 </ENTRY>

 <ENTRY>
 <TITLE>Another Clip</TITLE>
 <REF HREF="http://example.microsoft.com/more_media.asf" />
 </ENTRY>
</ASX>

Requirements

Windows Media Player version 7.0 or later.

See Also

Windows Media Metafile Elements Reference
Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

ENTRYREF Element
The ENTRYREF element points to the ENTRY elements in an external metafile.

Syntax

<ENTRYREF
 HREF = "URL"
/>

Previous Next

Previous Next

Attributes

 HREF (required)

URL to a referenced metafile.

 CLIENTBIND

This attribute is no longer supported.

Parent/Child Elements

Remarks

This element points to the contents of an external metafile. Windows Media Player processes the ENTRY
elements of the referenced metafile as if they were included in the primary metafile at the position of the
ENTRYREF element. However, it skips any ENTRY elements in the referenced metafile that have the
SKIPIFREF attribute set to YES.

Windows Media Player 7.0, 7.1, and Windows Media Player for Windows XP ignore any ENTRYREF
elements in the referenced metafile. Thus, metafiles can only be nested one level deep using these Player
versions. Windows Media Player also ignores the ASX element in the referenced file along with its attributes.
Windows Media Player 9 Series or later supports nesting metafiles up to five levels deep.

The URL specified in the HREF attribute becomes the base URL for any relative URLs in the external
metafile. This URL is used when an entry from the external metafile is playing and the user adds it to the Media
Library.

Example Code

<ASX VERSION="3.0">
 <TITLE>Example of Using EntryRef</TITLE>
 <ENTRYREF HREF="http://sample.microsoft.com/metafile.asx" />
</ASX>

Requirements

Windows Media Player version 7.0 or later.

See Also

Windows Media Metafile Elements Reference
Windows Media Metafile Reference

Hierarchy Elements

Parent elements ASX, EVENT, REPEAT

Child elements None

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

EVENT Element
The EVENT element defines a behavior or action taken by Windows Media Player when it receives a script
command labeled as an event.

Syntax

<EVENT
 NAME = "text string"
 WHENDONE = "RESUME" | "NEXT" | "BREAK"
>
</EVENT>

Attributes

 NAME (required)

The name of the event.

 WHENDONE (required)

A value that defines what Windows Media Player does after playing the referenced content.

The following values are possible.

Parent/Child Elements

Previous Next

Value Description

RESUME The current entry (the clip interrupted by the event) resumes playing. If
the content is stored content, it resumes at the same point where it
stopped; if the content is broadcast, it resumes at the current position.

NEXT The next ENTRY element plays as if the event had not occurred and
Windows Media Player had reached the end of the current clip.

BREAK If the current entry is within a REPEAT loop, the loop terminates as if
the repeat count had been completed. Otherwise, Windows Media Player
jumps to the end of the playlist as if the final entry had completed as
usual.

Hierarchy Elements

Remarks

This element defines a behavior or action taken by Windows Media Player when it receives a script command
labeled as an event. An event is a particular type of script command embedded in a stream sent to Windows
Media Player that consists of a double string. The first string is the word "event", and the second string is the
event name. The event name in the second string must match the event name defined in the metafile. (The
match is not case-sensitive.) Events can be sent to Windows Media Player receiving a real-time stream, or can
be saved in a file with an .asf, .wma, or .wmv file name extension, that gets delivered as an on-demand unicast
stream. When Windows Media Player receives the script command, it processes the event as defined by the
EVENT element.

This element defines a scope of ENTRY or ENTRYREF elements that are processed whenever Windows
Media Player receives the script command with the named event. The ENTRYREF can be a URL that points to
an ASP page. With this element, you can specify a behavior for stream switching in near real-time, as opposed
to pre-authored stream changes using references to other pieces of content or Windows Media metafiles.

When you use ASP pages to generate playlists, you must specify a value for the Response.ContentType
property and the Response.expires property in the ASP page because of latency issues with Windows Media
Player. The Response.ContentType must be a valid file name extension for Windows Media metafiles. Valid
types include asf, asx, wma, wax, wmv, and wvx.

See the Platform SDK for details about using the Response object in Active Server Pages.

This element can appear anywhere within the ASX element. If multiple EVENT elements within an ASX
element have identical values for their NAME attributes, Windows Media Player uses the first occurrence
within the ASX element, and ignores all others. When EVENT elements have distinct NAME attributes, their
order within the ASX element does not matter.

Windows Media Player discards events it receives while processing another event. Nesting of events is not
supported. When Windows Media Player is in preview mode, event content is not constrained by the
PREVIEWDURATION element; the full length of event content can play even if the preview duration for the
active ENTRY element expires prior to the end of the event.

Example Code

In this example, when Windows Media Player receives the script command EVENT and command string
"Adlink" in the streaming media it is rendering, it searches the playlist for an EVENT NAME "Adlink".
Windows Media Player switches from the stream it is rendering and plays the content referenced in the
EVENT, "http://example.microsoft.com/adlink.htm".

ENTRY attribute CLIENTSKIP is set to NO to prevent the EVENT clip from being skipped. It must be
played.

<ASX VERSION="3.0">
<ENTRY CLIENTSKIP="NO">
 <REF HREF="http://example.microsoft.com/clip1.asf" />
</ENTRY>
<EVENT NAME="Adlink" WHENDONE="RESUME">
 <ENTRYREF HREF="http://example.microsoft.com/adlink.htm"

Parent elements ASX

Child elements ENTRY, ENTRYREF

 CLIENTSKIP="NO" />
</EVENT>
</ASX>

The script WHENDONE="RESUME" instructs Windows Media Player to resume playing the previous media it
switched from as soon as Adlink.asf is finished.

Requirements

Windows Media Player version 7.0 or later.

See Also

Windows Media Metafile Elements Reference
Windows Media Metafile Reference
Windows Media Player Object Model

© 2000-2003 Microsoft Corporation. All rights reserved.

LOGURL Element
The LOGURL element instructs the player to submit any log data to the specified URL.

Syntax

<LOGURL
 HREF = "URL"
/>

Attributes

 HREF (required)

URL to a host that is able to process logging requests.

Parent/Child Elements

Previous Next

Previous Next

Hierarchy Elements

Parent elements ASX, ENTRY

Child elements None

Remarks

The LOGURL element enables a client metafile playlist to send additional logging information to specified
servers. Logging information is automatically sent to the origin server of a playlist when it is opened and to
each LOGURL specified for the ASX element, if any are present. Logging information is also sent to each
LOGURL specified for an ENTRY element when that entry is reached. The URL specified in the HREF
attribute of a LOGURL element must be the address of a host that is able to process logging requests. The URL
can be any valid HTTP URL. The URL can also indicate the location of a CGI script.

The only valid protocols for a LOGURL element are HTTP and HTTPS.

A LOGURL element within the scope of an ASX element is applicable only to the metafile in which it resides,
regardless of whether that metafile is referenced from another metafile. A LOGURL element forces the
submission of log data for all content streamed from within its defined scope and only for content streamed
from within its defined scope. Log data will be submitted to the origin server and to all URLs listed in every
LOGURL element in scope. Log data will be submitted only once to each listed URL, even if the same URL is
listed more than once in a given scope. A repeat of an ENTRY would result in another submission to the listed
URLs.

There is no limit to the number of LOGURL elements in a metafile playlist.

Example Code

<ASX VERSION="3.0">
 <TITLE>Example Media Player Show</TITLE>
 <LOGURL HREF="http://example.microsoft.com/info/showlog.asp?whatsup" />
 <ENTRY>
 <REF href="mms://ucast.proseware.com/Media1.asf" />
 <LOGURL HREF="http://www.proseware.com/cgi-bin/logging.pl?SomeArg=SomeVal"/>
 </ENTRY>
</ASX>

The following are examples of valid URLs.

URL of an ISAPI application:

http://www.proseware.com/logs/WMSLogging.dll

URL of a CGI script:

http://www.proseware.com/cgi-bin/My_WMS_Logging_Script.pl

A valid HTTP URL:

http://www.proseware.com/some/arbitrary/path/My_WMS_Logging_Page.asp?PubPoint=FooPubPoint&

Requirements

Windows Media Player version 7.0 or later.

See Also

Windows Media Metafile Elements Reference

Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

MOREINFO Element
The MOREINFO element specifies a URL to a Web site, e-mail address, or script command associated with a
show, clip, or banner.

Syntax

<MOREINFO
 HREF = "URL"
 TARGET = "Frame"
/>

Attributes

 HREF (required)

URL to a Web site, e-mail address, or script command.

 TARGET

Value defining the frame or window in which the browser will open the page defined by the HREF attribute.

This can be a string containing a window name, or one of the following values.

Parent/Child Elements

Previous Next

Previous Next

Value Description

_blank The document loads in a new browser window.

_self The document loads in the same frame as the current document
containing the Windows Media Player control.

_parent The document loads in the immediate parent frame of the current frame,
or the current frame if there is no parent frame.

_top The document loads in the full browser window, replacing all other
frames or documents.

Remarks

This element specifies a URL to a Web site, e-mail address, or script command. The user can access the target
of the URL by clicking on the graphic or text associated with the MOREINFO element. The details depend on
the parent element of the MOREINFO element:

If the MOREINFO element is the child of an ASX element, the user can access the URL by clicking the
show title.
If the MOREINFO element is the child of an ENTRY element, the user can access the URL by clicking
the clip title.
If the MOREINFO element is the child of a BANNER element, the user can access the URL by clicking
the banner graphic.

If the HREF attribute specifies a URL to a Web site, the browser opens and navigates to the URL. If the HREF
attribute specifies an e-mail address, the user's e-mail application starts. If the HREF attribute specifies a script
command, the script command executes in the browser.

Note If the MOREINFO element appears within an ASX or ENTRY element, when the mouse cursor is held
over the title of the show (for an ASX element) or clip (for an ENTRY element), the URL defined in the HREF
attribute can be selected and accessed by Windows Media Player.

The TARGET attribute defines the frame or window in which the browser will open the page defined by the
HREF attribute. The values for this attribute follow standard HTML syntax and definitions. In the case of a
control embedded in a Web page, if no TARGET attribute is defined, the URL loads the current browser
window and replaces the existing page, which means the content stops playing. Therefore, it is recommended
that you always specify a TARGET attribute when embedding the Windows Media Player control in a Web
page.

If the metafile is opened in the stand-alone Windows Media Player, the TARGET attribute is ignored, and the
URL loads in an existing browser window. If there is no browser window currently open, the URL loads in a
new browser window.

Example Code

<ASX VERSION="3.0">

 <TITLE>Example Media Player Show</TITLE>
 <MOREINFO HREF="http://example.microsoft.com/info/show_info.htm" />

 <ENTRY>
 <TITLE>Example Clip</TITLE>
 <MOREINFO HREF="http://example.microsoft.com/info/clip1_info.htm" />
 <REF HREF="mms://example.microsoft.com/media.asf" />
 </ENTRY>

</ASX>

Requirements

Hierarchy Elements

Parent elements ASX, ENTRY, BANNER

Child elements None

Windows Media Player version 7.0 or later.

See Also

Windows Media Metafile Elements Reference
Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

PARAM Element
The PARAM Element defines a custom parameter associated with a clip or show.

Syntax

<PARAM
 NAME = "parameter name"
 VALUE = "parameter value"
/>

Attributes

 NAME

Name used to access the parameter value. The name can be any valid string. The following strings have already
been defined.

Previous Next

Previous Next

String Description

AllowShuffle The VALUE attribute specifies whether the metafile playlist allows the
Windows Media Player shuffle feature to play the entries in random
order. The VALUE attribute can be set to "Yes" or "No". The default
value is "No".

Encoding The VALUE attribute is set to "utf-8" to indicate that the metafile is a
Unicode (UTF-8) encoded file.

HTMLView The VALUE attribute specifies a URL that displays in the Now Playing
pane for the duration of the playlist or the current entry depending on
whether the parent element is the ASX element or an ENTRY element.

Log:FieldName[:NameSpace] The VALUE attribute specifies the value that the indicated log field will
be set to. The :NameSpace portion of the NAME attribute is optional.

 VALUE

Value associated with this parameter. It can be either a numeric or string value.

Parent/Child Elements

Remarks

This element allows users to place additional information about each clip inside the ENTRY element that
contains it. To retrieve metadata information specified in the playlist ENTRY, use the Media.getItemInfo
method. The Media.getItemInfo method retrieves the value of the VALUE attribute, given the name of the
parameter. Previous versions of Windows Media Player retrieve metadata information specified in the playlist
ENTRY, using the GetMediaParameter method given the name of the parameter and an index number for the
entry.

A parameter can also be associated with the show rather than an individual clip, by placing this element directly
after the ASX tag. These items are referenced by their names and an index value beginning with zero.

Note This ASX element is only available for Windows Media Player version 6.01 and later. The standard
installation of Microsoft Internet Explorer 5 includes a compatible version of Windows Media Player.

Example Code

<ASX VERSION="3.0">
 <TITLE>Example Media Player Show</TITLE>
 <PARAM NAME="Director" VALUE="Jane D." />

 <ENTRY>
 <TITLE>Example Clip</TITLE>
 <REF HREF="http://sample.microsoft.com/media.asf" />
 <PARAM NAME="Location" VALUE="North America" />
 <PARAM NAME="Release Date" VALUE="March 1998" />
 </ENTRY>

 <ENTRY>
 <TITLE>Another Clip</TITLE>
 <REF HREF="http://sample.microsoft.com/more_media.asf" />
 <PARAM NAME="Location" VALUE="Japan">
 <PARAM NAME="Release Date" VALUE="December 1996" />
 </ENTRY>

Prebuffer The VALUE attribute specifies whether the next playlist entry begins
buffering before the end of the current entry in order to enable a
seamless transition. The VALUE attribute can be set to "true" or "false".

ShowWhileBuffering The VALUE attribute specifies whether an image file referenced by the
current ENTRY element continues to display past its specified duration
time while the next playlist entry is buffered. The VALUE attribute can
be set to "true" or "false".

Hierarchy Elements

Parent elements ASX, ENTRY

Child elements None

</ASX>

Requirements

Windows Media Player version 7.0 or later.

Windows Media Player 9 Series is required for the predefined NAME attributes.

See Also

Displaying Web Pages in Windows Media Player
Logging Stream Data
Windows Media Metafile Elements Reference
Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

PREVIEWDURATION Element
The PREVIEWDURATION element defines the length of time a clip plays in preview mode.

Syntax

<PREVIEWDURATION
 VALUE = "hh:mm:ss.fract"
/>

Attributes

 VALUE (required)

Length of time, in hours, minutes, seconds, and hundredths of seconds, that the clip plays in preview mode.

Parent/Child Elements

Remarks

Previous Next

Previous Next

Hierarchy Elements

Parent elements ASX, ENTRY, REF

Child elements None

This element defines the length of time that a clip plays in preview mode. If this element appears within an
ENTRY element or a REF element, it applies to the clip defined by that element. If it appears within the scope
of an ASX element, it applies to every clip in the metafile. A PREVIEWDURATION element in a REF
element takes precedence over one in an ENTRY element, and either takes precedence over a
PREVIEWDURATION element in an ASX element. If no PREVIEWDURATION element is defined for a
clip, the default preview time is 10 seconds.

If there is a STARTTIME or STARTMARKER element for the clip, Windows Media Player renders the clip
starting at the point defined by one of these elements; otherwise it renders from the beginning of the clip. The
clip stops normally if it is shorter than the time defined by the PREVIEWDURATION element.

The DURATION element overrides a PREVIEWDURATION element.

Example Code

<PREVIEWDURATION VALUE="0:30.0" />

Requirements

Windows Media Player version 7.0 or later.

See Also

Windows Media Metafile Elements Reference
Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

REF Element
The REF element specifies a URL for a piece of media content.

Syntax

<REF
 HREF = "URL"
>
</REF>

Attributes

HREF (required)

Previous Next

Previous Next

URL to any piece of media content supported by Windows Media Player.

Parent/Child Elements

Remarks

This element specifies a URL for a piece of media content. The URL can point to any media type supported,
using any protocol supported by Windows Media Player.

The media types supported include still images such as GIF and JPG images and Flash files with a .swf file
name extension. These media types are useful for including advertising content within a playlist. With image
files and Flash files that play in a loop, you must also specify the amount of time to display the media item by
including a DURATION element within the REF element. If you want an image to continue displaying while
the next entry in the playlist is buffered, include a PARAM element within the ENTRY element, set its name
attribute to ShowWhileBuffering, and set its value attribute to true.

To reference content on a CD-ROM or a DVD-ROM that allows it, the wmpcd and wmpdvd protocols are
provided. For example, setting the HREF attribute to "wmpdvd://f/5/3" will play chapter 3 of title 5 on a DVD,
but only if the DVD has been authored to allow it.

Applications that open digital media from behind a firewall will have better performance when opening the
media items if the address is specified using the domain name server (DNS) name instead of the IP address.

The most common use of this element is for URL rollover. If Windows Media Player is unable to open a piece
of media defined in a REF element, it tries the URL in the next REF element. Once Windows Media Player
opens media content from a URL defined within the scope of one ENTRY element, it ignores subsequent REF
tags within that ENTRY element. After the piece of content is done playing, Windows Media Player moves on
to the next ENTRY element, if any.

Important Once Windows Media Player establishes a connection to a referenced piece of content, it ignores
all other REF elements in that ENTRY, whether the connection terminates normally or abnormally.

If the media item referenced is an image file, the DURATION element must be used to specify the display time
for the image.

Note Attempting to play Flash media that includes sound with the first frame may yield unexpected results.
You should author Flash content to play sound starting no earlier than the second frame.

Example Code

<ASX VERSION="3.0">
 <ENTRY>
 <TITLE>Example Clip</TITLE>
 <REF HREF="mms://example.microsoft.com/selection1.asf" />
 <REF HREF="mms://sample.microsoft.com/mirror/selection1.asf" />
 </ENTRY>
</ASX>

Hierarchy Elements

Parent elements ENTRY

Child elements DURATION, ENDMARKER, PREVIEWDURATION,
STARTMARKER, STARTTIME

Requirements

Windows Media Player version 7.0 or later.

See Also

Supported Protocols and File Types
Windows Media Metafile Elements Reference
Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

REPEAT Element
The REPEAT element defines the number of times Windows Media Player repeats one or more ENTRY or
ENTRYREF elements.

Syntax

<REPEAT
 COUNT = "integer"
>
</REPEAT>

Attributes

 COUNT

Integer representing the number of times Windows Media Player repeats the ENTRY and ENTRYREF
elements within this element's scope.

Parent/Child Elements

Remarks

This element defines the number of times Windows Media Player repeats, or loops through, the clips defined by

Previous Next

Previous Next

Hierarchy Elements

Parent elements ASX

Child elements ENTRY, ENTRYREF

the ENTRY and ENTRYREF elements within this element's scope. Only the first REPEAT element in a
metafile is valid; subsequent REPEAT elements are ignored.

If no COUNT attribute is defined, the content in the associated ENTRY and ENTRYREF elements repeats an
infinite number of times. A value of zero causes Windows Media Player to ignore the REPEAT element and
play the content once.

Example Code

<ASX VERSION="3.0">
 <ENTRY>
 <REF HREF="mms://example.microsoft.com/clip1.asf" />
<!-- This clip plays once. -->
 </ENTRY>

 <REPEAT COUNT="2">
 <ENTRY>
 <REF HREF="mms://example.microsoft.com/clip2.asf" />
 <REF HREF="mms://example.microsoft.com/clip3.asf" />
 <!-- These clips play twice. -->
 </ENTRY>
 </REPEAT>
</ASX>

Requirements

Windows Media Player version 7.0 or later.

See Also

Windows Media Metafile Elements Reference
Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

SKIN Element
The SKIN element specifies a URL to a border.

Syntax

<SKIN
 HREF = "URL"
/>

Previous Next

Previous Next

Attributes

 HREF (required)

URL for a compressed border file with a file extension .wmz. For Windows Media Player 9 Series or later, this
value can reference only border files on the user's hard disk located in the same directory as the metafile
playlist. See the example code.

Parent/Child Elements

Remarks

The SKIN element is used to create a border, which is similar to a skin but is displayed in the Now Playing
area of the full mode Windows Media Player. The SKIN element is used only for borders, which appear inside
the full mode Windows Media Player, and not for regular skins, which entirely replace the compact mode
Windows Media Player.

In a Windows Media Download Package (with a .wmd file name extension), the SKIN element enables a
border to have content and link to other sites. The Windows Media Download Package is a compressed file that
contains a border file and a Windows Media metafile. The border file (with a .wmz file name extension) is
compressed, and includes a skin definition file (with a .wms file name extension).

A SKIN element has three components:

A skin
Some content
A metafile

Skins included with Windows Media Download Packages must be rectangular in shape. Creating borders with
skins that are not rectangular may yield unexpected results.

Example Code

<ASX version = "3.0">
 <TITLE>A Skin Element</TITLE>
 <SKIN HREF = "YourTest.wmz" />

 <ENTRY>
 <PARAM name="YourAlbumTitle" value="YourTitle.jpg"/>
 <PARAM name="link" value="http://www.proseware.com"/>
 <TITLE>(The Artist)-YourTitle</TITLE>
 <REF HREF="(The Artist)-YourSongTitle.wma"/>
 </ENTRY>

</ASX>

Requirements

Hierarchy Elements

Parent elements ASX

Child elements None

Windows Media Player version 7.0 or later.

See Also

Borders for Windows Media Player
Windows Media Metafile Elements Reference
Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

STARTMARKER Element
The STARTMARKER element specifies a marker from which Windows Media Player will start rendering the
stream.

Syntax

<STARTMARKER
 NUMBER = "marker number"
 NAME = "marker name"
/>

Attributes

 NUMBER

The number of a numeric marker in the index. The default value is the beginning of the content if on-demand,
or the current position in the stream if real-time.

 NAME

The name of a named marker in the index. The default value is the beginning of the content if on-demand, or
the current position in the stream if real-time.

Parent/Child Elements

Previous Next

Previous Next

Hierarchy Elements

Parent elements ENTRY, REF

Child elements None

Remarks

This element specifies the marker from which Windows Media Player is to start rendering the stream defined in
the parent ENTRY or REF element.

Note Use this element with either the NUMBER or NAME attribute, but not both.

A STARTMARKER element defined within a REF element takes precedence over a STARTMARKER
element defined within the REF element's parent ENTRY element. A STARTMARKER element also takes
precedence over a STARTTIME element.

If the marker specified by a STARTMARKER element occurs later in the stream than the marker defined by
an ENDMARKER element, no content plays, but no error is generated.

Example Code

<STARTMARKER NUMBER="14" />
<STARTMARKER NAME="Marker_StartHere" />

Requirements

Windows Media Player version 7.0 or later.

See Also

Windows Media Metafile Elements Reference
Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

STARTTIME Element
The STARTTIME element defines a time index from which Windows Media Player will start rendering the
stream.

Syntax

<STARTTIME
 VALUE = "hh:mm:ss.fract"
/>

Attributes

Previous Next

Previous Next

 VALUE (required)

The time index, in hours, minutes, seconds, and hundredths of seconds, from which Windows Media Player
starts playing a stream defined in the associated element.

Parent/Child Elements

Remarks

This element defines a time index into the content where Windows Media Player is to start rendering the
stream. This element can be used only with stored, on-demand content that has been indexed.

Example Code

<STARTTIME VALUE="1:30.0" />

Requirements

Windows Media Player version 7.0 or later.

See Also

Windows Media Metafile Elements Reference
Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

TITLE Element
The TITLE element defines a text string specifying the title for an ASX or ENTRY element.

Syntax

<TITLE>
 text string
</TITLE>

Hierarchy Elements

Parent elements ENTRY, REF

Child elements None

Previous Next

Previous Next

Attributes

None.

Parent/Child Elements

Remarks

This element defines a text string that specifies the title of an ASX or ENTRY element. The title is displayed in
the display panel and Properties dialog box.

When this element appears within an ASX element, the text is displayed as Show information. When this
element appears within an ENTRY element, the text is displayed as Clip information.

If a MOREINFO element is also used with the associated (parent) element, it is the title text that the user clicks
to access the URL defined in the MOREINFO element.

Each parent ASX and ENTRY element should contain at most one child TITLE element. Multiple TITLE
elements after the first will be ignored and will not be displayed.

Example Code

<ASX VERSION="3.0">
 <TITLE>Title of the Show</TITLE>
 <ENTRY>
 <TITLE>Title of the Clip</TITLE>
 <REF HREF="mms://example.microsoft.com/clip1.asf" />
 </ENTRY>
</ASX>

Requirements

Windows Media Player version 7.0 or later.

See Also

Windows Media Metafile Elements Reference
Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Hierarchy Elements

Parent elements ASX, ENTRY

Child elements None

Previous Next

File Name Extensions
There are specific guidelines for the use of file name extensions for Windows Media metafiles. Windows Media
metafile extensions are used to identify the different types of Windows Media files. A file name extension
provides an Independent Software Vendor (ISV) with information about the rendering requirements of an
application that uses a particular extension, and enables content authors to target general types of media players.

The file name extension guidelines are listed in the following table. It is recommended that a file's MIME type,
located in the file header, be used for file-type identification.

Remarks

Scripting and digital rights management (DRM) must be supported by any application rendering Windows
Media files.

See Also

Windows Media Metafile Elements Reference

Previous Next

File name
extension

MIME type File content

.wma audio/x-ms-wma Windows Media file, with audio content only.
Typically used to download and play files or to stream
content.

.wmv video/x-ms-wmv Windows Media file with audio and/or video content.
Typically used to download and play files or to stream
content.

.asf video/x-ms-asf Legacy content. Typically used to download and play
files or to stream content. May contain audio and/or
video content. Typically used to download and play
files or to stream content.

.wm video/x-ms-wm Reserved

.wax audio/x-ms-wax Metafiles that reference Windows Media files with
the .asf, .wma or .wax file extensions.

.wvx video/x-ms-wvx Metafiles that reference Windows Media files with
the .wma, .wmv, .wvx or .wax file extensions.

.asx video/x-ms-asf Metafiles that reference Windows Media files with
the .wma, .wax, .wmv, .wvx, .asf, or .asx file
extensions.

.wmx video/x-ms-wvx Reserved

Windows Media Metafile Guide
Windows Media Metafile Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Windows Media Player
The Windows Media Player SDK provides features that affect the behavior of Windows Media Player.

The following sections detail SDK features that apply to Windows Media Player in general.

See Also

Windows Media Player 9 Series SDK

© 2000-2003 Microsoft Corporation. All rights reserved.

Registry Settings
Windows Media Player 9 Series uses the registry to store certain settings. You can make changes to these
settings to change the behavior of Windows Media Player and the Player control.

Previous Next

Previous Next

Section Description

Registry Settings Details values that you can change in the user's
registry to enable Windows Media Player to
recognize custom file name extensions.

Command Line Parameters Details the set of command line parameters that
specify how the Player behaves when it starts.

Previous Next

Previous Next

The following sections detail the supported registry settings.

See Also

Windows Media Player

© 2000-2003 Microsoft Corporation. All rights reserved.

File Name Extension Registry Settings
Windows Media Player maintains a list of file name extensions in the registry on the user's computer. When the
user attempts to play a digital media file from the local computer or from a computer on a corporate intranet by
using the Universal Naming Convention (UNC), the Player checks the file name extension against the list in the
registry. If a match is found, the Player then checks two values that indicate permissions for the file type (such
as playback or add to Media Library) and which underlying technology, or runtime (such as Microsoft
DirectShow® or the Windows Media Format SDK), can be used to play the file. If no match is found, the
Player presents the user with a warning dialog box that prompts the user for permission to attempt to play the
file. If you create digital media files with custom file name extensions, you can prevent this warning from
appearing on the user's computer by registering the file name extension and providing values for permissions
and runtime.

The list of file name extensions is maintained as a set of registry keys that match the registered file name
extensions, including the dot (.) separator. A separate list is maintained for the local machine and for each user.
For the local machine, the file name extension keys are subkeys of the following registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\Multimedia\WMPlayer\Extensions\

For example, the key for files having a .xyz file name extension for the local machine would be:

HKEY_LOCAL_MACHINE\Software\Microsoft\Multimedia\WMPlayer\Extensions\.xyz

To change values in this key or to create a new subkey, the current user must be an administrator for the

Section Description

File Name Extension Registry Settings Describes how to register a custom file name
extension.

Custom Scheme Registry Settings Describes how to register a custom scheme.

Folder Monitoring Registry Settings Describes how to register file folders to be monitored
by the Player.

Previous Next

Previous Next

computer.

For individual users, the file name extension keys are subkeys of the following registry key:

HKEY_CURRENT_USER\Software\Microsoft\MediaPlayer\Player\Extensions\

For example, the key for files having a .xyz file name extension for the current user would be:

HKEY_CURRENT_USER\Software\Microsoft\MediaPlayer\Player\Extensions\.xyz

When checking for registered file name extensions, the Player first checks the values located in
HKEY_LOCAL_MACHINE. If none are found for the current file name extension, the Player next checks the
values in HKEY_CURRENT_USER. If none are found for the current file name extension, the Player displays
the warning message to the user.

Each file name extension subkey may include the following two values.

The following table provides possible values for Permissions.

Name Type Description

Permissions REG_DWORD A value that represents the
operations allowed for digital media
files having the registered file name
extension.

Runtime REG_DWORD A value that represents the
underlying technology that
Windows Media Player can use to
play digital media files having the
registered file name extension.

Value (decimal) Description

1 Permission for playback. Files having the registered
file name extension can be played.

2 Permission for folder drop. Files having the registered
file name extension will be included in the playlist
created when the user drags a folder containing the
files and drops it on the Player user interface.

4 Permission for media CD. Files having the registered
file name extension will be included in the playlist
created when a CD containing the files is inserted
into the CD-ROM drive.

8 Permission for Media Library. Files having the
registered file name extension can be added to Media
Library.

16 Permission for HTML streaming. Files having the
registered file name extension will be inserted into
the Internet Explorer cache when delivered from a

The values in the preceding table may be combined. For instance, a value of "0x003" means permission for both
playback and folder drop.

Failing to set a value of 1 for Permissions (permission for playback) for a file name extension that Windows
Media Player registers by default will have no effect. The Player will always grant playback permission for files
having a file name extension that is registered by default.

Setting a value of 2 for Permissions (permission for folder drop) for a file name extension other than one that
Windows Media Player registers by default will have no effect. You can, however, remove this permission from
a default file name extension to prevent files having that file name extension from being included in the playlist
during a drag-and-drop operation.

The following table provides possible values for Runtime.

Changing the Runtime value for a file name extension that Windows Media Player registers by default will
have no effect. The Player will always use the default Runtime value for files having a file name extension that
is registered by default. This registry value is designed to allow runtime configuration for custom file name
extensions.

See Also

Specifying Media Library Classification
Registry Settings

© 2000-2003 Microsoft Corporation. All rights reserved.

Specifying Media Library Classification
Note Use of this feature requires Windows Media Player QFE 823275.

If you specify permission for Media Library (8) for your custom file name extension, you can add a REG_SZ
registry value that specifies whether your files appear in Media Library in the All Music or All Video node.
To do this, create a new value in the following registry key:

Web stream.

Value Description

6 Render using the Windows Media Format SDK.

7 Render using Microsoft DirectShow.

Previous Next

Previous Next

HKEY_LOCAL_MACHINE\Software\Microsoft\MediaPlayer\MLS\Extensions

For example, the following registry syntax specifies that files having the file name extension ".xyz" will appear
in the All Music node in Media Library:

[HKEY_LOCAL_MACHINE\Software\Microsoft\MediaPlayer\MLS\Extensions]
"xyz" = "audio"

The following table provides possible values for custom file name extensions.

To change values in this key, the current user must be an administrator for the computer.

If you do not specify a value for your custom file name extension, your files will appear in the Other Media
node by default.

See Also

File Name Extension Registry Settings

© 2000-2003 Microsoft Corporation. All rights reserved.

Custom Scheme Registry Settings
Schemes are custom protocols. Windows Media Player maintains a list of schemes in the registry on the user's
computer. When the user attempts to play a digital media file, the Player first checks whether the Windows
Media Format SDK supports the scheme. If it doesn't, the Player checks the scheme against the list in the
registry. If a match is found, the Player then checks a value that indicates which underlying technology, or
runtime (such as Microsoft DirectShow or the Windows Media Format SDK), can be used to play the file. If no
match is found, the Player presents the user with a warning dialog box that prompts the user for permission to
attempt to play the file. If you stream digital media files using a custom protocol scheme, you can prevent this
warning from appearing on the user's computer by registering the scheme and providing a value for the runtime.

The list of schemes is maintained as a set of registry keys that match the registered schemes, without the colon
and the two slashes (://). For example, the key for the wmhtml:// scheme, which is used to stream rich media, is

Value Description

audio Custom file types appear in the All Music node in
Media Library.

video Custom file types appear in the All Video node in
Media Library.

Previous Next

Previous Next

named "wmhtml". A separate list is maintained for the local machine and for each user. For the local machine,
the scheme keys are subkeys of the following registry key:

HKEY_LOCAL_MACHINE\Microsoft\Multimedia\WMPlayer\Schemes\

For example, the key for the wmhtml:// scheme for the local machine is:

HKEY_LOCAL_MACHINE\Microsoft\Multimedia\WMPlayer\Schemes\wmhtml

To change values in this key or to create a new subkey, the current user must be an administrator for the
computer.

For individual users, the scheme keys are subkeys of the following registry key:

HKEY_CURRENT_USER\Microsoft\MediaPlayer\Player\Schemes\

For example, the key for the wmhtml:// scheme for the current user is:

HKEY_CURRENT_USER\Microsoft\MediaPlayer\Player\Schemes\wmhtml

When checking for registered schemes, the Player first checks the values located in
HKEY_LOCAL_MACHINE. If none are found for the current scheme, the Player next checks the values in
HKEY_CURRENT_USER. If none are found for the current scheme, the Player displays the warning to the
user.

Each scheme subkey may contain one of the following possible values for Runtime.

Changing the Runtime value for a scheme that the Windows Media Format SDK supports will have no effect.
The Player will always use the Format SDK as the runtime for schemes that the Format SDK supports. This
registry value is designed to allow runtime configuration for custom schemes.

See Also

Registry Settings

© 2000-2003 Microsoft Corporation. All rights reserved.

Value Description

6 Render using the Windows Media Format SDK.

7 Render using Microsoft DirectShow.

Previous Next

Previous Next

Folder Monitoring Registry Settings
Windows Media Player 9 Series can monitor file folders to check whether new digital media files have been
added. When the Player detects a new file in a monitored folder, it automatically adds the file to Media
Library. Users can change the list of monitored folders by clicking Monitor Folders on the Media Library
tab of the Options dialog box. You programmatically add a folder for monitoring by adding a value to the
registry.

To add a folder for monitoring you must first create or modify two values in the following registry key:

HKEY_CURRENT_USER\Software\Microsoft\MediaPlayer\Preferences\

The new values must be named as follows.

For example, to add the first folder to monitor, add the following value:

[HKEY_CURRENT_USER\Software\Microsoft\MediaPlayer\Preferences]
"TrackFoldersDirectories0" = "c:\MyPath\MyFolder"

Then, create the count value:

[HKEY_CURRENT_USER\Software\Microsoft\MediaPlayer\Preferences]
"TrackFoldersDirectories" = dword:00000001

To add a second folder to monitor, add the following value:

[HKEY_CURRENT_USER\Software\Microsoft\MediaPlayer\Preferences]
"TrackFoldersDirectories1" = "c:\MyPath\MyFolder2"

Then, increment the count value:

[HKEY_CURRENT_USER\Software\Microsoft\MediaPlayer\Preferences]
"TrackFoldersDirectories" = dword:00000002

See Also

Registry Settings

Name Type Description

TrackFoldersDirectories REG_DWORD A DWORD value that represents the
count of folders to monitor. This must
match the count of
TrackFoldersDirectoriesX values.

TrackFoldersDirectoriesX, where X
represents an integer value.

REG_SZ A string value that represents the path
of the folder to monitor. Each folder to
monitor requires a separate value. The
suffix (X) should always begin at 0 and
then increment by 1. Windows Media
Player also monitors subfolders of the
specified folder.

© 2000-2003 Microsoft Corporation. All rights reserved.

Command Line Parameters
Windows Media Player 9 Series supports a set of command line parameters that specify how the Player behaves
when it starts. The following table details the parameters and their behaviors.

Previous Next

Previous Next

Syntax Behavior

"path\filename"

(For example: wmplayer "c:\filename.wma")

Start the Player and play the file.

"path\filename" /fullscreen

(For example:
wmplayer "c:\filename.wmv" /fullscreen)

Play the specified file in full-screen mode.

You must specify the path and file name of the
content to play.

/Device:{DVD|AudioCD}

(For example: wmplayer /device:audio CD)

Play a DVD or audio CD.

"path\filename"?WMPSkin=skin name

For example: wmplayer "c:\filename.wma"?
wmpskin=headspace

Open the Player, applying the specified skin.

/Task NowPlaying Open the Player in the Now Playing feature.

/Task MediaGuide Open the Player in the Media Guide feature.

/Task CDAudio Open the Player in the Copy from CD feature.

/Task MediaLibrary Open the Player in the Media Library feature.

/Task RadioTuner Open the Player in the Radio Tuner feature.

/Task PortableDevice Open the Player in the Copy to CD or Device
feature.

/Task Services /Service servicename Open the Player in the Premium Services feature,
showing the service specified by the servicename
parameter. This value is the unique name for the
service.

See Also

Windows Media Player

© 2000-2003 Microsoft Corporation. All rights reserved.

Glossary
To find a term in the glossary, click the letter of the alphabet that is the first letter in the term you want to look
up.

You can also read glossary terms within the text of Help by clicking the underlined glossary term links. After
you click a glossary link, the glossary term and definition appear in a pop-up window. To close the window,
click anywhere on the screen.

A

ambient

Supported by more than one skin element.

analog

The traditional format in which audio and video are transmitted by using a wave or analog signal. An analog
signal may not work with digital speakers; computers use digital signals.

anchor window

A small window that can appear in the lower-right corner of the screen when Windows Media Player is in skin
mode. You can use the window to return to full mode and access other commands.

announcement

/Task SkinViewer Open the Player in the Skin Chooser feature.

/Playlist PlaylistName Open the Player and play the specified playlist.

Previous Next

Previous

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

A Windows Media metafile that gives a player the information needed to receive content. Announcement files
contain Extensible Markup Language (XML) scripts.

aspect ratio

The ratio of the width of an image to its height.

attribute

A name-value data pair.

Back to Top

B

bandwidth

A network's capacity for transferring an amount of data in a given time.

bit rate

The number of bits transferred per second.

broadcast

A method by which a client receives a stream. During a broadcast connection, clients cannot control the stream.
This is the opposite of an on-demand presentation.

broadcast unicast

A point-to-point connection that a client initiates to a publishing point in a Windows Media server.

buffer

An area of computer memory reserved for temporarily holding data before that data is used on the receiving
computer. Buffering protects against the interruption of data flow.

Back to Top

C

caption

Text that accompanies images or videos, either as a supplemental description or a transcript of spoken words.

CD

See definition for: compact disc (CD)

client

Any computer or program connecting to, or requesting the services of, another computer or program. Client can
also refer to the software that enables the computer or program to establish the connection.

clipping image

An image that is not displayed, but instead defines the visible region of another image.

codec

An abbreviation for compressor/decompressor. Software or hardware used to compress and decompress digital
media.

compact disc (CD)

An optical storage medium for digital data.

compression

A process for removing redundant data from a digital media file or stream to reduce its size or the bandwidth
used.

content

Audio, video, images, text, or any other information that is contained in a digital media file or stream.

Back to Top

D

down image

An image that is displayed when the mouse button is in the down position over a control.

download

To transfer a file over a network in response to a request from the device that receives the data. Downloaded
content is kept on the receiving device for playback on demand. In contrast, streamed content is played as it is
delivered.

Back to Top

E

element

A fundamental syntactic unit in markup languages, such as HTML or XML. Elements are delimited by start
tags and end tags. Empty elements are defined using an empty-element tag.

encode

To convert audio and video content to a specified digital format.

error correction

In Windows Media Player, a process to ensure that digital audio data is read from the CD-ROM drive
accurately during playback or copying. Using error correction can prevent undesirable noises that are not part of
the original material.

Extensible Markup Language (XML)

A markup language that provides a format for describing structured data. XML is a World Wide Web
Consortium (W3C) specification, and is a subset of Standard Generalized Markup Language (SGML).

Back to Top

F

file format

The structure or organization of data in a file. File format is usually indicated by the file name extension.

See also: file name extension, file type

file name extension

A set of characters added to the end of a file name that identifies the file type or format.

See also: file format, file type

file type

A description of the content or format of a file. File type is usually indicated by the file name extension.

See also: file format, file name extension

frame rate

The number of video frames displayed per second. Higher frame rates generally produce smoother movement in
the picture.

full mode

The default operational state of Windows Media Player in which all of its features are displayed. The Player can
also appear in skin mode.

See also: skin mode

Back to Top

G

global attribute

An attribute associated with a skin definition file as a whole, which can be accessed from any element.

Back to Top

H

hover image

An image that is displayed for a control whenever the mouse pointer hovers over it.

HTTP

See definition for: Hypertext Transfer Protocol (HTTP)

Hypertext Transfer Protocol (HTTP)

The Internet protocol used to deliver information over the World Wide Web.

Back to Top

I

intelligent streaming

A type of streaming that detects network conditions and adjusts the properties of a video or audio stream to
maximize quality.

Back to Top

L

licensed file

A Windows Media file that has an associated license that defines how the file can be played. The restrictions
stated in the license vary depending on the license creator. When a CD track is copied by using Windows Media
Player, a license can be assigned to the newly created file. Under that license, the file can only be played on the
computer where the file was created.

lossy compression

A process for compressing data in which information deemed unnecessary is removed and cannot be recovered
upon decompression. Typically used with audio and visual data in which a slight degradation of quality is
acceptable.

Back to Top

M

mapping image

An image that is not displayed, but instead defines significant regions on another image through the use of

colors.

metadata

Data about data. Title, subject, author, and size are examples of a file's metadata.

metafile playlist

A Windows Media metafile that contains information about a series of digital media items.

Microsoft Media Server (MMS) protocol

A proprietary protocol using UDP or TCP to deliver content as a unicast stream.

See also: Transmission Control Protocol (TCP), User Datagram Protocol (UDP)

MIDI

See definition for: Musical Instrument Digital Interface (MIDI)

MIME

See definition for: Multipurpose Internet Mail Extension (MIME)

MMS protocol

See definition for: Microsoft Media Server (MMS) protocol

Moving Picture Experts Group (MPEG)

The committee that creates international standards for coding audio-visual information to a digital, compressed
format. The acronym MPEG is appended to the beginning of individual specifications developed by the
committee. For example, MPEG-2 refers to the standard, ISO/IEC - 11172.

MPEG

See definition for: Moving Picture Experts Group (MPEG)

multicast

A content delivery method in which a single stream is transmitted from a media server to multiple clients. The
clients have no connection with the server. Instead, the server sends a single copy of the stream across the
network to multicast-enabled routers, which replicate the data. Clients can then receive the stream by
monitoring a specific multicast IP address and port.

Multipurpose Internet Mail Extension (MIME)

A standard that extends the Simple Mail Transport Protocol (SMTP) for encoding non-ASCII data files such as
video, sound, and binary files for attachment to Internet e-mail.

Musical Instrument Digital Interface (MIDI)

A specification of the MIDI Manufacturers Association (MMA). The specification defines a protocol for
describing music data, such as note on and note off messages; a file format for storing music data, called
Standard MIDI; and a standard hardware interface.

Back to Top

P

packet

A unit of information transmitted as a whole from one device to another on a network.

playlist

A list of digital media content.

port

A connection point in a computer through which a peripheral device or another computer can communicate.

progress bar

A meter-like indicator within a graphical user interface that illustrates the progress of an incremental process,
such as a file download.

protocol

A set of formats and procedures that enable computers to exchange information.

See also: Hypertext Transfer Protocol (HTTP), Microsoft Media Server (MMS) protocol, Transmission Control
Protocol (TCP), User Datagram Protocol (UDP)

proxy server

A server located on a network between client software, such as a Web browser, and another server. It intercepts
all requests to the server to determine whether it can fulfill them itself. If not, it forwards the request to another
server.

publishing point

An organized memory location that is identified by a name on a Windows Media server. The name is part of the
URL used by a client when requesting content from the server. See also: broadcast publishing point, on-demand
publishing point.

Back to Top

S

SAMI

See definition for: Synchronized Accessible Media Interchange (SAMI)

skin

A user interface that provides an alternative appearance and customized functionality for software such as
Windows Media Player.

skin definition file

An XML document that specifies the elements in a skin, along with their relationships and functionality. A skin
definition file has a .wms file name extension.

skin mode

An operational state of Windows Media Player in which its user interface is displayed as a skin.

See also: full mode, skin

stream

Digital media that is in the process of being delivered in a continuous flow across a network.

streaming

A method of delivering digital media across a network in a continuous flow. The digital media is played by
client software as it is received. Typically, streaming makes it unnecessary for users to download a file before
playing it.

Synchronized Accessible Media Interchange (SAMI)

An XML-based language for specifying closed captions in multiple languages and styles.

See also: caption

Back to Top

T

TCP

See definition for: Transmission Control Protocol (TCP)

track

An individual song or other discrete piece of audio content.

Transmission Control Protocol (TCP)

The protocol within TCP/IP that governs the breakup of data messages into packets to be sent via IP, and the
reassembly and verification of the complete messages from packets received by IP.

Back to Top

U

Uniform Resource Locator (URL)

The address of a resource on a network. It conforms to the protocol://servername/resource syntax, where
protocol is the name of the protocol used (such as http), servername is the name of the server, and resource is
the directory path and file name of the resource. If a resource is not specified, a default one is often provided by
the server.

URL

See definition for: Uniform Resource Locator (URL)

User Datagram Protocol (UDP)

A connectionless transport protocol in the TCP/IP protocol stack that is used in cases where some packet loss is
acceptable, for example, with digital media streams.

Back to Top

V

visualization

In Windows Media Player, a graphical display that changes in response to the audio signal.

Back to Top

W

Windows Media client

The ActiveX control called Windows Media Player that receives and renders content from Windows Media
server components. The client can be on either the same computer as the server, or another computer.

Windows Media file

A file that contains audio, video, or script data. The content of the file is encoded with one of the Windows
Media codecs.

Windows Media Format

The format of a digital media file or stream that was encoded with Windows Media codecs.

Windows Media metafile

In Windows Media technologies, a file that provides information about Windows Media files and their
presentation. File name extensions for Windows Media metafiles include .asx, .wax, .wvx, .wmx, and .nsc.

Back to Top

X

XML

See definition for: Extensible Markup Language (XML)

Back to Top

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous

